
51 Data Flow 

51 Data Flow 

51-1 



L ____ _ 
nMlIlJ! 

I( I ~~ 

r-----------------
• 

I I 
• I 

I I L.J 
• 

I 
• 

I 

Ml'M eU$ 

I MPM 
I 

II 
I I 

I' I XI 

I • 

II 

ClOeAlW$ 

FigUl'c 51-1 Block diagram of INTERVIEW 
7000 Series hardware architecture. 



51 Data Flow 

51 Data Flow 

Figure 51-1 is a block diagram showing the. components on each of the six types of logic 
board in the INTERVIEW 7000 Series. The components on the TIM (Test Interface Module) 
also are shown. Figure 51-2 indicates the flow of data among the various functional 
components of the unit. 

51.1 Two Types of CPU 

The brain of the INTERVIEW is the Motorola 68010 processor on the CPM (Central 
Processing Module). See Figure 51-1. The 68010 processor controls operations in 
the unit not directly under control of the user program. 68010 operations include 
fetching power-up software and initialization routines from the EPROM. controlling 
disk I/O, and maintaining setup and statistics screens. The operating system in the 
68010 is pSOS. 

An Intel 80286 processor controls the operation of the MPM (Main Processor 
Module), The MPM does an higher level processing of receive data. The board 
also generates the transmit data to be sent out in emulate mode. The 80286 uses a 
basic, multitasking real-time executive operating system. 

An INTERVIEW 7000 and 7200 TURBO may have from one to three MPMs, each 
with its own 80286 CPU. The INTERVIEW 7500 and 7700 TURBO always have 
three MPMs. 

51-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

DTE/DCE 

r---li 
TIM $->------, 

' •••• •• V. ·'v.v., ........ w ••• ·w.wow ....... 

I LEDs !III~~--- ~:Ja 
z.WX,"X·.ZXI.W .. &."","" control 

... 
Bit-image 

data playback 

RAM ~ 

leads 

FEB 

JW...... w •• ·.w.· ·.·.·.·w.w.w .. • .• · 

~ Record 
m bit-image 

L.'===r=_=~ data. control 
Data. control 
leads (if 
buffered), Transfer leads (if if 

buffered) , 
and time 

~" licks (if 
'-- DISK;'; enabled)_ 

~= .. , .... ,~~ 

and time ticks 
(if enabled) 

Character 
data, 

control 
eads, and 

time 
ticks: 

record or 
transfer 

Character-data I Pla,:.ok 
TRIGGER LOGIC 

Program 
and 

J 
"-"W~l _W~"._-.J 

OPERATOR 
INTERFACE 

68010 processor 
CPM board 

Transmitted 
data anti 
control 
leads 

~ 
l.....+- Display Keyboard Printer R § emote 1 

~~~ 
. '. . "''''.. .V,"" ~ ... " .... .•. ' .. " .. ' .• ...., . 

FIgure 51-2 INTERVIEW 7000 Series functional diagram. 

51-4 



51 Data Flow 

The 80286 operates on software located in the DRAM on the MPM. See 
Figure 51-1. This software is the user program-setups. trigger menus. protocol 
spreadsheet, and protocol state machines (layer packages)-translated and compiled 
by the C:PM and loaded into the MPM. The program will tell the MPM how to 
process the data, what trigger conditions to look for in the data stream, etc. 

The CPM polls the MPM continuously to see if data is available to be output to the 
printer or the plasma display. This data includes character data. trace data. prompts, 
and values to be posted to the statistics screens. 

While the CPM accesses the MPM on a regular basis. there is no access in the 
reverse direction. That is, the user program running on the MPM has no direct 
access to the CPM. The user cannot write to one of the menu screens, for example. 

51.2 Front-End Buffer 

Note in Figure 51-2 that the front-end buffer (FEB) lies squarely between the line 
interface and (1) the recording medium and (2) the program logic on the MPM. 
This means that control leads mayor may not be recorded and mayor may not be 
seen by the trigger-menu and spreadsheet conditions-depending on the FEB setup 
(see Section 7). 

Once control leads and time ticks (that is, the original timing values) are recorded 
alongside character data, they are locked in. Since the FEB is not on the playback 
path for character data, FEB selections do not apply. 

Bit-image data, however, does pass through the FEB during playback. Except for 
the Idle Suppress field, FEB selections apply. This means that control leads and time 
ticks. if recorded with the data. must be enabled in order for the program logic to 
detect them. 

Not only characters but also leads and time ticks. if enabled in the FEB setup, are 
captured automatically in the display buffer (that is, the screen buffer or character 
RAM). 

Data, time ticks, and control leads are encoded in a special storage format by a 
data-encoder chip on the FEB board. See Figure 51-1. The encoded data is 
buffered to be sent to the PCM (Peripheral Control Module) for recording and to the 
MPM for processing. 

The encoding process is driven by clock pulses on the line interface. This means that 
in the absence of external clock (or. if the INTERVIEW is emulating DCE. in the 
absence' of internal clock). neither line data, time ticks nor EIA leads will be 
recorded or presented to the receivers and to the program logic. 

51-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

51-6 



52 Program Main 

52 Pro,gram Main 

Sankey-selectable programming "tokens" entered by the user on the Protocol Spreadsheet are 
translated automatically into C during the initial compiler phases after ~ is pressed. Trigger 
Menu setups also' are translated into C. When the translation is complete, the compiler takes 
over and converts the C code into object code. The C variables and routines used by the 
translator are documented throughout this volume. 

Briefly. the translator makes the fonewing conversions: it turns TESTs into tasks; STATE names 
into labels; STATEs intO' waitlor clauses; CONDITiONS into wait/or expressions that include 
event variables; and ACTIONS into statements and routines, also inside of wait/or clauses. 

Then the translator creates a program main function that calls every task in the program. 

52.1 Translating a Simple Test into C 

Suppose that the following simple program, intended to sound the INIERVIEW's 
alarm at 1 P.M .• has been entered on the Protocel Spreadsheet. 

STATE: sample1 
CONDITIONS: TIME 1300 
ACTIONS: ALARM 

When the user presses E!]. roughly the foHowing C coding (with some extraneous 
code removed for clarity) is generated and then compiled: 

extern last_even1leliar _time_ol_day; 
extern IIDlatile unsigned short crnt_time_ol_day; 
task 
{ 

main () 
{ 

} 

state_sample]: 
wait lor 
{ 

} 
} 

} diest_O, 
main () 
{ 

dtesl_O (); 
} 

52-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Note that the translator has assigned state_sample1 to a default TEST named dtest_O. 
It converted the TEST into a task and placed state _sample] inside of the task. Then 
it created a program main function and used the program main to can every test/task 
in the program. The tasks appear in the task list in the same order in which they 
appear in the spreadsheet program. In this instance there was only one task to call. 

H you try to enter the program above on the spreadsheet entirely in ·C, in the first 
place you will have to surround it with a pair of curly braces. Then it will not 
compile. The translator does not look inside of curly braces (except to expand 
constants). It simply lifts up the braced C regions and places them intact into its 
translation of the softkey portion of the program. before adding a program 
main-even when, as in this instance, a program main already is included in a C 
region. The two main functions conflict here, and the compiler issues the error 
message, "Error 109: Function main redefined." 

If we were to remove the main function from our C version, the program would 
compile but it still would not work. Here's why. When the translator looks at a 
program made up entirely of C code, it doesn't see anything. So it creates a 
program main with a task-list that is empty. The task that is declared in the program 
above (dlest_O) is never called. 

The rule, then, is that a Protocol Spreadsheet program containing tasks written in .c 
must always have at least onesoftkey STATE (with its implied task) that calls all the 
tasks. 

52.2 A Minimum of One Softkey State 
Here is a Protocol Spreadsheet test that works and yet has the minimum number of 
softkey tokens-one. Note that we have given the task dtest_O a new name, since 
the translator will declare the task-name dtest_O as the default test for our new 
softkey state, task_list. 

extern fast_event /evar _time_oj_day; 
extern volatile unsigned short crnt_time_o/_day; 
task 
{ 

main () 
{ 

state sample}: 
wait/or 
{ 

Jevor_time_oJ_day && (crnt_time_oLday =: 1300): 
{ 

} 

} 
} c_test; 

STATE: task list 
{ -

c_test (); 

52-2 



52 Program Main 

And here is th~Lprogram as it is actually compiled. Note that the translator has 
added a program main that calls du~st_O (which in tum calls c_test). 

extern fast_nellt Jevar_time_oLday; 
exte", volatile unsigned snort crnt_time_oLday; 
task 
{ 

main () 
{ 

} 

state_samplel: 
waitfor 
{ 

} 

} c_test; 
task 
{ 

main 0 
{ 

{ 

} 

state task list: 
{ - -

} 

c_test (); 
wait/or 

} dlest 0; 
main IT 
{ 

,. This empty waitfor is automatically generated in any state 
that does not contain a wal1for. .. I 

52.3 Writing the Test Entirely In C 

The INTERVIEW is equipped with tools-namely. the #pragma hook 0 preprocessor 
directive and linkable-object (LOBJ) files-that make it possible to write a version of 
the test completely in C. 

NOTE: For more information on #pragma hook directives, see 
Section 56.4. Refer also to Section 13.3(P) on linkable-object 
files. 

Write the following C code to an ASCII file (hook..;.ctest.s) using the Protocol 
SpreadSheet editor's WRITE/U command. Then delete the code from the spreadsheet. 
00 to the File Maintenance screen and and create a linkable-object file 
(hook 'ctest.o) using the Compile command. 

52-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

#pragma hook 0 "c_test();" 
extern jast_eyent jevar _time_oj_day; 
extern volatile unsigned short crnt_lime_o/_day; 
task 

{ 
main() 

{ 
state_samplel: 
wait/or 

{ 

Jevar_time_oLday && (crnt_time_oLday == 1300): 
{ 

} 
} 

sound_alarm(); 

} c_test_task; 
c_ust() 

{ 

Notice that the "hook" is a call to the routine c_test. This routine's only purpose is 
to start the task, c_test_task. A task name is always local to a linkable-object file 
and never directly copied from it. If you try to call the task directly in the #pragma 
hook 0 directive, therefore, the spreadsheet program (shown below) win not compile. 
Since the task name is local to the file. the following error message will be displayed: 
"Error 140: Unresolved reference c_test_task." The rule for including tasks in a 
linkable-object file. then, is to let the #pragma hook 0 directive call a routine which 
starts the task(s). 

NOTE: Since task names are local to a file. the definition of 
c_test_task also cannot be located in a referenced LOB] file 
different from the one in which it is called. 

The Protocol Spreadsheet program required to execute the test consists of a single 
line: 

OBJECT: "hook_ctest.o· 

When translated. the program looks like this: 

#pragmn object "hook_ctest.o" 
mainO 

{ 

Notice that the routine c test is located within the top-level program main.. The 
hook text from a #pragm~ hook 0 directive is always put at the end of main's task 
list. At this point, since c_test has not been previously declared, it is assumed to be 
an extern function (not a task) that returns an into The linkable-object file(s) 
referenced in the spreadsheet program will be searched for the routine's definition. 

52-4 



53 Regions in Spreag§f'if!et 

C language can be embedded in a Protocol Spreadsheet program at several access points. A 
C region can be opened at the top o~.the program. or in an OBJECT, CONSTANTS, LAYER, 
TeST, STATE, CONDITIONS, or ACTIONS block. 

At these points, simply begin the C region with an opening curly brace. Make your entry and 
terminate it with a closing curly brace. 

The remainder of this section describes C code blocks related to the spreadsheet components, 
from largest to smallest. 

53.1 Layer and Test 

The main function of a task is the highest level function that may be programmed by 
the user of the INTERVIEW 7000 Series. The keyword task in a C region 
corresponds to the TEST: softkey token on the Protocol Spreadsheet. Typing TEST: 

keyboatd_alarm on the spreadsheet is the equivalent of the following C coding: 

task 
{ 

#pragma layer J 
main() 
{ 

1* declarations, state",iapels,and statements go here */ 
} 

} 
layer j _t£5t_ keyboard_a.larm; 

The 1l'.i'1'ERVIEW is multitasking, so more than onetaskltest may be defined. All 
tasks/tests run concurrently if they are included in the task list created by the 
translator when it generates the program main function. See Section 52, Program 
Main, for an explanation of how this automatic program main is created. 

Layers have no existence in C independent of the tasks that they contain. When a 
user enters the LAYER: token on the spreadsheet followed by a layer number, the C 
translator prefixes that number to the name of each task that follows. Note in the 
example above that the test name keyboard_alarm was given a layer _I_test prefix. 

Th,e C jtranslator also issued the preprocessor directive #pragma layer 1. The compiler 
usesth~s layer declaration to distribute tasks efficiently among 80286 processors. This 
pragm~ is an optimizing feature and is not strictly required in the body of the task. 

The C 'translator does nothing else 'with the layer number other than convert it into a 
prefix to the task name aM construet the#pragma directive. 

53-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

The layer number does, of course, determine many of the branching softkey 
selections that will be available to the user who is not programming in C. The C 
programmer will find that none of the variables or routines mentioned in this manual 
is specific to a particular layer. A variable or routine that is supplied, for example, by 
the X.25 Layer 3 personality package (at the time that the package is loaded in via 
the Layer Setup screen) will still be available inside of a task that nominany belongs 
to Layer 1 or Layer 2. 

Test ----......, ...... task 

{ 
main () 
{ 

static label current_state; 
States declared here --+ 

} 

} layer_n_test_ name 

Figure 53-1 C equivalent of a spreadsheet test. 

53.2 State, Enter State, and Next State 
A STATE on the Protocol Spreadsheet is a label in C, used as a target of a gO(O 

statement. Typing STATE: alarm_on on the spreadsheet is the equivalent of this C 
coding, placed inside of the braces that follow the task main: 

static label current_state; 
state alarm on: 
current_state::: staU_olarm_on_loop; 
{ ,+ statements go here *, 

goto (current_state); 
state alarm on loop: 
wait/or --
{ 

/. condition clauses go here, each comprised of expression, colon (:), and statements ./ 
} 
goto (current_state); 

Note that the C translator has taken STATE: alarm_on on the Protocol Spreadsheet 
and produced two state labels. state_alarm_on and state_alarm_on_loop. The first 
state label is followed by statements that will be executed tinm.ediately upon entering 
the state, The "loop"-state label always introduces a waitfor construction. Both states 
end in a statem.ent to goto (current_state). 

53-2 



53 Regions in Spreadsheet 

The translator's version of a state includes overhead to cover all cases, including 
special cases. The loop state is not strictly required, and a streamlined version of the 
basic state coding that eliminates the extra state will work in most instances: 

static label current state; 
state alarm on: -
{- -

fi declarations and statements go here "I 
waitlor 
{ 

t* condition clauses go here, each comprised of expression, cOlon(;j, and statement(s) *1 
} 
goto (current_state): 

Note these points about states created entirely by the programmer: 

A goto statement cannot be used inside of a waitlor construction, 

You must use a break statement to exit the waitfor construction. 

You may dispense with the currentJtate variable and 80to a state label. in which 
case. the opening and closing parens may be omitted. 

(A) Declaring States 
The state name followed by the colon (:) is itself a label declaration and does 
not require an additional declaration. 

(8) Enter State 
The C translator puts a wait/or construction into every "loop'" state. If you want 
a statement to be executed immediately without waiting for an event, you may 
place that statement in the nonloop state, outside of the wait/or statement. The 
following is an example of a state in which the sound_alarm routine is executed 
immediately. 

static label current_,Hate; 
state alarm on: 
current_staie:: stau._alarm_ol'l_loop; 
{ 

} 

sound_alarm(); 
goto (current_state); 
state_alarm_on_loop: 
wait/or 
{ 
} 
goto (current_state); 

The example above is the eqUIvalent of this spreadsheet entry: 

, STATE: alarm on 
CONDITIONS: ENTER STATE 
ACTIONS: ALARM -

A hybrid version also may be created: 

: STATE: alarm on 
{ -

sound_alarm(): 
} 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

The sound,"",alarm function is executed immediately, since the translator places it 
above the waitfor. When you enter a CONDITIONS: block on the spreadsheet, you 
move inside a wait for-unless you place your C region immediately following an 
ENTER_STATE. 

An ENTER_STATE condition may cause the translator to generate an if statement 
in the nonloop state (above the waitfor state). Here is a spreadsheet example: 

ST ATE: alarm on 
CONDITIONS; ENTER STATE 

COUNTER anyname EQ 3 
ACTIONS: ALARM 

This is the eversion: 

static label current state; 
state alarm on: -
current_state" state_Qlarm_on_loop; 
{ 

if (counter_onyname.current == 3) saund_alarm(); 
gato (current_state); 
state_alarm_on_loop: 
wait for 
{ 
} 
goro (current_state); 

And here is a hybrid version: 

STATE: alarm on 
{ -

if (counter _anyname.current == 3) sound_alarm (); 

(C) Next State 

The C translator supplies the statement "goto (current_state)" at the bottom of 
every state that it codes. If current_state has been redefined and if the program 
reaches the bottom of the state, the gOlo statement will redirect the program 
toward a new state label. That is how the program is redirected into 
state_alarm_on_loop in this translator's version of STATE: alarm_on: 

static label current_state; 
state alarm on: 
current stai; = state alarm on loop; 
{- - --

goto (current_state); 
state _alarm _on_loop: 
waitfor 
{ 
} 
goto (current_state); 

53-4 



53 Reqions in S'm~adsheet 

State a - .... state_a: 

nonloop 
state a 

current_state = state_a_loop; 
{ 

Declare variables 
& functions here-.. 

Enter-State .. 
Condition 
and Action 

if (expression) statement; 
goto ( current_state) : 

state _a Joop: 
waitfor 

Event-related { 
Condition --.... expression: 

loop 
state a Action 

Next State 

Figure 53-2 Basic C structure of a spreadsheet state. 

.. 

} 

{ 

statement; 

current state = state . z; 
break; - -

} 
} 

goto ( current_state) : 

If the user wants to redefine current_state, he may do so in the nonloop state, 
in ,:"hich case the loop (wait/or) state will .be bypassed: 

static label current state; 
state alarm on: -
current_state:: state_alarm_ofl_loop; 
{ 

} 

current_state = state ... alarm .. pJf; 
goto (currentjttue); 
stattl_alarm_oTi_loop: 
waitfor 
{ 
} 
goto (current_state); 

state_alarm_off: 
·1* etc. */ 

53-5 



iNTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

The example above is the equivalent of this spreadsheet entry: 

8T A TE: alarm on 
CONDITIONS: ENTER STATE 
NEXT STATE: alarm off 

STATE: alarm_off -

The following hybrid code also will produce the same result. No break is 
necessary. since the translator will place the C region above the wait/or. 

STATE: alarm on 
{ -

} 
STATE: alarm_off 

Or the user may redefine current3tate in the wait/or statement itself. inside the 
loop state. The only way out of a waN/or statement is a break. so the translator 
must furnish a break whenever it converts a NEXT_STATE action into C (unless, 
as in the example above, the condition that triggered the NEXT _ ST ATE action was 
ENTER_STATE, and consequently the program never entered the wait/or loop). 
The following example uses NEXT_STATE: 

STATE: alarm on 
CONDITIONS: KEYBOARD • • 
ACTIONS; ALARM 

PROMPT ·press space bar--alarm now disabled" 
NEXT 8T A TE: alarm off 

8T A TE: alarm off -
CONDITIONS: KEYBOARD· • 
ACTIONS: PROMPT 'press space bar--alarm is activated" 
NEXT_STATE: alarm_on 

Here is the eversion: 

static label current_stare; 
state alarm on; 
current state .. state alarm on loop; 
{- - --

} 

goto (current_state); 
state _alarm_on _loop; 
waitfor 
{ 

keyboard_new_anyj:.ey &:&: (keyboard_anY_Key":: • '): 
{ 

} 

sound alarm (); 
displaYJrompt ("press space bar--alarm now disabled",; 
current_state::: state_alarm_off; 
break; 

gore (currentjtate); 

53-6 



.state_alarm_off" 
:current_state '" state_alarm ... ofl_'oop; 
{ 

} 

gOto (current state): 
state _alarmJ;/Lloop: 
wait/or 
{ 

keyboard new any key && (k""ooard any key == ' '): { - - - ~,,--

} 

displaYJTompt ("pres$space oar--alarm is actlvatl/d"}; 
curreflt sf4;i.e -= state alann on; 
break.; - --

go to (curren t jtate) ; 

Various hybrid versions flre pOS$~ble" Here is f,me: 

5T A TIE: alarm on 
CONDITIONS: 
{ 

k.eyboard new any Icey .&& (keyboard any Icey ,.:; • ') 
} - - -'. . . . -,":, 

ACTIONS: 
{ 

SDuna _alarm (); 
displaYJTDmpt ("prIl.SS space .bar--aZarm noW disabled"); 
current_state,. sttt,te.;..(llarm_of!; 
break; '. 

aisplaYJrompt ("press space bar--a/arm is.actiWlted"); 
current stafe .,.. Slate ·ttlarm on; 
break; - --

53.3 Conditions and Actions 

When a condition is translated into C code by the INTERVIEW, the resulting 
expression is enclosed in braces at the top of a waitfor statement. The only exception 
to this ~e is the ENTER_STATE condition-see Section 53.2(B). above. 

The conditional expression is fonowed by a colon and then by the statement that 
constitutes the action to be taken when the condition is true. If more than one action 
is coded. braces must be used tofarIn a Statement block. See Figure 53-3. 

Typing ~ONOITIONS: KEYSOARD •• on the spreadsheet is the equivalent of this C 
coding. placed inside of the brece.s that foliowthereserved word wait/or: 

} 

53-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

CONDITIONS: ... expression: 

{ 

ACTIONS; ... statement a; condition 
statement b; clause 

} 

Figure 53-3 The translator converts the Condition-and-Action "trigger" into a 
condition clause inside of a wait/or statement. 

(A) Multiple Condition Clauses 

Following the semicolon that terminates the statement (or following the statement 
block), you may enter ,another condition clause. These clauses correspond to 
triggers on the Trigger menus or conditions-and-actions blocks inside a state on 
the Protocol Spreadsheet. Multiple condition clauses may be placed inside of one 
wait/or construction. (There is only one wait/or statement per state.) 

Here is an example of a state with twO "triggers": 

STATE: keyboard_prompt 
CONDITIONS: KEYBOARD "1" 
ACTIONS: ALARM 

PROMPT ·You have pressed the 1 key.· 
CONDITIONS: KEYBOARD "2" 
ACTIONS: ALARM 

PROMPT ·You have pressed the 2 key.' 

A version in C would have two condition clauses: 

state_keyboard...prompt: 
wait/or 
{ 

} 

keyboard_new_ony_key &:&: (keyboard_a ny_key ::;= '1'): 
{ 

sound alarm (); 
displaY...prompt ("You have pressed the 1 key."); 

} 
keyboard_new_any_key &:&: (keyboard_a ny_key =: '2'): 
{ 

sound alarm (); 
display-prompt ("You have pressed the 2 key."); 

} 

If you are mixing spreadsheet tokens with C. place condition clauses inside of 
ST ATE: blocks. Any C region at the top of a State block is placed above the 
automatic wart/or statement. You must therefore supply your own wait/or word. 
since a condition clause is syntactically valid only inside of a wait/or. An 
example follows. 

53-8 



53 Regipns in Spreadsheet 

,STATE: keyboard_prompt 
:{ 

waitffJr 
{ 

keyboard_new _anyjuy && (keyboard_any-"ey ='" • J'): 
{ 

sound_alarm(); 
displaY"'prompt ("You have pressed the 1 k.ey. "); 

} 
1e:Yboard_new_ally.,.key&&: (keyboardjmy_key "'= 'Z·).~ 

sound_alarm (); 
display...pu)mpt ("You have pressed the 2 by. "J; 

} 

A word of warning is in order. When your program executes this code, it will 
find itself stuck in a wait/or statem~ntheneath the label state_keyboardyrompt. 
If you want to exit this waitfor, you must execute a break in a statement block 
in one of the condition clauses, Once you have broken outside of the wait/or, 
yo~ may go/a another state. 

If you add softkey CONOt.T10NS. ACTtONS, or NEXT_STATE blocks to the state 
abOve, they. will be placed inside a different wait/or statement. the one that is 
created automatically insideastatecaDed state_keYboardyrompt_loop. See 
Section 53.2 (particularly Figure 53-2). What may lQok like a single state on the 
spreadsheet really will be two different states whiC:l:l never are active at the same 
time. 

(8) Multiple Expressions 

Expressions may be lOgically anded (&&) or ored(lJ) together inside a condition 
elapse. Here is the spreadsheet version of a CONDITIONS block with two 
extressions: 

CONDITIONS: KEYBOARD -2" 
FLAG keyboard d\$~led 0 

ACTIONS: PROMPT ·You haYepressed the 2 key_' 

In~ide the condition clause in C. the translator supplies a double ampersand 
(&&) 'to connect the keyboard expressions with the flag expression: 

} 

63-9 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Inside a CONDITIONS block, the translator is able to and a softkey condition 
correctly with a C expression. Note that the user types the C expression without 
a terminating colon. The translator will supply one later: 

CONDITIONS: KEYBOARD "2" 
{ 

flag_Keyboard_disabled. current""" 0 
} 
ACTIONS; PROMPT ·You have pressed the 2 key.' 

The anding is also successful when the C expression is placed above the softkey 
condition inside the CONDITIONS block: 

CONDITIONS; 
{ 

KEYBOARD "2" 
ACTIONS: PROMPT -You have pressed the 2 key .• 

If you want to insert a comment into a Conditions block. remember that the 
translator does not look inside of C regions (except to expand constants). It will 
take the comment and and it with the rest of the expressions in the Conditions 
block. Since a comment is nota C expression, the program will not compile: see 
Section 53.3(D). Note in the following example that a 1 has been inserted inside 
the C region along with the comment in order to make the code compile and in 
order to make the expression "true." 

CONDITIONS: 
{ ,'* This comment will be anded with the keyboard expression. ·1 1 
} 

KEYBOARD "2" 
ACTIONS: PROMPT 'You have pressed the 2 key.' 

(C) Event Variables 
The translator converts most Conditions blocks on the Protocol Spreadsheet into 
two or more expressions linked by the logical and operator (&&). The keyboard 
condition in the examples above was typical: KEYBOARD "2" on the spreadsheet 
became a pair of expressions logically anded in C. 

The first expression, keyboard_lIew_any_key, is an event variable. Event 
variables are very important in the INTERVIEW implementation of C. and the 
programmer should observe the following rules of thumb: 

1. An event variable usually is paired with a nonevent variable. At the 
moment an event variable comes true in a wait/or construction, all nonevent 
(or "status") variables attached to that event variable are evaluated for truth 
or falsity. 'Whenever any keyboard key is struck. the event variable 
keyboard_new_any_key comes true. At that moment, the nonevent 
expression keyboard_a ny_key == '2' is evaluated to determine whether it is 
true or false. 

53-10 



·53: A@Oiqns.in. Spreadsheet 

2, jA wait for statement .must include at least one event expression. A walt/or 
·statement without an event· variable will notcompHe. There must be some 
event that might trattspireto cause the noneVent expressions to be evaluated. 

3. An event variable may appear alone in an expression. It is possible (though 
unusual) to have an event expression that is not anded with a nonevent 
expression. WbentJ!lettan$lator converts CQNotTIONS: [)"rE GOOD_BCC into C, 
for example, the resu~tingexpressionis this simple event variable: 

jeya, Jd_b¢c_td; 

4.A nonevent variable aiso may appear alone. It also is possible (though the 
translator does not do this inside of wait/or statements) to have a nonevent 
: expression that is not anded with an event expression-as long as there is an 
event expression somewhere in the wait!oreonStrUction. The following 
program will compile and work: 

} 

extern fast_eyel'lt keybo(lrd_l1ev1 _altyjtey; 
extern YOiatileul1sifned short k:eyboard_aI'lY_uy; 

STATE :keyboafd •. Jlr¢mpt 
CONDITIONS: 
{ 

keyboard_",ewjlny_key && (byboard_any_key"'" '1') 
} 
ACTIONS: PROMPT ~YOlJ have pressed the 1 key .• 
CONDITI·ONS: 
{ 

keyboard any key ='" '2' 
} --
ACTIONS: PROMPT 'You have pressedtha2 key. fl 

In this example. ke:ybQard_any_key == '2' is not anded with an event 
variable. As at re$Ult •. it· is attached· automatically tathe event variable 
·keyboard_newJlny ...... by<intheConrutions.blockabove. If there had 
.happened to be otherev~t!l:tvariablesinthe state. it would have been 
. attached to them as well~ so that when any event in the state came true. 
keyboard_any_key == '2' wOuldbeevaluattd .. 

NOTE: Other event variables in the state would cause 
keyooard_any_'uty to be evaluated. but wotildnot necessarily 
cause it to be updated,.Event. vadables are guaranteed to update 
only their associated noneventvanables. In the example above, 
keyboard_any _key is an associated nonevent variable for the event 
variable keyboard_new_any_key. 

s. . Two event wJ.riqIJUt may not be co:nt/'Jined. Two event variables may never 
be combined in a.con~tion cla~se. since two events never are simultaneous. 
Since all spre'acisheet conditions have event variables associated with 
them-counter conditions have the Cl7unter ..;.llf.l'tne_change event variable, for 
example-it might seem impossible to combine a counter with another 

53-11 



INTERVIEW 7000 S!rIe!'Advancad ProQramm/ng: ATLC-107-951-10B 

condition in a single CONDITIONS block. In fact, in the case of a few special 
combinable conditions-buffer-full, counter, flag, and EIA are examples-the 
translator will sometimes omit the event variable. When two or more 
combinable conditions are combined, the translator uses a first come, first 
served rule that is explained in Section 54.3, Programming Considerations. 

(0) Evaluating Nonevent Expressions 
Nonevent expressions are true if they have a nonzero value. In the following 
program, the "trigger" will sound the alarm when any keyboard key is struck 
because all of the nonevent expressions are nonzero: 

{ 

STATE: boolean 
CONDITIONS: 
{ 

This version never will sound the alarm, because one of the anded components 
is zero: 

{ 

STATE: boolean 
CONDITIONS: 
{ 

IceyboardJ'ew _(lny-"ey clcll clcl 0 clcl 10003 
} 
ACTIONS: ALARM 

Relational expressions like keyboard_any_key == '2' and logical expressions 
connected by && (like those above) and 1/ are defined automatically to have the 
value 1 if true and 0 if false. 

(E) Multiple Statements 
Statements may be blocked together inside a condition clause. Here is the 
spreadsheet version of an ACTIONS block with two statements: 

CONDITIONS: KEYBOARD "2-
ACTIONS: PROMPT ·You have pretHd the 2 key." 

ALARM 

The C version is a condition clause with two routines. display"'prompt and 
s()und .... alarm, _de a block or"comp0un4 statement: 

ktyboard_new_anyjr.ey clef (keyboard_any_key== '2'): 
{ 

} 

displaYJrDmpt ("You hall' pru~,d tI" 2 key. ")i 
sound_alarm (); 

53-12 



53 Reglens in Spreadsheet 

A hybrid version, part spreadsheet language and part C language, will work: 

CONOITIONS: K'EYBG>Al'tt) ·2* 
ACTIONS: PROMPT "You have pressed the 2 key.· 
{ 

The hybrid example as it stands will not allow you to declare routines and 
variables, because the translator will place these declarations in a statement block 
ben;eath the dispiaYJrompt routine. For declarations, move the C region to the 
top of the Actions block;otuse do~ble braces to open a new statement block 
lower down, since declarations are legal following the left brace that introduces 
any compound statement. 

53.4 Example of Complete C program 

Some of the examples .tll th.e prevjous pages of this section were incomplete, in that 
they included variables that we~e not deciared, or they lacked a softkey STATE that 
could generate a proper program main. The foUowirig 15 an emended example that 
compiles and runs. It includes many of the pieces tl:l3t formed the shorter examples 
in· this slaction. It is written tor· the Protocol Spr~dsheet as completely as possible in 
C. (Se~ Section 52.3 on howtOWrlte a program completely'in C.) 

{ 
extern jasl_ewmt by/)oordJlew...;(ttt'Y_1r.ey; 
extern volatile unSigned sh&rt keybfJard_anyj'ey; 
task 
{ 

mainO 
{ 

static label current_state; 
state alarm on: 
current_state", stflte_<UQFm_Qft_lccp; 
{ . 

goto (Cllrrent _stafe) ; 
state_alarrtl_olt';"/(JlJP: . 

waitjor 

} 

{ 

} 

keyb()I;zrd_new_IJnLk.ey && (keyD(Jard_anyj,ey"'= • '); { .. . 

} 

sound ..:.altIrm( l; 
4isplaYJr~rJl:Pt ("I'Tess spac£bar--alarm new disabled"); 
current_statt '" statd;_allum_off; 
break; 

gote (current_state); 

state alarm off: 
curn'7tcstaii", statejJJarrn_c/f_lOOp; 
{ 

gcto (current_state); 
lU.tte_allilrm_(JJj:_U~ap: 
waitfer 

{ k,eybtJtrrd_new_4ny ... te¥:; 1t:&.(k.ybeaNCany_Jc.fJ ='" • '); 

63-13 



INTERVIEW 7000 Series Advanced Programming: ATLQ-107-951-10B 

} 

} 
} 

} 

displaYJrompt ("press space bar--alarm is activated"); 
current state = s/ate alarm on; 
break; - --

goto (current_state); 

layer _I_test _keyboard_alarm; 

STATE: task list 
{ -

layerj_test_keyboard_alarm(); 
} 

53.5 Summary of C Regions 

The translator removes the outer braces from a C region and places it into one of the 
six basic levels of source code shown in Figure 53-4. 

(A) Declarations 

Declare your variables and routines in a C region. delimited by curly braces { 

and }, at the top of your program or at the top of a Constants, Layer I Test, 
State. or Actions block. Declare a variable preceded by its type descriptors and 
followed by a semicolon, as in these examples: 

} 

extern fast_event keyboard_new _Icey; 
fix/ern fast_ewent keyboard_new _any_key; 
extern fast_event levar _time_ol_day: 
short minutes; 

We have not bothered to declare routines in most of the examples in the 
manual, since it is not necessary. In the absence of a declaration, the compiler 
assumes that the routine is external and that it returns an integer. In nearly all 
cases, this assumption works. In the few cases where a routine returns a long 
(get_68kyhys_addr is an example), it must be declared. 

1. Automatic declaration. In cases where the translator declares a variable 
automatically, the user does not have to declare the variable himself. For 
example. a KEYBOARD condition, when entered via softkey, will declare the 
variable keyboard_new_key automatically for the entire program. When a 
variable has been declared twice in a program block. the program may not 
run. Instead, the compiler will put up a message such as the following: Error 
110: keyboard_new _key redeclared. In software version 5.00 and in earlier 
software. the compiler flagged double declarations and aborted the 
compilation. 

Sometimes it is difficult to keep track of the exact version of a variable that 
the translator is declaring. Some external variables have been improved for 
the use of C programmers. and we· have documented the newer version in 

53-14 



53 Regions in Spreadsheet 

our tables and in many of our examples. The translator may still use an 
older version of Jl'\evarlable. 

• In an earlier software relea~e. for example, the variable extern event 
keyboard_newj:ey was speeded up and renamed extern fast_event 
keyboard_mnv _key. Thetranstatoc still uses the older name to declare the 
variable. 

! The variable keyboard 31.tlw:.,.any j:.ey is a still more recent improved version 
of keyboard_new _kl'ly-irnpCQlfed in that it detects the striking of non-ASCII 
keys as well as the ASCH'set. The translator never declares 
keyboard_new -,):ny _key automatically. 

Similarly. the translator uses an older version of extern fast_event 
levar _eia_changed. The older version is extern event evar _eia_changed. In 
· the earlier software, compiler error messages such as "keyboard_new _key 
· redeclared" and "Variable fevat_tia_changed undeclared" will inform you 
what the translator is cioingin .each instance. 

2. • Legal declaration. Declarations are legal following the left brace that 
introduces any compound statement. Figure 53~4 shows that when the user 

: opens a braced C region following a TEST:. STATE:. or ACTIONS: keyword, 
the translator removes the outer braces from the C region and plants the C 
code just inside the left brace at Level 2, 4, and 6 of the source code. 

, Declarations therefore are valid at the top of these regions. 

· Declarations should be grouped at the top of any region. since they are not 
· allowed in a statement block below an executable statement. This program 
· win not compile. because the sound_alarm routine precedes a declaration: 

{ 

STATE: iea<U)h$l'lges 
CONOITtONS: { . 

} 
ACTIONS: 
{ 

} 

souna_alarm() ; 
il1t lead ... changes; 
leaa_cnanges++; 

! Declarations never are legal at Level 5 (Figure· S3··:4)-that is. preceding the 
colon in a condition clause inside a waitJof statement. Declarations always 
are legal at Level 1. since there are no exectiuble statements at that leveL 

The set of variables listed as extern cannot b~dec}ared below Level 1. 
· ExJtrn has a specialized meaning at the task level or lower: it is used to 

"forward-declare" a variable without actUally reserving storage space. The 
variable must be declared again (but not as: extern) in the body of the task. 

53-15 



Level 1 Level 2 

I Braced C region at top of I . 

spreadsheet, following an 
OBJECT bfock, following 
program CONSTANTS: , 
following first LAYER:number, 
or following first layer 
CONSTANTS: Inserted here 

r I Braced C region 
following TEST:name 
inserted here 

task { 

} 
layer _I_test_name; 

Braced C region foUowlng 
subsequent LAYER:number .... 
or subsequent layer I •. ·•· 
CONST ANTS: inserted here ". 

#pragma layer 1 
mainO 

main() { layer_l_test_name(); 
} 

J 

Level 3 

static label current state; 
state name: -
current_state '" 
state_name _lOop; 

Level 4 

..•. Braced C region 
following STATE:name 
inserted here 

} .. 
t gOlo (current_state); 

. tfnfp "nm, lnnn! 

,:). wait/or 

... goto (current_statel; 
1 

Level 5 

•••••••• 

Braced C 
region followlng 

+ CONDITIONS: 
., Inserted here 
" . 

{ expression 

Braced C 
} I region following 

:' spreadsheet­
condition token 
inserted here 
with connect­
Ing and (&&) 
operator 

FigUl'c 53·4 The translator removes the oUler braces from a C region and places it inlo one of six basic levels 
of source code. The "telescoping" of the braces indicates the scope of declarations. A variable or routine 

declared for Level 1 is declared for the remainder of Levelland across all levels to the right. 

j 
/ 

) 

Level 6 

Braced C 

•••••• I. 
region foRowlng 
ACTIONS: 

I Inserted here 

t statement; 

~Br-a-c-e-d:-C"""""--'--' 
} region following 
. spreadsheet-

action token 
inserted here 



~ 
~:r ""~. 
I, 

§3 . Reniens in Spreadsheet 

3. Scope. The "telescoping" of the braces in Figure 53-4 indicates the scope of 
~eclarations_ A variable:ot routine declared for Level 1 is declared for the 
remainder of Levelland across aU levels to the· right. This means that a 
'Variable or routine declared at the top of Level 1 will be global throughout 
the program. You can force a declaration to the top of Levell by placing it 
in braces (1) at the t'OPof the Protocol Spreadsheet; (2) before or after an 
OBJECT block; (3) inside a OONSTANTSbloek above the Layer level; (4) 
inside the first LAYER block on the spreadsheet; or (5) inside the 
CONSTANTS block in the first LAYER block. 

Here is an example of a global declaration: 

{ 
extern fast_event fevar _etaj:htl1'lged; 

} 
LAYER: 1 

TEST: leads 
STATE: mit 

CONDITIONS: 
{ 

} 
ACTIONS; PROMPT #Status of a lead has changed. * 

A variable or routine declared at Levell (Figure 53-4) is declared for 
subsequent layers and tests, whether the subsequent layer is higher or lower. 
The concept of higher and lower layers is relevant to softkey entry on the 
Protocol Spreadsheet, but is not carried over into the source code. To the 
:compiler, a TeST in Layer 2 and a TeST in Layer 3 are Simply concurrent 
'tasks. The task that is first in the program is compiled first. That is the only 
meaning of "higher" and "lower" to the compiler. 

A variable or routine may have its scope limited to a particular Test. State. 
or Actions block. A variable or routine also may be redec1ared at different 
:levels_ Given more than one valid declaration, the lower or nearer one 
applies. 

4. Initialization. A variable must be of t.he static storage class to pass its value 
into a wait/or statement. Declarations at Level 1 of the source code 
(Figure 53·4) are always static, whether or not they are declared so. A 
variable that is initialized at Level 4 (Figure 53-4) must be declared as static 
by the programmer if the initialized value is to be used inside await/or. 

(8) St~tements 

Exek:utable statements may occur at four levels (Figure 53-4) in the source code: 
at !;.evel 2 of the program main function. where the function is defined; at 
Levels 3 and 4. where the ta5k main function is defined; and at Level 6. inside 
a w~il/or statement. The programmer has no access to Level 3. To access Level 

53-17 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

4. the programmer may open a C region just beneath the STATE; name identifier. 
He may access Level 6 by opening a braced C region below the ACTIONS: 

keyword. 

Levels 1 and 2 are reserved for declarations. The program main function 
executes statements at Level 2 (see the bottom of Figure 53-4), but this func!ion 
is accessible only to the translator. 

53-18 



54 Events 

54 Events 

In Run mode, the user program in the INTERVIEW moves from program STATE to program 
STATE. In each state a set of conditions is tested, with one or more actions the result of a 
particular condition coming true. 

In the INTERVIEW's implementation of C. a "state" is a special control structure called a 
waitfor clause that is placed in the program directly following a label named for the state. 
Program movement is controlled by goto statements that reference these labels. 

Each wait for clause defines a set of interrupts ("events") that it is waiting for. When a wait for 
clause is active and an interrupt/event occurs that is defined in that clause, the entire clause is 
processed. All of the conditions in the clause are tested and appropriate actions (statements, 
operations, routines) are executed. 

The waitfor clause is a mechanism designed specifically for the data-communications testing 
environment, in which the program must interact at high speed with a variety of unpredictable 
inputs. 

In the waitfor clause in an earlier example (Section 52 of this volume). the condition 
was this: 

Once every minute. the CPM sends an interrupt to the MPM. This interrupt takes 
the form of a levar _time_ol_day event. 

If the program includes a levar _time_ol_day condition, the interrupt each minute will 
cause the variable cmt_time_oLday to be updated. 

If the current state includes a fevar _time_ol_day condition. the interrupt each minute 
will satisfy that condition. At the same time all other conditions in the clause. 
including non-event (that is, non-interrupt-driven) conditions such as 
crnt_time_oLday == 1300, will be tested. 

The relationship between an event variable such as levar _time_ol_day and its 
associated nonevent variable (in this case, crnt_time_ol_day) can be summarized as 
follows: the event variable anywhere in the program causes the nonevent variable to 
be updated each time the event occurs. The event variable in the currently active 
waitlor loop causes the nonevent condition to be tested each time the event occurs. 

54-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951 108 

Figure 54-1 illustrates this relationship. as well as the relationship between an event 
and a nonassociated variable. The figure shows. for example, how an EIA event 
might cause the time-of-day variable to be checked but not updated; and how a 
time-of-day event might cause the EIA-status variable to be checked but not 
updated. "Event" in the figure means event variable, while "variable" means 
nonevent variable . 

events A & B 
used in 
program 

events A & B 
used in 

currently active 
state 

.. 
event A 
occurs 

variable A 
updated; 

variable B 
not updated 

aU 
conditions 

tested -

-event B 
occurs 

variable B 
updated; 

variable A 
not updated 

all 
conditions 

tested 
liliiii 

Figure 54-1 This figure is meant to show the effect of event A on its associated variable (variable 
A) as well as its effect on a nonassociated variable (variable B). 

54.2 Various Origins of waitfor Events 

Interrupts sent to the MPM from the CPM include fevar _time_of_day and 
keyboard_new _key. Interrupts sent to the MPM by the SCC (Serial Communications 
Controller) chip in the FEB include fevar _rcvd_char _td, fevar ..,gd_bccJd, and 
fevar _eta_changed. Some interrupts are sent to the user program by the protocol state 
machines in the layer packages. Examples are dceJrame and dteyacket. 

Interrupts also can be generated by the program itself. The program sends an 
interrupt in the form of a "signal." counter _name_change and flag_name_change are 
events that are signaled by the program itself, since the program is in charge of all 
counter and flag increments. decrements, and sets. 

54-2 



?~, 54 Events 

54.3 Programmt~g Considerations 

By itself in a wait for clause. crnt_time_of_day == 1300 never can be true. since only 
interrupts/events cause the nonevent conditions in the clause to be processed. On the 
other hand. counter _name_change && flag_name_change never can return true. since 
two events cannot occur simultaneously. 

Because two events never are simultaneous. the programmer (and the built-in 
translator) has a decision to make whenever two nonevent conditions. such as 
counter _name. current == 3 and flag_name. current == 5, are anded together. If the 
programmer writes counter_name_change && (counter_name. current == 3) && 
(flag_name.current == 5). the condition may be true when counter_name. current 
transitions to 3 but it never will be true when /las_name. current transitions to 5, 
since there is no interrupt to cause the condition to be checked at that moment. If 
an interrupt (f/ag_name_change) is tied to jlag_name.current, then 
counter _name.current transitioning to 3 will not be detected. 

When the user combines a flag condition with a counter condition on a single Trigger 
Setup menu. the translator solves the dilemma of which event to "wait for" by 
generating a two-pronged waitfor condition that is approximately the following: 

(counter _name_change && (counter _name. current == 3) && 
(flaB-name. current == 5)) II (flag_name_change && 
(counter_nome. current == 3) && (flag_nome. current =: 5)): 

On the Protocol Spreadsheet, the translator simply attaches the appropriate event 
variable to the first softkey condition listed. If the user enters 

CONDITIONS: COUNTER name EQ 3 
FLAG name 101 

the translator converts this to (counter _name_change && (counter _name.current == 
3) && (J/as_ name. current == 5). The user is then free to repeat the combined 
condition, reversing the order of the elements (and therefore invoking the 
flag_name_change interrupt) the second time around. 

NOTE: The examples in Section 54.3 above are somewhat 
simplified. The actual translator versions are made more 
complicated by the inclusion of counter _name.old and 
flag_name.old variables that are explained in Section 62. 

54-3 

._----_. __ ._---_. __ ._----



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

54-4 



55 Receiving and Transmitting Data 

55 Receiving and Transmitting Data 

As the Il\TTERVIEW monitors the data source (line or disk), it signals the arrival of each 
character by an event variable (fevar Jcvd_char Jd or levar Jcvd_char _td) and it stores each 
character momentarily in a variable (rcvd_char Jd or rcvd_char _td) accessible by the user. 
Data can be taken from the line in this form and copied into memory or into an interla yer 
message buffer. BOP-framed data is copied automatically into an interlayer (UIL") buffer. 

The user transmits data from the Il,rTERVIEW by creating a transmit-data structure and then 
referencing the structure in an ll_transmit routine. Or the user may copy the data into an 
interlayer buffer (or simply reference the data in the buffer) and then call out the buffer in 
an ll_il_transmit routine. 

The IL buffers have several advantages as a storage medium for data. First, they are reusable. 
They are allocated dynamically and erased automatically unless the user takes steps to 
maintain them. Without these reusable buffers, data in Run mode would quickly eat up all of 
the memory in the unit. 

Second, IL buffers suppOrt linked lists. There are routines that will start a list, insert data at 
the top of a list. and append data to the bottom of a list. Linked lists are well suited to 
layered-protocol transmissions, where the transmit string is built incrementally as the 
transmission moves down the layers. 

55.1 Locating Data in an IL Buffer 

When a BOP frame is placed automatically in an IL buffer, a data primitive is 
created automatically and the event variable m_Ioyhyrmtv is signaled. The segment 
number of the IL buffer is recorded in the variable m_loyh_il_buff. The offset from 
the start of the buffer to the start of the data is recorded in the variable 
m_loyhjdu_offset. This offset is always 32 bytes. What is considered data at higher 
layers may have a larger offset, since each layer's data begins farther into the frame. 
See Figure 55-1 for an illustration of a gradually shrinking "service data unit" (SDU) 
and a gradually expanding SDU offset. 

The first memory location in the first of the sixteen IL buffers is 03a80000. the first 
location in the second buffer is 03bOOOOO. the first location in buffer #3 is 03b80000, 
buffer #4 starts at 03cOOOOO. and so on through 04200000. Each of these addresses 
is 32 bits. The high-order 16 bits is the 80286 segment number (03a8, 03b_O, 03b8, 
03cO, etc .• through 0420). This is the number that the software passes around when 

55-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

it wants to identify an IL buffer, simply because 16 bits are easier and faster to pass 
around than 32 bits. the low-order 16 of which are always zero when we are 
discussing the starting location of each buffer. 

When we want to look at data in the buffer, we need to reference not a 16-bit 
segment number but a 32-bit address. So we cast the segment number (always a­
short r 16 bits) into a long and move the number over to its high-order position, 
sixteen bits to the left. We add 32 to the number to bypass the header information 
for the buffer. Then we cast the new long as a character pointer. Here, for example. 
is m_loyh_il_buf! converted into a pointer to the first byte in a frame: 

char" mJrameJtr; 
mJrameJtr = (void") (((long)m_IoJh_il_buff« 16) + 32); 

PDU 

iL buffer_number 

data_start_offset 

data_length 

Data-Character 
-------, IL BUFFER ..... -

"-
!---------. ..... \ 

\ \ 
HEADER 

DATA 

\ _t - ...... ~---.... ------I ... -- at Layer 2 
I 

SOU Size 
Layer 2 

1-_--'···.1(L~y~r2.pr#tocounfo) . 
-- - at Layer 3 

Figure 55-1 When an IL buffer is passed upward, the data offset changes and the data length 
changes, but the buffer itself does not change. 

55-2 



55 Receiving and Transmitting Data 

55.2 Monitor Path vs. Receive Path 

55.3 

The variables m_loyhyrmtv, m_loyh_il_buff. and m.Joyh_sdu_offset are part of a 
set of monitor services that handle IL buffers in both monitor and emulate modes. 
These variables are updated for data on either data lead. The layer packages use 
these variables to generate the protocol traces. The translator uses them to implement 
spreadsheet condition-tokens such as PH_TD_DATA INO and OTE INFO. 

Another set of variables are maintained in emulate mode and are updated for data 
on the receive side only. These variables have names that reveal their obvious 
relationship to the monitor set: loyhyrmtv, loyh_il_buff. loyh_sdu, etc. These 
receive-side variables are used by the translator to implement spreadsheet 
condition-tokens such as PH_DATA INO and Rev INFO. 

Whenever a BOP frame is placed automatically in an IL buffer during an emulate 
run. events m_loyhyrmtv and loyhyrmtv both are signaled. The segment number 
of the same IL buffer is recorded in two variables. m.Joyh_il_buff and 
loyh_il_buff· 

Passing a Buffer Upwards 

Layer 1 stores data in IL buffers and passes these buffers to Layer 2 automatically, 
as we have seen. If a Layer 2 personality package is loaded in from the Layer Setup 
screen, the second data byte in the buffer (the 34th byte overall) is checked to 
determine the frame type. If the contents of the buffer is an Info frame, a data 
primitive is created automatically and the event variable m_Io _dlyrmtv is signaled. 
The segment number of the IL buffer is recorded in the variable m_lo_dl.Jl_buff. 
This is the same segment number that was stored previously in m_loyh_il_buff. 

The offset from the start of the buffer to the start of the data-Layer 2 or data link 
(DL) data-is recorded in the variable m_lo_dl_sdu_offset. This offset is always 34 in 
MOD 8. This number represents the 32-byte buffer header plus a 2-byte frame 
header that is of no interest to Layer 3, which will use m_lo_dCil_buff and 
m_Io_dl_sdu_offset to construct its packet trace. 

The size' of the data component in the buffer is stored in the variable 
m_lo_d'-sdu_size. This number will be 2 bytes smaller than the variable 
m_lo yh_sdu_size. 

If no layer packages are loaded, none of the buffer-handling services are provided 
automatically at Layer 2 or higher. The programmer can provide the services 
"manually" as indicated above. 

If layer packages are loaded, monitor-path variables (those variables whose names 
begin with m-.J are updated automatically in order to drive the protocol traces. 
Receive-:path variables such as lo_dlyrmtv. lo_dl_iCbuff. and lo_dCsdu are 

55-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

generated as needed by GIVE_DATA actions entered by the user on the Protocol 
Spreadsheet. Otherwise it is up to the C programmer to maintain these variables. For 
example, the user passing an IL buffer up to Layer 3 might write this code: 

lo_dUl_buff = loyh_il_buff; 
lo_dl_sdu = (loyh_sdu + 2); 
pduyfr->data_length :: (pduJtr->data_length - 2); 
signal (10 _dlJJrmtv); 

The same updates of variables and the same signal would be generated if the user 
called a send_dlyrmtv_above routine. as follows: 

_set_maint_bufLbit (loyh_il_buff. &12Jelay_baton); 
send_dlJJrmt,,_above (loyh_il_buff. 12Jelay_baton, lOJJh_sdu + 2. pduJJtr->data_length - 2, 
Ox45) ; 

The send_dlyrmtv_above routine requires an SDU size value. There is no 
receive-path variable (equivalent to m_loyhjdu_size on the monitor path) that 
maintains this value. Determine the SDU size from the data_length variable located 
in the pdu-structure. In the examples above. pduytr is a structure pointer. The 
SDU size. therefore. is referenced as pduytr->data_length. Refer to Section 63.1 
for more information on the pdu structure. 

NOTE: Do not use m_loyh_sdu_size for receive-path routines such 
as send_dlyrmtv_above. It is not updated reliably at the same 
moment that other receive-path variables are updated. 

Ox45 is the code for a DL_DATA tND primitive. 

55.4 Layer 1 Transmit 

Line transmissions are accomplished through Ll transmit routines. Shown below is a 
program that ends in an ll_il_transmit routine. This routine puts the data contents 
(the service data unit or .. SDU." not the buffer header) of an IL buffer out onto the 
line. 

Note that there is a set of routines leading up to the transmit routine. This set of 
routines is necessary to get a buffer. to start a linked list inside the buffer, and finally 
to insert several chunks of data into the list before it is transmitted. 

} 

unsigned short bufnum; 
unsigned short baton; 
unsigned short list_hd_ofjset; 
static unsigned char data[) '" "((FOX)) "; 

static unsigned char pkt_hdr[3} = {OxlO,Ox07,O}; 
static unsigned char jrm_hdr(2) '" {Ox03, O}; 
int length; 
unsigned short transmit_tag = 1; 

55-4 



55 Receiving and Transmitting Data 

STATE: fox 
CONDITIONS: 'KEYBOARD' .. 
ACTIONS: 
{ 

) 

Jet..Jl_msLbuff(&bufnum,&baton); 
_start..Jl_bufLlist(bufnum, &list_hd_offset); 
length = sizeof( data) -1; 
_insert_U_bufLlist_cnt(bufnum, Ust_hd_offstt. &data [OJ, length); 
_insert..Jlj·>ujLlist_cnt(bujnum,list_hd_ojjset.&pkt_hdrfOj.3); 
_insert..Jl_bufLlist_cnt(bufnum,list_hd_ojjset.&frm_hdr{Oj,2); 
ll_il.:,.transmit(bufnum. baton, USf_hd _(If/set, transmit_tag); 

The transmit string will look like this on the INTERVIEW's data display: 

IS< "6 Et It "6 THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456789.!ID 

(A) Segment Number 

The ll_il_transmit routine required four arguments as input. First, it required 
the'segment number of the IL buffer that was intended to be transmitted. This 
number was supplied by the ..,Bet_il_msg_buJJ routine. and we called the number 
bufnum. There are a total of sixteen numbered IL buffers available to the 
program. 

(B) Relay Baton 

The second argument was the number of the "relay baton" or "maintain bit." 
This relay baton was supplied by the Jet_il_msLbuff routine. and we called the 
var~able that held the number baton. A relay baton is passed down automatically 
with every send or transmit routine and serves to hold the buffer until it has 
been processed by the next layer (or transmitted by Layer I). Then the baton is 
freed. 

There are sixteen numbered relay batons available jar each IL buffer. At the 
moment that all sixteen batons (or maintain bits) are free, the buffer is returned 
automatically to the pool of free IL buffers and its contents are no longer 
avaHable to the program. 

In many applications-X.25 Layer 2 and Layer 3 personality packages, for 
example-an extra maintain bit is reserved (via the _set_maint_buff_bit routine) 
each time a buffer is sent down. This extra maintain bit is held onto in case a 
frame or packet must be resent, and is not freed (in a Jree_iCmsg_buff 
routine) until the outstanding frame or packet has been acknowledged. 

(C) List-Header Offset 

In addition to buffer number and baton number. the ll_ii_transmit routine also 
requires as input the offset from the stan of the buffer to the linked-list header. 
This offset is supplied at the moment the linked list is started by the 

start il buff list routine. In the program above we called this offset - ~ - - -
list~hd_oJjset . 

55-5 



INTERVIEW 7000 Series Advanced Programming: ATLC 107-951 108 

PDU 

iL buffer_number ~ --....... 
"-

'\ 

data _start_offset 

~~ --~-~ 

\ --.... \ "-, 
'\ 

\ 

\ 

I 

Pointer-List 
IL BUFFER -

HEADER 

DATA 
list_header list_node 

first_node_offset -- .... data_pointer 
" "-

last_node _offset data_length \ .,., 
./ 

I 
I 

I 
I 
I 
I 
! 
I 
\ 
\ 
\ 

sou \ 
'\. 

-...... 

I ",,~.>. 

/~ 

/ 
I 

I 
I , 
I 
\ 
\ 

\ 

\ 
"¢~ .. 

list node .; 
data _pOinter 

data Jength 

next_node _offset 

list_node 

data_pointer 

dataJength 

~~ 
n~",~t 

External 
data 

(User data) 

.,....--
/' next_node _offset 

\ I \ Internal 
\ data \ 

\ (Layer 2 
" \ 

\ \ protocol info) 
\ \ 

1/ \ 
\ 
\ Internal , 

data 

(Layer 3 
protocol info) 

Figure 55-2 When an lL buffer is passed downward. the data-start offset gives the 
location of the list header. This list header and the various pieces of the 
transmission (the list nodes) are threaded together. 

55-6 

\ 
\ 
I 
I 
I 

/ 



55 Receiving and Transmitting Data 

Figure 55-2 illustrates how the list header ties the linked list together by 
identifying the offsets to the first and last nodes. A list node is created by each 
_insert_il_bufLlist_cnt or _append_iCbufLlist_cnt routine, The program in 
Section 55.4 has three _insert_il_bufLlist3nt routines. The IL buffer that is 
transmitted therefore has three list nodes. 

(D) Transmit Tag 

The fourth argument in the ll_il_transmit routine is a "transmit tag" that 
determines the type of BCe to be appended to the transmission. This variable is 
stored in the 32-byte header of each IL buffer. Refer to the structure it_buffer 
in the table of OSI structures, Table 63-1. 

A transmit tag of 1 means a good BCC and 2 means a bad BCC. 3 causes an 
aborted transmission. 

55.5 Passing a Buffer Between Tasks 

At this point we need to modify our ll_il_transmit program to allow different 
layers-which are simply separate concurrent tasks in the programming 
architecture-to contribute list nodes to the lL buffer intended for transmission. The 
resulting transmit string will be the same as before, but three different tasks will have 
contributed data components to the transmitted buffer. In our new program, a Layer 
4 task will provide the fox message, Layer 3 will provide the _insert_iCbuff_list_cnt 
routine that references the 3-byte packet header, and Layer 2 will provide the insert 
routine that references the 2-byte frame header. 

How do the separate layer tasks communicate with each other so that the right buffer 
is accepted at the moment it is handed down? They relay information in the same 
way that tasks always communicate, by signals that are detected throughout the 
program as event variables. When Layer 4 sends an IL buffer down in a 
send_nJrmtv_below routine. an event variable at Layer 3 (up_nJrmtv. not shown in 
the program below but implied nevertheless in the N_DATA REQ condition) comes 
true and at the same time updates the variables up_n_il_buff and up_n_sdu. Layer 3 
can use these variables to identify the new IL buffer and to determine the offset to 
the list header in that buffer. With this information, Layer 3 can insert its own list 
node into the buffer before passing it down to layer 2. 

Here is the program. followed by a few explanatory comments: 

unsigned short bUfnum; 
unSigned short 14_bawn; 
unsigned short 13 _baton; 
unSigned short 12_baton; 
unsignelli short list_htl_offset; 
static unsigned char data{] :: "((FOX» "; 
static unsigned char pktjldr{3) :: {OxJO,Ox07.0}; 

55-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

} 

static unsigned char frm_hdr!2] = {Ox03,O}; 
int length; 
extern volatile unsigned short up_n_il_buff; 
extern volatile unsigned short up_dl_il_buff; 
extern volatile unsigned short up_n_sdu; 
extern volatile unsigned short up_dl_sdu; 

LAYER: 4 
STATE: fox 

CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 
J.et _il_ mS8_ buff( &bufnum. &14 _baton); 
_start_il_bufLlist(bufl'lum, &list_hd_offset) j 
length = sizeof(data} -1; 
_insert_il_bufLlist_ cnt(bufl'lum,list_hd_offset, &data[O], length): 
sen d_l'lJ1rm tll_below (bufl'lum, 14 _baton.list_hd_offset.O. Ox64. 0); 

} 
LAYER: 3 

ST A TE: packet_header 
CONDITIONS: N_DATA REQ 
ACTIONS: 
{ 

_insert _il_buff_list_cl'l t (up _n_il_buff. up _n_sdu, &pkt_hdr[O 1,3); 
_st!t_maint_bufLbit(up _lI_il_buff, &13 _baton); 
send_dlJ1rmtll_below(up_l'l_il_buff. 13_baton,up_n_sdu, 0, Ox44 ,0); 

} 
LAYER: 2 

ST ATE : frame_header 
CONDITIONS: DL_DATA REQ 
ACTIONS: 
{ 

_inserUl_bufLlist_cnt(up _dl_il_buff, up _dl_sdu, &frm_hdr[O] , 2); 
_set_maillt_bufLbit(up _ dl_il_buff. &12_baton); 
sendJ1hJ1rmtll_below (up _dCil_buff, 12_baton, up_dl_sdu, 0, Ox24. 0); 

} 

In the send-primitive routines. the hex values 64. 44. and 24 identify the primitives 
as data requests. See. for example. the values of up_nyrmtv_code in Table 63-4. 

Note that there is no longer an ll_il_transmit routine in the program. When Layer 2 
executes a sendyhyrmtv_below routine, Layer 1 handles the transmit function 
automatically. 

The sendyhyrmtv_below routine does not have a transmit-tag argument that allows 
us to specify the Bee. Since the ll_il_transmit routine, which has a transmit-tag 
input, is being handled automatically. it is not immediately clear how you would send 
the transmit string with a bad Bee. Here is one way. Instead of the 
sendyhyrmtv _below routine at Layer 2. use the ll_il_transmit routine as follows: 

The 2 in the argument represents the transmit tag for a bad Bee. 

55-8 



55 Receiving and Transmitting Data 

If it seems strange to be using an ll_il_transmit routine at Layer 2, remember that 
none of the variables or routines is really layer-specific, In C. layers are simply 
concurrent tasks. 

A "realistic" implementation of this program might be made somewhat more 
complicated by two additional elements. One or more _openjpace_in_il_bulf 
routines might be used so that. as far as possible, text data could be copied into the 
buffer where it would then be erased when the buffer was freed. (One of the 
advantages of IL buffers is that the space inside them can be recycled.) 

Another complication is that for the same transmission, more than one linked list 
might be started in a single buffer. The example under the _insert_iCbufLlist_cnt 
routine in Section 63.3(A) shows Layer 2 accepting a buffer from Layer 3 and 
starting a new linked list. This allows Layer 3 to reconstruct its original linked list in 
case a packet-resend is needed. 

55.6 Sample Transmit Program: Sync or Async Echo 

This application monitors incoming data for text strings bounded by ~ and t;.: or ED. It 
copies t,hese strings into an IL buffer and then echoes them back out onto the line, 
preceded by two ASCII sync characters. The program will work in most data formats 
as long as ASCII ~ and £X are included. 

The program may be modified for EBCDIC l;,., ~. EX, and ea. Use received-character 
variables levar Jcvd_char Jd and rcvd_char Jd for data received on RD. 

{ 
extern Jast_evtmt fevar Jcvd_char _td; 
extern lIolatile unsigned short rcvd_char_td; 
unsigned short number, length; 
unsigned short ii_buffer _number, relay_baton, data_start_offset; 
I,4nsigned char echo_string{lOOj '" {'!i,', '!i, '}; 

STATE: look for stx 
CONDITIONS ;-
{ 

} 
ACTIONS: 
{ 

number = 2; 
echo_string[number] '" rcvd_cha,_td; 
number++: 

} 
NEXT ST ATE: construct echo string 

STATE: construct_8cho_string -
CONDITIONS: 
{ 

} 
ACTIONS: 
{ 

55-9 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

number++; 
if ((rcM_char_ld == 'ex') II (rcvd_char_td== J~'» 
{ 

length = number; 
} 

} 
CONDITIONS: RECEIVE GOOD BCC 
NEXT_STATE: transmit_echo_string 

ST A TE: transmit echo string 
CONDITIONS:-ENTER STATE 
ACTIONS: -
{ 

Jet_il_msLbuff(&il_buffer_number, &relay_baton); 
_slart_il_bu/Llist fiCbu/fer _number, &data_start_offset); 

_insert_il_bufLIist_cnt(iI_buffer _number. data_start_offset, echo _sIring, length); 
ll_il_transmit(il_buffer _number, relay_baton, datajtart_offset. 1); 

55.7 Sample Transmit Program: BOP Echo 

When Format: ::t:'~ti: is selected on the Line Setup screen, every frame that is 
received at the line interface is placed in an IL buffer and passed up to Layer 2. 
This sample program makes a pointer to the I-field in the most recent IL buffer 
received at Layer 2, and then it echoes the data back out in the C equivalent of a 
SEND INFO action. If you try this program, be sure to load the X.25 or SDLC package 
at Layer 2. 

} 

char * dataJtr; 
extern Yolatile unsigned short rClldJrame_buffjeg; 
extern yo/a tile unsigned short rClldJrame_sdu_offset; 
extern volatile unsigned short rClldJrame_sdu_size; 
struct sendJrame_structure 
{ 

}; 

unsigned char addr _type; 
unsigned char frame_type; 
unsigned char nr_type; 
unsigned char ns_type; 
unsigned char pJ_'ype; 
unsigned char bcc_type; 
unsigned char addr _value; 
unsigned char cntrl_byte; 
unsigned char nr _value; 
unsigned char ns_yalue; 

struct sendJrame_struclure frame; 
unsigned short number, baton, offset; 

LAYER: 2 
STATE: echo 

CONDITIONS: RCV INFO 
ACTIONS: 
{ 

} 

dataJtr = (void • )(((long)rClldJrame_bufLseg« 16) t rClldJrame_sdu_offse/); 
Jel_il_msg_buff(&number, &:.baton); 

start iT buff list(number. &offset}; 
:insert_il_buff_list_cnt(number, offset, dataytr + 2. rClldJrame_sdu3ize - 2); 
frame.bcc_type:: 1; 
sendJrame(number. baton, offset. &frame); 

55-10 



56 C Basics 

·56 C Basics 

56-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

LAYER: 1 
TEST: bsc_one 
(static label prev_state;) 

STATE: po 11 i ng 
CONDITIONS: RECEIVE ONE_OF It~EXIt 
ACTIONS: SEND If Sy~9../" GOOD_BCC 
{prev_state = state_polling;} 
NEXT_STATE: ack0 

STATE: ack0 
CONDITIONS: RECEIVE ONE_OF "lltEX" 
ACTIONS: SEND "SYSY0L.70" GOOD_BCC 
(current_state = prev_state; 
break; 

) 

eet ** 

-' 
Figure 56-1 Using C to return to the previous state. 

56-2 



56 C Basics 

56 C Basics 

C programming language as implemented in the INTERVIEW 7000 Series is based on the 
current ANSI recommendations. It contains several extensions to the language which enhance 
its utility in protOCol testing, notably multi-tasking. 

C is intended as an aid to INTERVIEW users who have advanced programming knowledge. 
A sophisticated programming tool. C can be applied to testing requirements which are not met 
by Protocol Spreadsheet selections. C is useful, for instance. in the analysis and "intelligent" 
manipulation of variable data strings anticipated within a complex protocoL Additional 
applications of C are the creation of customized protocol and program trace displays. 

Figure 56-1 provides a means of returning to whatever state was the former state, without you 
the programmer knowing which state was previously active. This "go to previous state" 
function is not a standard spreadsheet feature. The example employs Bisync protocol to 
demonstrate the usefulness of this capability. The test begins in a state called polling. Here. 
an ACKl is sent whenever the end of any received data is encountered. and the test passes to 
the state called ackO. This time when the end of received data is encountered. an ACKO is 
sent,and the test returns to whatever state it was in formerly. 

The first C region is the declaration of the variable prevjtate, which allows the variable to be 
used anywhere within the test. In the second C region. the variable prev _state is initialized to 
the name of the active state. The -third C region shows the transition of the test to the 
previously active state. Depending on the contents of the prev _state variable. the former state 
could be one of any number of states. This capability means that, as the programmer 
expands the simple test, the state ackO can be used again and again as a utility state from 
which the test retums to the former state, removing the need for repetitive spreadsheet entry. 

56.1 Notable Variations in C 

The AR version of C varies in certain respects from the ANSI standard. Notable 
exceptions to the standard are outlined below. A full set of implementation-defined 
variations appear in Appendix K. 

(A) Reserved Words 

The following two reserved words, in addition to those covered in the ANSI 
standard, are included in C: 

ta_k 

walt for 

58-3 



INTERVIEW 7000 Series Advanoed Programming: ATLC-107-951-10B 

(8) Predeclared identifiers 

The following type identifiers are always predeclared. They are not defined in 
any #include files, nor are their definitions required in any program. Thus they 
are part of the 11\TTERVIEW C lexicon. even though they are not reserved words 
and therefore do not appear in the language summary in Appendix K. 

event 

fascevent 

label 

(C) Floating Point Notation 

Since Floating Point Notation is not required in the protocol testing environment 
and since corresponding calculations could degrade processing speed, floating 
point notation is omitted from the AR implementation of C. Fixed point 
calculations. however, are performed. 

(0) Values Returned from C Functions 

Functions declared within AR's implementation of C may only return values for 
data types which are 1. 2, or 4 bytes long. Consequently. a function cannot 
legally return most structure or union types. 

56.2 Editing a C Program 

Entries in C are made on the Protocol Spreadsheet, accessed from the Main Program 
screen .. All editing functions available on the spreadsheet can be applied to C 
coding. Refer to Section 26 for a description of these editing functions. 

56.3 Error Reporting in C 

. Most syntax errors made on the Protocol Spreadsheet are indicated by strike-through 
of the text where the error occurs. This facilitates correction of entries as you create 
a test. 

Errors which appear in C coding are not indicated by the editor. However, when the 
program is compiled (when you press ~). the errors will be noted. If there are 
errors in the program. the INTERVIEW will automatically revert to the Protocol 
Spreadsheet rather than run the program. 

CA) Locating Errors 
The cursor is automatically positioned near the first error when the INTERVIEW 
reverts to the Protocol Spreadsheet. A diagnostic message about the error will 
be displayed at the top (second line) of the screen. Errors pertaining to the 

56-4 



56 C Basics 

general syntax of the spreadsheet are explained in text. Errors noted by the C 
pre ... processor or compiler are displayed as numbers, with explanatory text if the 
filename syslerror _text is accessible at the moment on a disk. (The file should 
always be accessible in units with hard disks.) These numbered messages are 
listed in Appendix A3. 

Press GO-ERR again to move down through the spreadsheet to the next error. 
When you press GO-ERR and there are no more errors, the message "No More 
Errors" will be displayed. 

56.4 Preprocessor Directives 

The INTERVIEW supports preprocessor directives #de/ine and #include. The full set 
of ANSI preprocessor directives are supported on the INTERVIEW. Included among 
these directives are #i/. #else. #ifde/. #i/ndef, and #undef. (Refer to the ANSI 
Recommendation for a discussion of these directives.) Implementation-defined 
#pragmas are also preprocessor directives. #pragma object and #pragma hook are 
two of the AR #pragmas. As the name implies, preprocessor directives are processed 
before the program in which they appear is compiled. 

PreproC¢5sor directives are easy to recognize, since they are always preceded by a 
pound sign (#). Spaces are Significant to the meaning of the directives, since other 
delimiters are generally not used. Note also that a semi-colon cannot be used to 
terminate a preprocessor directive. Instead. a directive is terminated by a hard 
Carriage Return or some indicator of line continuation. Press 8 to terminate the 
directive (no indication of the Return will appear on the screen). Type \ (backslash) 
and press 8 at the end of the line on the screen to indicate that the directive 
continues on the next line. You may also allow text to wrap to the next line by 
continuing to type. (Wrapped lines are indicated on the screen by the highlighted 
symbol •. ) 

(A) #deflne 

The #define directive gives you the convenience of replacing frequently 
referenced items with a text string of any length. 

1. Placement. A #define directive may be placed at the beginning of a logical 
line anywhere in a legal C region. The eight valid positions for C regions on 
the Protocol Spreadsheet are shown in Figure 53-4. The #define directive 
may also be placed in a separate #include file. Use the #include directive as 
explained in (B) to invoke the file and make the macro-substitutions it 
indicates in your main program file. 

56-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

2. Format. The directive follows this format: 

#define identifier string 

For example. if you enter the following line of code, 

#define message The quick brown fox ., .. 12345 

the identifier message (wherever it appears exactly as written in the file being 
acted upon) is replaced in subsequent lines of code by the string The quick 
brown fox .... 12345. The replacement. the macro-substitution. is performed 
before the code is compiled. When you enter the #define directive, leave a 
space between the directive (#define) and the identifier. There should be 
no spaces in the identifier. The space following the identifier indicates that 
the next ASCII character (or blank) starts the replacement string. Spaces 
are allowed and are considered part of the string. Terminate the string (and 
the directive) as described at the beginning of this sub-section. 

3. Nesting. #deJine substitutions may be nested. Of course, the nested 
replacements must be described by a #define directive which precedes the 
#define for the replacement text which contains them. 

There is one exception to nesting identifiers-the macro substitution will not 
be performed when the identifier occurs in a string. In the example below, 
the programmer tries to nest MAXTRIES within the definition of 
MESSAGE: 

#dejine MAXTRIES ] 
#de/ine MESSAGE" Maximum retransmissions i$ MAXTRIES. H 

A call to displayf(MESSAGE.); causes the following to be displayed: 

Max!mum retransmissions Is MAXTRIES. 

This is cenainly not what the programmer intended. 

(B) Nlnclude 

#include files, when invoked in a program, are read into the program file before 
the program is compiled. As a result, your program has access to commonly 
used items such as subroutines (input/output and string operations. for example). 
global variables, constants, and structures without your having to enter or modify 
the required code repeatedly. 

1. Format. The format for the directive is as follows: 

#include <filename> 

or 

#include "filename" 

56-6 



56 C Basics 

#include files follow standard naming conventions. See Section 13.2(E). As 
an added convention. the suffix .h is appended to the end of the name (as 
in the filename stdio.h). 

2. Search rules for #include files. The delimiters you use to surround the 
filename determine how the INTERVIEW searches its filing system for the 
file. 

• The <> delimiters are intended for files which are supplied by AR. 
When these delimiters are used, the following directories-and only the 
following directories-are searched, in the order given: 

1. Isyslinclude on current drive (indicated on File Maintenance 
screen) 

2. The directory named as the current directory on the File 
Maintenance screen (provided that the current directory is not the 
root directory for FD1, FD2. or hard disk) 

3. lusrlinclude on current drive (indicated on File Maintenance 
screen) 

4. FD1/syslinclude 
5. FD21sysfinclude 
6. HRDIsys/include 
7. FDllusrlinclude 
8. FD21usrlinclude 
9. HRDlusrlinclude 

NOTE: The directory names are given in the format which the 
INTERVIEW interprets as the absolute path from the root 
directory of the disk named before the first slash. So 
HRDlsyslinclude means Isyslinclude on the hard disk. 

• The"" delimiters are intended for user-created files. The same 
directories are searched for the filename. but they are searched in the 
following order: 

1. The directory named as the current directory on the File 
Maintenance screen (provided that the current directory is not the 
root directory for FDl, FD2. or hard disk) 

2. lusrlinclude on current drive (indicated on File Maintenance 
screen) 

3. Isys/include on current drive (indicated on File Maintenance 
screen) 

4. FDllusrlinclude 
5. FD2/usrlinclude 
6. HRDlusrlinclude 
7. FDllsyslinclude 
8. FD2/syslinclude 
9. HRDlsyslinclude 

56-7 

------_._--------_ .. _--



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

If you have used the same filename for an include file in more than one 
directory, the file which is actually read in as a result of an #include directive 
will be from the first directory searched which contains that filename. The 
delimiters you use. then, can make a difference in the file selected for inclusion. 

The filename enclosed in <> or .. " delimiters may be a relative pathname. The 
highest directory in the pathname must reside in the current directory or in one 
of the !include directories. In response to an #include "disk_iolstdio.h" 
directive. for example. the INTERVIEW first looks for a disk_io subdirectory in 
the current directory on the File Maintenance screen and then for an stdio.h file 
in that subdirectory. If the file is not found, the search for the relative 
pathname continues according to the sequence designated for .. " delimiters. 

If the file is not located in any of these directories. an error message is returned 
to the operator. 

(e) #pragma object 

Use the #pragma object directive to access the compiled routine definitions in a 
linkable-object file. The OBJECT block-identifier discussed in Section 24.4 may 
also be used for this purpose. (Also see Section 13.3(P) on creating a 
linkable-object file-displayed as type LOBJ in the directory listings on the File 
Maintenance screen). 

1. Placement. Place the #pragma object directive inside any legal C region on 
the Protocol Spreadsheet. Except for those containing the static attribute, 
routine definitions from an LOB] file always have global scope. It makes 
sense. therefore. to position the directive at the top of your spreadsheet 
program along with other global declarations and definitions. 

2. Format. The format for the #pragma object directive is as follows: 

#pragma object "filename.o" 

A #pragma object directive references only one LOB] filename, but you may 
include as many directives as you wish. 

The relative or absolute pathname of the linkable-object file is enclosed in 
quotation marks. 

3. Search rules for linkabJe-object files. As your spreadsheet program 
compiles. the INTERVIEW's filing system is searched for the linkable-object 
files referenced in #pragma object directives. 

• If the referenced LOB] filename begins with FDl I, FD21. or HRDI, the 
INTERVIEW interprets it as the absolute pathname and makes only that 
one search. 

• Pathnames beginning with a I indicate that the root directory on each 
drive should be the beginning point of the search. The drives are 
searched in the following order: current drive, FDl, FD2, and HRD. 

56-8 



• Otherwise. the name may be a one-word filename, or a relative 
pathname which includes the directories leading to the file. The highest 
directory in a relative pathname must reside in the current directory or 
in one of the /lib subdirectories. The following directories-and only the 
following directories-are searched. in the order given: 

1. current directory on the current drive (indicated on the File 
Maintenance screen) 

2. lusrllib on the current drive 
3. Isys/lib on the current drive 
4. FDllusrllib 
5. FD21usrllib 
6. HRDlusrlUb 
7. FD11syslJib 
8. FD2/sys/lib 
9. HRDlsyslUb 

If the pathname is not located in any of these directories, the program will 
not compile and an error message will be returned to the operator. 

4. How #pragma object works. When the source of coq,e for the Compile 
command is :~~;:HlM~~t':1@~:it, the LOBJ which results usually defines 
user-created routines. These routine definitions may be "linked." or 
combined. as needed with your spreadsheet program. This means that 
routines called within your active program do not always have to be defined 
on the Protocol Spreadsheet or in #include files. 

NOTE: An LOBJ file may also contain #pragma hook directives. 
See Section (D) below. If a #pragma object directive references 
an LOB] flle which contains #pragma hook directives, the 
"hooks" within that file are ignored. Since Compile l~it;: 
always generates #pragma hooks, use the OBJECT block-identifier 
to reference the resulting LOB] file. 

(a) Referenced linkable-object files searched for routine definitions. If a 
spreadsheet program calls a routine for which no definition is provided, 
the LOB] files referenced in #pragma object directives are searched in 
the order in which they appear on the Protocol Spreadsheet. If a 
routine is defined in more than one referenced LOBJ file. the definition 
in the first LOB] file listed on the Protocol Spreadsheet will be used. 

If the routine definition is not found in the spreadsheet program or in 
any referenced linkable-object file, the compilation will abort. When 
you go to the Protocol Spreadsheet and look for error messages, the 
routine name will appear as an unresolved reference. 

56-9 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

(b) Compiled routine definition combined with compiled spreadsheet. When 
the routine's definition is located. the compiled code is copied from the 
LOBJ file and combined with the compiled code of the spreadsheet 
program. 

Routine definitions in an LOBJ file may reference additional routines not 
defined within the same file. If these indirectly-referenced routines also 
are not defined on the Protocol Spreadsheet. the LOB] files are 
searched again. 

Routine definitions containing the static attribute are local to the LOBJ 
file. A static routine will be copied from the file only if it is included in 
the definition of another routine. 

NOTE: Use #pragma object directives in your active spreadsheet 
program only. Do no incorporate them in code that will be 
compiled and saved as an LOBJ file. Although the code will 
compile, no search fro routine definitions in referenced LOBJ 
files will be performed. 

(c) Efficiently uses memory. Using #pragma object to reference routines in 
linkable-object files. assists in using the INTERVIEW's memory and 
spreadsheet buffer efficiently. 

• Only the definitions for routines actually called within the current 
spreadsheet program are copied into memory from the LOBJ file. 
All other code within the file is ignored. 

• When commonly utilized routines are defined in linkable-object 
files, space in the spreadsheet buffer otherwise dedicated to this 
purpose can be used for additional programming. 

• Since the code in LOBJ files has already been compiled, the 
INTERVIEW can support a larger program without a corresponding 
increase in compilation time. 

NOTE: Additional #pragma preprocessor directives utilized by 
the INTERVIEW are discussed in other sections of the manual. 
Refer to Section 61 on Display Window and Trace. for example. 
for information on the #pragma tracebuf directive. Except for 
#pragma hook (below), these other #pragmas should be part of 
the active spreadsheet program. not part of a linkable-object file. 

56-10 



56 C Basics 

(0) #pragma hook 

The #pragma hook directive allows compiled C code within a referenced 
linkable-object file to be automatically combined with the compiled code of an 
active spreadsheet program. There are eight types of #pragma hook 
directives-hook_types zero through seven. All types may be system-generated 
during the Compile operation when the source of code is !:~~~f:'. but the 
resulting linkable-object file always contains at least one hook_type zero. 

The programmer also uses hook_type zero (#pragma hook 0). For this reason, 
#pragma hook 0 will be the focus of the following discussion. The primary 
purpose of #pragma hook 0 is to "force" a routine to be called and executed as 
part of a spreadsheet program, even though no explicit call to the routine is 
made on the Protocol Spreadsheet. The spreadsheet program may also caU the 
routine, but keep in mind that it will be executed twice-once because of the call 
on the spreadsheet and once because of the call made via the #pragma hook 0 
directive. 

1. Format. Create hooks on the Protocol Spreadsheet and then write them to 
a file using the WRITE/U editor command. Before typing your hook on the 
spreadsheet, press (§!J to prevent the editor from placing a strike-through 
over the text. 

The format for the #pragma hook 0 directive is as follows: 

#pragma hook hook_type "routine_name();" 

Follow the directive with a space and enter a decimal (not he~decimal) 
constant to identify the hook_type. 

After the hook_type. enter another space, and then the hook text-C code 
that calls the routine you want combined with your spreadsheet program. 
The call to the routine is placed inside quotation marks and includes 
required syntax-parentheses for the arguments and a semi-colon to 
complete statement punctuation. 

NOTE: Task names are always local to a linkable-object file and 
never directly copied from it. The hook text, therefore, cannot 
reference a task. The rule for exporting tasks from a 
linkable-object file is to let the #pragma hook 0 directive call a 
routine which starts the task(s). See Section S. following and 
Section 52 for examples. 

More than one #pragma hook 0 directive may be present in a single LOBJ 
file, but each directive calls only one routine. 

56-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

2. Routine definitions. Typically. the definition for the routine called in the 
directive is located within the same linkable-object file. It may, however. be 
in another LOBJ file as long as both files are referenced via OBJECT 

block-identifiers on the Protocol Spreadsheet. 

The definition of the hook-text routine may also reference a task (which 
must be defined in the same file) or it may reference additional routines not 
defined within the same file. The rules in Section (C) above for indirectly 
referencing routines apply. 

Definitions for most of the extern routines included in this manual are not 
strictly required. 

3. Accessing hooks. If you want the hook text combined with your program, 
use the OBJECT block-identifier to reference the LOBJ file. If you use the 
#pragma object directive to reference the file. the "hooks" within that file 
will be ignored. 

4. Hooks are added to task list of program main. As your program compiles. 
referenced linkable-object files are searched for hooks. When a hook_type 
zero directive is found in the file, the hook text is automatically added to 
the bottom of the task-list in the top-level main. If a referenced LOBJ file 
contains more than one .. hook," they will be added to the task list in the 
order in which they appear in the file. 

NOTE: The order of tasks and hooks in the task-list indicates 
the order in which main initiates tasks and executes hook 
routines. It does not necessarily indicate the order in which. the 
actions in tasks or hooks are processed. 

5. Execution of hooks. Recall that the main function is system-created during 
compilation. Refer to Section 52. Program Main. Because main simply 
initiates the execution of each task listed. the (hook-text) routine essentially 
runs concurrently with the tests in your spreadsheet program. 

Since the hook text is a routine, and not a task, it must actually be executed 
by main. not simply started. The definition of the routine determines when, 
or whether, any subsequent hooks will be executed by main. 

• If the routine's definition references a task. as in the example below, 
main returns quickly. leaving the routine to execute the task. Then 
main begins execution of the next hook in the task list. 

#pragma hook 0 "example();" 
extern fast_ellent fevar_time_of_day; 
extern Iloiatile unsigned short crnt_time_of_day; 

56-12 



task 
{ 
mainO 
{ 
state_alarm_at_one: 
wait/or 
{ 

} 
} 

jevar_time_oj_day &&: (crnt_time_oLday == 1300): 
{ 
sound_alarm(); 

} 

} example_task; 
example() 
{ 
example_task 0; 

} 

56 C Basics 

• If the routine's purpose is not to start a task (or tasks). then main has to 
execute all the code. The more code there is. the longer it will be 
before main can return to execute. the next hook. 

If the definition includes a waitfor, as in the following example, any 
subsequent hooks will never get executed. Instead, main will continue to 
wait for the specified event. 

#pragma hook 0 "example();" 
extern jast_e'ient Inar _time_oj_day; 
extern liIolatile unsigned short crnt_time_oj_day; 
example 0 

{ 

} 

56.5 Data Types 

waitfor 
{ 
levar_time_oLday &:&: (crnt_time_oLday == 1300): 

{ 

} 
} 

(A) Precisions 

When a variable is declared, the compiler allocates space in memory according 
to the type declaration that precedes the variable name. There are three sizes 
(or precisions) of data allowable in 80286 memory, and three corresponding 
data types. A char is allotted one byte of memory. A short is given two bytes. 
while a long reserves four bytes of memory. Shorts and longs are varieties of in! 
or integer, and the type descriptions short int and long int are permitted. The 
type int used by itself is the same as short int. 

56-13 



iNTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

(8) Signed and Unsigned Types 

All three precision types may be signed or unsigned. Signed and unsigned data 
types are stored identically, but treated differently in arithmetic operations. 
Specifically, they differ in the way they undergo type conversion, comparison. 
division, and right shifting. 

1. Type conversion. The following declarations store the same value in 
memory: 

signed char a = -6; 
unsigned char b = -6; 

In both cases, the byte stored in memory will be the two's complement of 
00000110, or 11111010. (The two's complement is the one's complement + 
1.) This bit pattern translates as hex fa or ASCII z. The displayf routine in 
the following program will write two z's to the screen: 

{ 

} 

signed char a ;: -6; 
unsigned char b = -6; 

STATE: data_type 
CONDITIONS: ENTER STATE 
ACTIONS: -
{ 

display! ("%c%c" , tl, b); 

When you lengthen the chars to shorts. however, they behave differently. 
The unsigned char is left-padded with zeroes. The signed char, having a 
leftmost bit equaling 1. is left-padded with ones. This left-padding with ones 
is called "sign extension.» 

A char is converted to a short automatically when a %d, %u. or %x 
conversion is applied to it, so the following example illustrates the difference 
between the conversion of signed and unsigned types: 

signed char a = -6; 
unsigned char b = -6; 

STATE: data type 
CONDITIONS: ENTER STATE 
ACTIONS: -
{ 

display! ("%x%x ". a, b); 
} 

The variable a will be seen to extend to hex fffa. which is fa left-padded 
with eight ones. The unsigned variable b will have been extended by eight 
zeroes and will appear unchanged as fa. 

If the %x conversion specifiers in the example above are replaced by %d, 
the resulting signed-decimal conversion will show a equaling -6, b equaling 
250. The signed char will have survived the type-lengthening with its original 
negative value intact. 

56-14 



56 C Basics 

Because they can be lengthened without changing their values, signed 
variables should be used for any arithmetic operations. Other differences 
between signed and unsigned variables, not reflected in Table 56-1. are the 
following: 

2. Comparison. If the leftmost bit of a signed variable is 1, then the variable 
has a negative value and the expression variable> 0 is false. If the leftmost 
bit of an unsigned variable is 1, the variable is positive and variable > 0 is 
true. 

3. Division and modulus. If the leftmost bit of a signed variable is 1, the two's 
complement of the variable rather the stored value will be used in any 
division or modulus operation. 

4. Right shifting. When a right-shift (») operator is used on a signed 
variable. a I-bit is shifted in at the left. When the same operation is 
performed on an unsigned variable, a O-bit is shifted in. 

Table 56-1 shows the ranges of values that are produced by displayf and 
printf routines when the valid conversion specifiers-%c, %d, %ld, and so 
on-are applied to the various signed and unsigned data types. Frequently it 
makes no difference whether a variable is declared as signed or unsigned. 
When a variable undergoes type conversion, however. as in the case of a 
char given a decimal or hex conversion. there is a significant difference. 

56-15 



b'.rut 

char' 

signed char' 

unsigned charl 

Int 

sIgned Int 

unsigned Int 

short 

signed short 

unsigned short 

long 

signed long 

unsigned long 

char conversion 
(%c) 

"6 to* 

"6 to* 

"6 to* 

Table 56-1 
Data Types: Ranges of Values Displayed and Printed 

signed decimal conversion 
short (%d) long (%Id) 

unsigned decimal conversion 
shor%u} long (%Iu) 

o to 255 o to 255 

-128 to 127 o to 127 
and 

65408 to 65535 

o to 255 o to 255 

-32768 to 32767 o to 65535 

-32768 to 32767 o to 65535 

-32768 to 32767 o to 65535 

-32768 to 32767 o to 65535 

-32768 to 32767 o to 65535 

-32768 to 32767 o to 65535 

-2147483648 to 2147483647 o to 4294967295 

-2147483648 to 2147483647 o to 4294967295 

-2147483648 to 2147483647 o to 4294967295 

1 Through "Integral promotion,· char is converted automatically to Int in a %d, %u, or %x conversion. 

hex conversion 
short (%x) long (%Ix) 

o to ff 

o to 7f 
and 

ff80 to fftf 

o to ff 

o to fftt 

o to ffff 

o to ffff 

o to ffft 

o to ffff 

o to ffff 

o to fffffffff 

o to fffffffff 

o to fffffffff 



56 C §asics 

(C) Static S,!~rage Class 

A variable must be of the static storage class to pass its value into a wait/or 
statement. Declarations at the Program, Layer, or Test level (Levell in the 
source code diagram in Figure 52-4) are static even if they are not explicitly 
declared so. The same is true of a character array initialized by a string (see 
Section 56.7). 

A variable that is initialized at the State level must be declared as static by the 
programmer if the initialized value is to be used inside await/or. 

The following program will display a value of 8 on the prompt line when the 
operator presses the spacebar: 

ST ATE: pass initialized value 
{ - -

static int initialized:: 8; 

CONDITIONS: KEYBOARD • • 
ACTIONS: 
{ 

display! (" %d ", initialized); 
} 

If you removed the word static from the declaration, the initialized value would 
not be passed into the condition clause and the program would display 0 or a 
.. garbage" number instead of 8. 

56.6 Operator Precedence 

In an expression with more than one operator, operations are prioritized according to 
the ra*ing of operator precedence in Table 56·2. The operator with the highest 
precedence is at the top of the table. Precedence decreases as you move down. 

Consider this example: 

STATE: precedence 
{ 

} 

int a; 
a = 3 .. 4 + 2; 
display! ("%d». aJ; 

Because multiplicative operators (*, I, and %) have higher precedence than additive 
operators (+ and -). the 3 * 4 operation is performed first. Then 2 is added to the 
product of 3 and 4, and finally the sum is assigned to the variable a. (Assignment 
operators have very low precedence.) The result of the program is that a is displayed 
as 14. Compare this example: 

ST ATE: precedence 
{ 

int a; 
a = 3 • (4 + 2); 
display! ("%d", aJ; 

56-17 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Table 56·2 
Operator Precedence1 

Operator Type of Operator Associativity 

o primary expression left to right 

[] . -> ++ -- postfix left to right 

++ sizeof & • + - ~ I unary right to left 

(type) 

* I % 

+ -
« » 

cast left to right 

multiplicative left to right 

additive left to right 

bitwise shift left to right 

< > <= >= 
-- != 

relational 

equality 

left to right 

left to right 

& 

&& 
II 
? : 

bitwise AND 

bitwise exclusive OR 

bitwise inclusive OR 

logical AND 

logical OR 

conditional 

left to right 

left to right 

left to right 

left to right 

left to right 

right to left 

= *= /= %= += _= «= »= &= A 1= assignment right to left 

comma left to right 

1 Operators on the same line have the same precedence; rows are in order of decreasing precedence. 

Here the additive operation is performed before the multiplicative, since the 
parentheses that denote a primary expression (see Table 56-2) have the highest 
precedence of all. The result of this program is that decimal 18 is displayed. 

Given operations with the same precedence. left-to-right or right-to-Ieft 
"associativity" (see the right column in Table 56-2) indicates which is performed first. 
This order of processing is significant for an expression such as 36 / 6 I 2. where the 
associativity is left to right. 

Associativity is very important in assignment operations, which are always interpreted 
in a right-to-Ieft direction. Consider this example: 

ST ATE: right to left assoolatlvity 
{ - - -

int a = 4; 
int b' '" 1; 
a:: b; 
display! ("%d". a); 

56-18 



56 C Basics 

The result of this program is that 1 is displayed, not 4. Right-to-Ieft associativity also 
explains why the following program does not compile. 

int a = 3; 
3 = 0; 
display! (f/%d", a); 

A constant never can have a value assigned to it. even if the value equals the 
constant. 

56.7 Strings 

A string is a sequence of characters enclosed in double quotes. This is an example of 
a string; 

"hello" 

A string is an expression of the type pointer, and may be used anyplace in the 
program that is appropriate for a pointer. For example. a pointer is appropriate as 
the argument of a displays routine: 

displays ("hello" I; 

The string in this statement does two things during compilation: it writes the character 
string "hello" in memory. and it points to the first character in the string. The string 
"hello" becomes a 4-byte address that you can examine by displaying it as a long 
hexadecimal: 

display! ("%lx", "hello"); 

(A) Using a String to Initialize an Array 

Note that the pointer represented by "hello" in the examples above is not stored 
anywhere and therefore can be used only once. The string pointer "hello" could 
have been stored as a pointer to the first character in an array, as in this 
example: 

char strinG_array II :: "hello"; 
display! (string_array); 

Stored in this manner, the pointer can be used repeatedly. 

An array like string_array that has been "initialized" by a string shares many of 
the traits of standard arrays, but it has unique characteristics as well. 

1. Data type. A string may only initialize an array whose elements are of the 
. type char. 

l . . Null termination. A string is always terminated by a null character. This null 
terminator is appended by the compiler. not the programmer. 

56-19 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

3. Size. All arrays must declare their size, in any of three ways. The 
programmer may declare the length inside of brackets, as in this example: 

char array {5]; 

Or he may leave the brackets empty and provide a list of initiaHzers. insLde 
of curly braces, from which the compiler can determine the size of the 
array: 

char initializer_list_'lrray II = {'h', "e', 'l', Ox6c, 'o'} ; 

The third method of indicating size is to leave the brackets empty and 
initialize the array with a string, as in our original example of a string 
initializer: 

char strinE_array [J = "hello"; 

The compiler will add a terminating null-character to this string, and 
calculate an array size of six. To verify that the compiler counts one more 
character than the user has entered. you may try the following test. Note 
that the sizeo! operator will return the length of any ilrray: 

char string_array II = "hello"; 
int compiler _COUlIt = sizeo!(strinE_orray); 
display! ("%d",compile,_count ); 

4. One-dimensional array. Whereas arrays in general can be multidimensional. 
a string-initialized array always has one dimension. 

(8) Valid Strings 

1. ASCII and control. With a few exceptions. all ASCII characters, including 
control characters, are valid in a string. The exceptions are ~. 'l", ", and \. 
These characters are liable to be misinterpreted by the compiler. Null (~) 
and linefeed ('l") will be taken to indicate a new logical line in the program. 
Double-quote (") will be mistaken for the end of the string. Backslash (\) 
will be misinterpreted as the start of an escape sequence. 

If one of these characters is included in a string, the program may not 
compile. If not. you will be returned to the Protocol Spreadsheet. The 
following message will be displayed for nulls or linefeeds: "Error 718: 
Newline inside string." For quotation marks. the message is "Unclosed AR 
It C" region." Depending on their placement in the string. backslashes may 
or may not generate an error. Even when compilation succeeds. however. 
they will not be interpreted correctly. 

56-20 



Non-literal 

\a 

\b 

\f 

\n 

\r 

\t 

\.v 

\' 

\" 

\\ 

\##It 

\x### 

Table 56·3 
C String Non-Literals 

Meaning 

bell 

backspaoe 

form feed 

linefeed t 
carriage return 

horizontal tab 

vertloal tab 

single quote 

double quote t 
backslash t 
ootal repre.entat~n 

hex representatkJn 

ASCII character 

'\ 

any ASCII oharaoter 

any ASCII character 

56 C B@sics 

Hex character 

0 .. 

°Il 
°c 
0" 

°0 
Oq 

Os 

2, 

22 

5c 

00 _ "" 

00 _ F~ 

t These oharacters requtre non-Uteral entries In INTERVIEW strings. The others may be 
entered as ASCII chatacters, non-h"terals, or hexadecimal characters. 

2. Non-literals. Most characters in strings are interpreted literally: Each of 
the invalid characters listed above, therefore, needs a non-literal 
representation. Non-literals are preceded by a backslash. The compiler 
converts these non-literals to their one-byte numeric value. 

To include a null (or any ASCII) character in a string, use the octal or 
hexadecimal representation shown in Table 56-3. Hex and octal numbers 
take up to three digits, so use leading zeroes if necessary. Otherwise, a 
subsequent digit may be interpreted as part of the value. Suppose, for 
example, you want to create the string "~abc". You initialize an array as 
follows: 

char string{] = "'xOabc"; 

The string will be stored as "+c" (hexadecimal characters '\i~:J). The correct 
declaration was char srring{j = u\XOOOabc". In octal. the null would be 
written \000. 

Please note that a string that has a null character somewhere other than at 
the end will be difficult to display or print completely. Display and print 
routines that take strings as input typically begin at the pointer pOSition and 
continue until they encounter a terminating null. If. as in the last example. a 
null is encountered at the beginning of the string. execution of the routine 
will end before anything has been displayed or printed. 

Provide precision to the %H conversion specifier to override null termination 
of a string while displaying a string in hex: see Section 60.3(C). 

56-21 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

3. Const~nts. Spreadsheet constants may be included in strings. An example of 
a spreadsheet constant is the fox message represented as ((FOX)). See Section 
25 on Constants. 

The C translator expands constants both inside and outside of C regions 
before the code is preprocessed. 

4. Hexadecimal characters. ASCII characters. including the control characters, 
may be entered in strings as hexadecimal characters via the §] key. Hex 
representation is considered literal. That is. you may not enter ASCII 
characters which require non-literal representation in strings as hexadecimal 
characters. The sequence of characters comprising a non-literal may be 
entered as hexadecimal characters. Double backslash (\ \), for example. may 
be entered as sese. 

(C) String Routines 

There are several C routines in the INTERVIEW that display or print strings. 
See Section 63 on "Print" and Section 60 on "Display Window and Trace" for 
detailed descriptions of the prints. displays. and traces routines, as weH as other 
display and print routines that use the %s conversion specifier. 

There is also a pair of routines. index and rindex. that search inside of strings 
for particular characters. These routines are defined (with examples) in Section 
67. 

56.8 Recommended Sources 

The following sources provide accurate. in-depth information on C Programming 
Language: 

1. ANSI Document X3J 11/86-098. Proposed American National Standard for 
Information Systems-Programming Language C. 

NOTE: When approved, the number for the ANSI document 
will change to: ANSI Standard X3.159-198X. 

2. Darnell. Peter A., and Margolis. Philip E. Software Engineering in C. New 
York: Springer-Verlag, 1988. 

3. Harbison. Samuel P .• and Steele, Guy L., Jr. C: A Reference Manual. 2d ed. 
Englewood Cliffs: Prentice-Hall 1987. 

4. Kernighan, Brian W.o and Ritchie. Dennis M. The C Programming Language. 
2d ed. Englewood Cliffs: Prentice-Hall. 1988. 

56-22 



57 Variables 

57 Variables 

57.1 Creating or Accessing C Variables 

Softkey-selectable programming "tokens" entered by the user on the Protocol 
Spreadsheet are translated automatically into C during the initial compiler phases after 
~ is pressed. (Then the C code in tum is compiled into object code.) The C 
variables used by the translator are documented throughout this volume. 

C regions available to the user at every level of spreadsheet programming (see Section 
53) provide direct access to these variables. 

An example of a user-accessible variable is keyboard_new_key, used in the following 
program to sound an alarm whenever any ASCII-keyboard key is pressed. 

{ 

STATE: anykey 
CONDITIONS: 

{ 

} 
ACTIONS: ALARM 

The C regions also allow the user to work with variables of his own creation. 

Here is an example of a user-created variable named minutes that is used to count 
minutes elapsed since the beginning of Run mode. The C program displays this 
"counter" on the prompt line of the Run-mode screen. 

{ 
extern fast_event le~ar _time_aI_day; 
short minutes; 

STATE: run mode minutes 
CONDITIONS: -
{ 

} 
ACTIONS: 
{ 

minutes++; 
pas_cursor (0,0); 
displaYf ("Duration of run = %4d minutes", minutes); 

} 

57-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

The first C region in the example "declares" the variables Jevar _time_oj_day and 
minutes. The first of these variables is an event variable that is built into the system 
software. All event variables in an active State-block are polled constantly. Once 
every minute, Jevar _time_oj_day returns true. 

The second variable, minutes, is created by the program itself-that is, by the user. 
The declaration in effect creates the variable: it causes 16 bits in memory ("short" = 
16 bits) to be dedicated to information stored under the name minutes. 

The second C region in the example is placed inside the Actions block. The 
statement minutes++ causes the value that is stored in the 16 bits dedicated to 
minutes to increment. The function pos_cursor (0,0) places the cursor in the leftmost 
column on the second line of the display screen (the Prompt line). The displayJ 
function writes a text message to the display screen, beginning at the current cursor 
position. In the text message itself. "%" will be replaced by the current value of the 
variable minutes. "4" means that four columns on the screen will be dedicated to the 
value, and "d" means that the value will be expressed in a decimal number. 

57.2 Declaring Variables 

Declare your variables and routines in a C region. delimited by curly braces { and }, 
at the top of your program or at the top of a Constants. Layer. Test, State. or 
Actions block. Declare a variable preceded by its type descriptors and followed by a 
semicolon, as in these examples: 

{ 
extern fast_eyent keyboard_new _key; 
extern fast_event keyboard_new_any_key; 
extern fast_event Jevar_time_of_day; 
short minutes; 

A variable may have its scope limited to a particular Test, State. or Actions block. A 
variable also may be redeclared at different levels. (In software revision 5.00 or 
earlier, it may not be redeclared at the same level.) Given more than one valid 
declaration, the lower or nearer one applies. 

The rules governing the placement of variable declarations are laid out in detail in 
Section 53.S(A). 

(A) Naming Variables 

1. Legal names. The first letter of a variable name may be either a letter or an 
underscore. Following characters may be letters. numbers. underscores. or 
dollar signs. 

Reserved words (indicated in boldface type in Appendix K) may not be 
used as variable names. 

57-2 



57 Variables 

2. Naming conventions. Generally speaking. variables that begin with dte_ or 
dce_ are used by the software to test DTE and DCE conditions. Variables 
that begin rcvd_ are used to test RECEIVE (or RCV) conditions. Variables 
that begin m_ are used by the layer packages to construct the protocol 
traces. 

(8) Modifiers 

1. Data type. The data type for each variable precedes the variable name in 
the declaration. All standard data types except float are supported in the 
INTERVIEW 7000 Series. Standard data types and their sizes and ranges 
are given in Table 56-1. 

2. Preassigned modifiers. When you declare a user-accessible external variable. 
be sure to use the modifiers which precede the data type for that variable as 
listed in variable tables throughout this volume. 

57.3 Comparing a Variable to a Value 

User-accessible and user-created variables may be tested as part of any standard C 
expression. 

The following is an example of a user-invented variable called anykey that is declared 
with a default value of zero. incremented by the operator pressing any 
ASCII-keyboard key. and checked for a value of 3 by an if statement after each 
depression of a key. An alarm will sound on the third keystroke. 

{ 
extern fast_event keyboard_new _key; 
short anykey; 

STATE: press_key 
CONDITIONS: 
{ 

} 

ACTIONS: 
{ 

anykey++; 
if (anykey == 3) sound_alarm (); 

The next example uses a built-in, user-accessible variable called crnt_time_of_day 
and checks it for a particular value. This 16-bit variable stores the time of day in 
hours aJ)d minutes. The Condition in the program (the event variable 
fevar _tiine_oLday) is true once per minute. The Action each time the condition is 
true is to check crnt_time_of_day for a value of 1129. At 11:29 AM, an alarm will 
sound. 

57-3 

--------_ .. _._--_._--



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

extern fast_event Jevar_time_oJ_day; 
extern 1Iolatile unsigned short crnt_time_of_day; 

STATE: alarm clock 
CONDITIONS: 
{ 

fevar _time _oLday 
} 
ACTIONS: 
{ 

if (crnt_time_oJ_day == 1129) sQund_alarm(); 
} 

57.4 Checking a Variable In a Waitfor Clause 

Please note that the following variation on the preceding example does not produce 
the same result. The alarm will never sound if this version of the program is run: 

{ 

STATE: alarm clock 
CONDITIONS: 
{ 

} 
ACTIONS: 
{ 

} 

Note that the time-of-day condition that was lodged in an if statement in the 
previous example has now been placed in a Conditions block. Conditions blocks on 
the Protocol Spreadsheet are converted to waitfor clauses (see Section 53.3). not if 
statements. when the program is translated automatically into C coding. 

Waitfor clauses work very differently from if statements and other conditional control 
structures in C. 

(A) Event vs. Nonevent Variables 

Two kinds of variables may be used inside of these wait for clauses-event 
variables and nonevent variables. When a state is active, event variables in that 
state are checked regularly during routine polling by the CPU. When an event 
variable (such as Jevar _time_oj_day) is polled and returns a value of true, 
conditional statements containing nonevent variables (such as crnt_time_oJ_day) 
also are checked for truth or falsity. In the absence oj an event variable being 
polled and returning a value of true, a statement about a nonevent variable 
inside of a Conditions block (waitfor clause) never can be true. 

Since there is no event variable in the Conditions block (waitJor ,clause) above, 
the nonevent variable cmt_time_of_day is never even checked. 

57-4 



57 Variables 

(8) Translation of Softkey Tokens Into Variables 

You could have written the "alarm clock" program using only softkey entries. as 
follows: 

ST ATE: alarm clock 
CONDITIONS: TIME 1129 
ACTIONS: ALARM 

In this case, the C translator will convert the Conditions block into a wait/or 
clau&e that uses the event variable fevar _time_of_day to check the nonevent 
variable crnt_time_of_day once a minute. Here is the translator's version of the 
Conditions and Actions blocks: 

wail/or 
{ 

fevar_time_oLday && (crnt_time_oLday == 1129): 
{ 

sound_alarm(); 
} 

} 

(C) f::xample of A Nonevent Condition "Waiting For" An Event 

The next example illustrates the interplay of event variables and nonevent 
variables in a waitfor clause. 

extern fast_event k.eyboard_new _key; 
short anykey; 

STATE: press key 
CONDITIONS: 
{ 

} 
ACTIONS: 
{ 

anykey++: 
} 
CONDITIONS: 
{ 

anykey == 3 
} 
ACTIONS: ALARM 

This program looks similar to a previous one in which the operator hit three 
keys and the alarm sounded. Here, however, the alarm does not sound until the 
fourth keystroke. The variable anykey begins the test at zero. and increments 
(anykey++) with every keystroke. But remember what a condition such as 
anykey == 3 in a wait/or clause really means. It means that the condition will be 
tru~ when the variable equals three and an event (such as a keystroke) occurs 
that causes the variable to be checked. On these terms. the condition is not 
satisfied until the fourth event. 

57-5 



INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-951-108 

(D) User-Cr~_ated Event Variables 

The user can create his own event variable simply by declaring a new variable 
with the modifiers extern event. Once the event variable has been declared. he 
can use the signal function to indicate that the event has occurred. Here is an 
example of an event variable called check_number that causes the nonevent 
variable number to be checked-and sounds the alarm when the value of number 
satisfies the condition. 

{ 
short number = 3; 
extern ellent check_number; 

ST A TE: user created event 
{ --
} 

signal (check_number); 

CONDITIONS: 
{ 

cheek_number && (number == 3) 
} 
ACTIONS: ALARM 

(E) Rules and Cautions 

To sum up the discussion of event and nonevent variables. here are a few rules 
of thumb: 

1. If statements, for loops. while loops, and other conditional control structures 
may not be used in Conditions blocks (that is, in wait for clauses). They may 
be used in State blocks. above (or in the absence of) Conditions blocks; and 
they may be used in Actions blocks. 

(Placing an if statement at the top of the State block, above any waitfor 
clauses, is how the translator converts ENTER_STATE softkey conditions into 
C.) 

2. Event variables are designed for use in Conditions blocks (wait for clauses) 
only. It makes no sense to use an event variable in an if statement. while 
loop. etc., since there is no possibility that the event will be true at the 
precise moment the statement is being processed. 

3. A Conditions block (waitfor clause) that lacks an event variable can never 
come true. 

One other word of caution about the importance of event variables: please note 
that the following program will not sound the alarm even if the operator presses 
a key while the time is 11:29 AM. 

57-6 



} 

extern fast_ellent keyboard_new _key; 
extern lIolatile unsigned short cmt_time_of_day; 

ST ATE: alarm clock 
CONDITIONS: 
{ 

} 
ACTIONS: ALARM 

57 Variables 

The reason this program doesn't "work" is that all variables begin Run mode at 
zero. Often a particular event variable must return true before a particular 
nonevent variable will be updated. The nonevent variable crnt_time_of_day is 
updated only when the event variable feva, _time_oLday is entered in the waitfor 
clause and returns true. In the example above, the operator pressing the key will 
cause crnt_time_of_day to be checked; but in the absence of fevar _time_oLday, 
the value of crnt_time_of_day remains always at zero. 

57.5 Checking and Displaying Equivalent Values of a Variable 

Variables may be checked and displayed as octal, decimal, hexadecimal, and 
ASCII-character values. Decimal comparison and display is the default. 

(A) Checking Equivalent Values 

To compare a variable to an octal value, precede the value with a zero (0). No 
,prefix is necessary to make a decimal comparison. To compare a variable to a 
hexadecimal value, precede the value with Ox or OX. To check whether a 
variable matches an ASCII character, enter the character in between single 
quotes. 

The alarm will sound in the example below, since all of the values entered to 
the right of the equal signs are equivalent. 

{ 
char foxtrot:: '/'; 

ST ATE: compare equivalent values 
{ --

} 

if ((joxtrot == 0146) &&: (joxtrot == 102) &:& (joxtrot :: Ox66) &:& (joxtrot == 
'!'IJ sound_alarm(); 

Note that the data type char in the declaration simply means that the variable is 
composed of 8 bits. The designation char does not say anything about the 
comparison mode or the display mode. (Data types short and int = 16 bits; 

long = 32 bits.) 

57-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

(8) Displaying Equivalent Values 

Variables may be displayed in a variety of data formats via the display! 
function. The full set of display conversions is given in Table 61-7. The program 
below generates a representative sample of display formats. When the program is 
run, the prompt line on the display screen will look like this: 152 106 6a 6A j 
6A • 

} 
char juliet = 'j'; 

ST A TE: display equivalent values 
{ - -

} 

display! ("%0 %d %x %X %e %#u ". juliet, juliet, juliet, juliet, juliet, 
juliet); 

57.6 Isolating Bits from a Variable Value 

Some variables are bit-oriented. That is, one bit (or perhaps a small field of bits) 
may have significance that is independent of the surrounding bit values. The variable 
current_eia_leads (refer to Table 60-1), for example, uses 7 bits to store the onloff 
status of seven separate EIA leads, plus an eighth bit to store the status of any lead 
that is patched to the VA input jack (see Section 10.3). If you want to check this 
variable to determine the status of DTR (for example) you need to determine 
whether the bit that represents DTR (the fifth bit from the right or the fifth least 
significant bit in the variable) is set to 1 (OTR off) or zero (DTR on). How can you 
isolate this bit from the surrounding bits in order to determine its status? 

The tool for isolating a bit in a C variable is the "care mask," a group 01 bits (usually 
expressed in hexadecimal) in which the bit(s) under scrutiny is set to 1 and all other 
bits to zero. The care mask for DTR is OxlO (or 16 in decimal notation). The binary 
version, 00010000. shows that only the DTR bit is set to 1. When this care mask is 
anded (via the "&" operator) with the variable current_€ia_leads. only two results 
are possible, depending on whether the OTR bit in current_eia_Ieads is 1 or O. 

With DTR on, suppose that the combination of all lead statuses gives 
current_eia_leads a value of e6 in hex-11100UO in binary. The effect of anding this 
variable with the care mask for OTR will be as follows: 

11100110 
& 0001QQQQ 

00000000 

Now turn DTR off. and the result of the anding will be this: 

11110110 
& 00010000 

00010000 

57-8 



S7 Variables 

The seven "don't care" zeroes in the care mask guarantee seven zero-bits in the 
result (because 0 & 1 = 0 and 0 & 0 = 0). So the result of the anding must be either 
o if the DTR bit is 0 (on). or hex 10 (decimal 16, binary 00010000) if the DTR bit 
is 1 (off). 

This C program will detect DTR on: 

{ 

} 

extern fast_event fevar _Itia_changed; 
extern const volatile unsigned short cU1'rent_eia_leads; 

ST ATE: check dtr on 
CONDITIONS: -
{ 

} 
ACTIONS: 
{ 

If you try to run this program, make sure of the following: 

1. The Front-End Buffer Setup menu should be configured to buffer control 
leads. 

2. If you are not connected to a device that provides clock, the Line Setup 
menu should be configured to provide internal clock. EIA leads are clocked 
through the front-end buffer before they reach the program logic. 

3. After the program enters Run mode. use a single-wire patch cord to connect 
the +12V output pin on the test-interface module to the DTR lead. The 
alarm should sound as soon as the patch is made. 

A slightly different condition inside of the if statement will detect DTR off: 

The DSR bit is the fourth least significant bit in the current_eta_leads variable. so 
the care mask for DSR is Ox08 (binary 00001000). The following if statement will 
detect DSR on: 

This if statement will detect DTR on and DSR on: 

This if statement will dete<:t DTR off and DSR on: 

The last condition simply means that you care (l=care) about DTR and DSR and you 
want DTR to be 1 (off) and DSR to be 0 (on). 

57-9 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

57.7 Pointing to an Address 

Some routines require an address as input. The displays (display-string) routine. for 
example, requires a CPU memory address as its argument. When executed. the 
routine will begin to display characters that it finds at the specified address and at 
subsequent addresses, one by one, until a null is encountered. A memory address is 
four bytes (32 bits) and is declared as a long. 

{ 

} 
STATE: display string 
{ -

displays (any_cpu_oddress); 

Many of the important addresses needed by the user and by the program can be 
found inside of interlayer ("IL") message buffers. When BOP-framed data is 
monitored. it is copied automatically into IL buffers. Each time a frame is buffered, a 
data primitive is created automatically and the event variable m_loyhyrmtv is 
signaled. The segment number of the IL buffer is recorded in the variable 
m_loyh_il_buff. This segment number can be converted into an address. 

Here, for example, is a program that looks for a DTE data packet. converts 
m_Io yh_jebuff into a four-byte address that points to the first data position, and 
displays the data contents of the packet. 

{ 
long first_dato_address; 
extern volatile unsigned short m_loJh_il_buff; 

} 
LAYER: 3 

STATE: display data 
CONDITiONS: DTE DATA 
ACTIONS: 
{ 

first_data_address = ((long) m_loJh_il_buff« 16} + 37; 
displays (first_data _oddress); 

The IL buffer is illustrated in Section 63 of this manual, and the procedure for 
converting the buffer-segment number into a memory address is explained in detail in 
Section 63.1(C). Briefly, we have cast the segment number (a short. 16 bits) into a 
long and moved the number over to its high-order position in the CPU address, 
sixteen bits to the left. Then we added 37 to the number to bypass the header 
information for the buffer (32 bits) and the frame and packet headers (5 bits). 

Each address in memory stores 8 bits. so the second byte in the data field of the 
data packet would be first_data_address + 1, the fourteenth byte would be 
first_data_address + 13, and so on. 

57-10 



57.8 Creating a Character Pointer 

For most of the variables in a C program, the address is not important to the user or 
to the program. The user does not need to know the address in order to declare the 
variable. perform operations on it. and compare its value to other values. In general. 
addresses of variables are solely the concern of the compiler. 

In the case of a routine such as displays, the address is what is important. The value 
that is stored at the address is not so important. since the routine will go to the 
address and begin displaying the data whatever the value (as long as the value is 
displayable) . 

There is another kind of variable for which both the address and the value stored at 
the address are important. These variables are called pointers. The user creates a 

pointer by typing an asterisk ("') just following the data type in a declaration. as in 
this example: 

The variable packet_typeytr is a four-byte memory address just as 
!irst_data_address, declared as a long in the previous example, was a four-byte 
address-even though packet_type ylr is declared as a char. The data type char 
preceding the asterisk simply means that the amount of data pointed to is eight bits. 

Once you use an asterisk to declare the variable a pointer, you can access the 
address directly as packet_typeytr or you can access the value stored at that address 
as "' packet_typeytr. A displays routine would accept packet_typeytr as input, while 
a displayc or display! routine would expect" packet_typeytr. 

With the X.2S personality package loaded at Layers 2 and 3 (via the Layer Setup 
screen), the following program goes to the memory location pointed to by 
packet_t'ypeytr and checks its value to determine whether the packet in the buffer is 
a Clear request. 

} 

extern 'IIo/atile unsigned short m_lo "ph_ii_buff; 
extern event dte .,packet; 
char" packet_type.,ptr; 

ST ATE: search for dte clear 
CONDITIONS: - -
{ 

dte.,poC"'f 
} 
ACTIONS: 
{ 

} 

packet_,ype.,ptr::: (void .) «(long) m_l()Jh_il_buff« 16) + 36); 
if (·packet_typeJtr := Ox13) $aund_olarm(J; 

57-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

The pointer packet_typeytr is a char. but you could just as easily point to a short 
(16 bits) or a long (32 bits). If you increment an address. you get the next address, 
8 bits farther in memory. If you increment a char pointer, you also get the next 
address. If you increment a short pointer. you add two increments to the memory 
address. In effect you move the pointer two places. If you increment a long pointer, 
you move the pointer by four addresses. 32 bits. 

In the example above. the integer m_Ioyh_il_buff is cast as a pointer (void *) after 
it is cast as a long. This is to avoid a compiler error ("Warning 31: Illegal implicit 
integer-to-pointer conversion") when the new value of m_loyh_il_buff is assigned to 
packet_type ytr. 

57.9 Pointing with Subscripts 

When it is preceded by an asterisk (*), the pointer packet_typeytr returns the 
character value that it points to, as we have just seen. Another way to return this 
value is to omit the asterisk and add a subscript: packet_typeytr[O}. This mechanism 
allows you to access an array of values without moving the pointer. 

For example, the transmission header C"TH") in a FID2 SNA information field is six 
bytes long. If you establish a pointer to the first TH byte (THO). you can use 
subscripts to access any other byte in the field without moving the pointer. The 
following program checks the values of two bytes in the TH field (corresponding to 
"DAF" and "OAF") before freezing the data display and sounding an alarm. 

} 

extern volatile unsigned short m_loJh_il_buff; 
char"' th; 

LAYER: 2 
STATE: th pointer 

CONDitiONS: DTE INFO 
ACTIONS: 
{ 

th = (void *) ((long) m_loJh_il_buff« 16) t 34); 
if «th[2] == 5) &:&: (th{3] == J)) 
{ 

ctl_capture_Id (Ox10); 
ctl_captureJd (OxlOO); 
sound_alarm (); 

57.10 Creating a String 

Strings are used in INTERVIEW programming mainly for transmissions and for 
messages to the operator ("prompts"). In the following program, the compiler 
decodes the string "QWERTYUIOP" from ASCII to hex, stores it in memory as a 
series of contiguous values, adds a null to it, returns the address of the first 
character, "Q." and then assigns this address to the variable keyrow: 

57-12 



57 Variables 

10n8 keyrow; 
} 
5T A TE: assign string address to variable 
{ - - - -

keyrow = "QWERTYUlOP"; 

The variable keyrow now is the four-byte address of "Q" in the string. You can see 
this address for yourself by using either "QWERTYUIOP" or keyrow as the argument 
in a display! routine: 

display! ("%lx ", "QWERTYUIOP"); 

or 

display! (" %lx ". keyrow); 

Either version will display a CPU address (hex 04400000) on the second line of the 
Run-mode screen. 

The string can be displayed in a simple displays routine, since that routine expects a 
four-byte address as input: 

displays (" QWERTYUIOP"); 

or 

displays (keyrow); 

If you want to access individual characters in the string, declare a pointer: 

char * keyrow = "QWERTYUJOP"; 

With a pointer you can display the entire string or a single character-the seventh 
character, "U." in this example: 

displays (keyrow); 

displayc (keyrow [6 J); 

Declaring the string an array has virtually the same effect as declaring it a pointer: 

char keyrow [] = "QWERTYUIOP"; 

The name of the array still is the address of the first character in the string and so 
may be used in a displays routine; and individual characters still may be specified by 

a subscript: 

displays (keyrowi; 

displayc (lceyrow{6Ji; 

The onty difference is that the array name is a constant whose value is assigned in a 
declaration and cannot be changed. while the pointer is a variable and may be 
incremcinted. assigned a new value, and so forth, while the program is running. 

57-13 



JNTERVfEW 7000 Series Advanced Programming: ATLC-107-951-108 

57.11 Comparing Strings 

A string comparison in C may be conducted as follows. First, create a pointer in the 
manner described in Section 57.8, or else simply declare one of the pointers to line 
data that is provided in the set of user-accessible variables. Example: extern volatile 
unsigned char • myacketytr. 

Next, create an array that represents the search string you will try to match against 
the line data. For example: 

char search_string {] = "\xa"; 

Create a trigger to look for a line event (such as the event variable dteyacket) that 
will initialize the pointer. 

} 

extern yolatile unsigned char" myacketytr; 
char search_string {] :::: { OxlO, Ox04, OxOb }; 
extern €Yent dteyacker; 

LAYER: 3 
5T ATE: match packet string 

CONDITIONS: -
{ 

dte,JJQcket 

Compare the pointer-value with the first element of the search string. If a match is 
found, increment the pointer and compare the new value to the second element of 
the search string; and so on. If a match is found for every element of the string, 
take an appropriate action. 

ACTIONS: 
{ 

if (search_string [0] == .. myacketytr) 
{ 

myacketytr ++; 
if (search_string [1] == .. myacket,JJtr) 
{ 

m,JJacketytr ++; 
if (search_string 12l == .. myacketytr) sound_alarm (); 

Here is the same Actions block, only this time the variable element replaces the 
numeral in the subscript to search_string. and the same variable is added as a 
subscript to myacketytr. This coding may be modified easily for any length string. 
For a 9-byte string. for example. simply change the 3 in the if statement to 9. 

57-14 



ACTIONS; 
{ 

element = 0; 
while (search_string (element] == m"packet..ptr [element]) 
{ 

if (search stringlelement+t J == 3) 
{ -

} 

sounojJ.larm (); 
break; 

57.12 Accessing a Variable Inside of a Structure 

57 Variables 

A structure is a mechanism that makes repetitive declarations of similar variables 
unnecessary. For example. there are twelve variables associated with any given 
counter created in the program. One variable is the current value of the counter. 
one is the last sampled value, another is the highest sampled count, another the total 
of all the sampled values, another the number of samples taken. and so forth. If the 
user creates four counters via the spreadsheet softkeys, the C translator does not 
declare, 48 separate variables (4 x 12). Instead the translator declares a structure for 
countetts-called counter jtruct-that declares each of the twelve variables once, as 
follows: 

struct counter strucl 
{ -

unsigned long current; 
unsigned long last; 
unsigned long maximum; 
unsigned long minimum; 
unsigned short sample_count; 
unsigned long total_high; 
unsigned short total_low_low; 
unsigned short total_law_high; 
unsigned short out_0IJ(11I8e; 
unsigned short changed; 
unsigned long prev; 
unsigned long old; 

Then the translator declares each of the user's four counters as having the structure 
counter _struct: 

In effect the translator has declared all 48 variables. Suppose the user wants to 
access one of these variables. He may wish to display the total value of a counter 
whose current value no longer is the total value (since the counter may have been 
sampled-and therefore cleared-several times). As long as the total is less than 
65,536, the entire number will reside in the seventh variable in the counter jtruct 
structure, total low low. If the counter in question is dceJood_bcc. he will access 
this "total" varlable-under the namedceJood_bcc.totaCiow _low. 

57-15 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Here is a sample trigger that displays this variable whenever the operator presses ill: 

STATE: display total dee good bee 
CONDITIONS: KEYBOARD ·'ft" 
ACTIONS: 

{ 
displaYf ("Total DCE good BCC's = %d", dceJood bcc. total low low); 

} - --

Refer to Section 62.1 for more detail on the structure of counters. 

57.13 Creating a Structure Pointer 

We have just seen how a structure can be created to store and access data 
conveniently. A structure can also be used as a multibyte pointer that is 
superimposed on data that has been stored previously. 

In our example we will declare the structure of an IL. buffer and then point this 
structure at a newly received IL buffer. 

The precise structure of an IL buffer is given in the following declaration. Note that 
there are 32 bytes devoted to header information and the remaining 4K bytes are 
available for data. 

strllct it_buffer 
{ 

}; 

unsigned short lock; 
unsigned short maintain_bits; 
unsigned short buffer_size; 
unsigned short transmit_tag; 
unsigned short receive_tag; 
unsigned long char _buffJrame_start; 
unsigned long char _buffJrame_end; 
unsigned short tick_count_high; 
unsigned short tick_count_mid; 
unsigned short tick_count_Iow; 
unsigned short available_space_offser; 
unsigned short bytes_remaining; 
unsigned long bcc_indicator; 
unsigned char data [4064]; 

The next step is to create a pointer that has the structure of ii_buffer. First. declare 
the structure of ii_buffer, as indicated above. Then declare buffer ytr as a 
structure-pointer. as follows: 

struct ii_buffer • bufferJitr; 

The next step is to wait for an INFO frame to be monitored. When the the frame 
data has been buffered and m_loyh_il_buff has been updated with the new 
buffer-segment number. assign the first address of this buffer to buffer ytr. 

57-16 



57 Variables 

Now a structure has been created around the most recent upward-moving IL buffer. 
This means that rather than moving a pointer around in the IL buffer, you can 
access elements in the buffer directly. The tick_count_low variable. for example. 
would be called buffer ytr->tick_count_low. (The -> operator is used in place of the 
dot operator in structure-pointers.) 

The first element of the data string would be called buffer ytr ->data fO]. Here is a 
program that displays on the prompt line the fifth data element (the packet-type 
byte) in the IL buffer for Info frames monitored on DTE. 

{ 

} 

extern volatile unsigned short m_loJh_il_buff; 
struct ii_buffer 
{ 

}; 

unsigned short lock; 
unsigned short maintain_bits; 
unsigned short buffer_size: 
unsigned short transmit_lag; 
unsigned short receive_tag; 
unsigned long char _buffJrame_start; 
unsigned long char_buffJrame_end; 
unsigned short tick_co1.l1tt_high; 
unsigned short tick_count_mid; 
unsigned short tick_eount_low; 
unsigned short ovoilablejpace_offset; 
unsigned shorl bytes_remaining; 
unsigned long bec_indicator: 
unsigned char data [4064]; 

struet ii_buffer" buffer Jtr; 

LAYER: 2 
STATE: monitor II buffers 

CONDITIONS: DTE INFO 
ACTIONS: 
{ 

} 

bujjerJtr::. (void .) ((long) m_loJh_il_buf! «16); 
pos_cursor (0,0); 
display! ("%02x ", bufjerytr->dataf4}); 

57-17 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

57-18 



.,~, 
F " 58 Routines 

58 Routines 

This manual documents the C routines that are "external" to the C program-that is, defined 
elsewhere than in the program. Most of these routines are used by the C translator when it 
converts softkey-selectable programming "tokens" -most commonly those tokens that are 
appropriate to Actions blocks-entered by the user on the Protocol Spreadsheet. Some, like 
the Disk I/O routines. are associated with no spreadsheet conditions or actions and can be 
accessed only in C regions on the spreadsheet. 

58.1 Declarations 

In most of the examples in the manual, we have not bothered to declare routines 
since it is not necessary. In the absence of a declaration, the compiler assumes that 
the routine is external and that it returns an integer. In nearly all cases, this 
assumption works. In those rare cases when the routine returns another data type 
(the stats-display routine get_68kyhys_addr, for example. returns a long) it must be 
declared. 

58.2 Arguments 

An argument is an input that the user provides when he calls a routine. Arguments 
are placed inside of parentheses just following the routine name, as in this call to the 
pos_curspr routine: pos_cursor (l,5); 

This routine requires two arguments in order to position the cursor in one of 1,088 
possible character positions. The first argument selects one of the seventeen 
horizontal rows. The second argument selects one of the sixty-four vertical columns. 

Many routines in the INTERVIEW library have arguments whose names end in the 
letters ptr or pointer. If you look at the synopsis for the displays routine, for 
example. you will see that the only argument is something called stringytr. This is 
an address argument. The user enterS a four-byte address as argument when he calls 
the displays routine, and the routine goes to this address and begins displaying data 
until a null (or other nondisplayable character) is encountered. 

Pointers. are four-byte addresses. The following call to the displays routine will go to 
the location of ",yacket_injoytr (the firSt byte of user data in a packet) and begin 
displaying data until a nondisplayable character is encountered: 

displays (m yQck.et_info "prr); 

58-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Array names also are four-byte addresses. The folIo\\ring example MIl display the 
characters in the array string: 

char string [] = "QWERTY"; 
displays (string); 

A string of characters declared inside of double-quotation marks is really a four~byte 
address that points to the first character in the string. In the function call displays 
("qwertyuiop") , "qwertyuiop" qualifies as a string pointer and therefore satisfies the 
formal definition of the routine. 

Many routines have no arguments and are called Mth empty parentheses: 

Do not omit the parentheses. Without them, sound_alarm is a variable instead of a 
routine. 

58.3 Returns 

In addition to performing various operations, many routines include a return function 
that, at the end of the routine, stores a user-defined value in a memory location. As 
an example. we Mn look at an X.2S routine called /3_window Jull. 

The 13 _window Jull routine is declared automatically by the translator after the user 
has made a WINDOW FULL softkey entry. The synopsis for 13 _window Jull shows how 
it is declared: 

extern unsigned char i)_Window Jull (path_number); 

The routine is declared as a char because at the end of the routine, a return function 
Mil store a char-sized value (8 bits) in memory. If the packet Mndow is full, the 
stored value will be nonzero. If the packet Mndow is not full, the value Mll be zero. 

The stored value is accessed any time you call the routine in your program. If you 
want to test for the Mndow being full, you can enter this line of code: 

Here is a simpler coding for the same test: 

This coding works for the same reason that if (1) sound_alarm(); or if (10) 
sound_alarm(); Mll sound the alarm. Nonzero constants. variables, and expressions 
are true in C and cause statements to be executed inside of if. while, and other 
control constructions. Constants. variables. and expressions that equal zero are false 
and prevent statements in control structures from being executed. 

58-2 



58 Routines 

If a routine is declared as a short, a short will be set aside in memory and any value 
returned by the routine (via a return function) will be stored there. If the routine is 
declared a long, a long will be reserved. If the routine is declared void, no space will 
be reserved in memory and a call to return a value will not be successful. 

58.4 User-Defined Routines 

The follOwing coding will blank out the prompt line near the top of the INTERVIEW 
run-mode display. 

pos cursor(O,O}; 
disPlays (" "); 

If you code these two routines each time you display a user-prompt, you can always 
be sure that the prompt line will be blank and that each prompt will overwrite the 
previous prompt completely. The only problem is that the two routines are laborious 
to type in. 

A better way is to declare a routine that executes the two "subroutines" 
automatically. 

Declare a routine with its arguments inside parentheses and its body-the list of 
statements or subroutines that the routine is intended to perform-inside a pair of 
curly braces. 

lIaid blank"'prompt_lineO 
{ 

pos_cursor(O, 0); 
displays (" 

Now you can blank out the line simply by typing this: 

Suppose you wanted a routine that blanked the prompt line and generated a new 
prompt. The new prompt will be the argument for the routine: 

lIoid new"'prompt (string...p0inter) 
char stringyointer [J; 
{ 

pos_cursor(O, 0); 
displays (" 
pos_,ursor(O, 0); 
displays (strin8yointer); 

Now you can generate a prompt against a blank background with this simple routine: 

n,w yrompt (" This prompt will overwrite any previous prompt"); 

58-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

NOTE: User routines may be declared and defined outside of 
the current spreadsheet program-in include files or 
linkable-object files. See Section 56.4. 

58.5 Example Routines 

We will provide three examples that will help illustrate how routines are created. 

(A) Example Routine: Temporary Prompt 

Here is a user-defined routine that blanks the prompt line. displays a new 
user-defined prompt. and then waits a user-defined interval before blanking the 
prompt line again. The routine is called temporary JJrompt. The two inputs are 
1) the new prompt. and 2) the number of seconds that you want the prompt to 
remain on the display. 

The routine incorporates one external routine. timeout_restarf_action. discussed 
in Section 69.3 of the section titled "Other Library Tools," and one internal 
routine. blankJJrompt_line. discussed above. 

{ 
struct 
{ 

} 

unsigned long event_id; 
unsigned short eyent_id_uid; 

timeout"prompt; 
void blank."prompUineO 
{ 

} 

pos_cursor(O,O): 
displays (" 

void temporary"prompt (string,JJ0inter, seconds) 
char string,JJ0inter ll: 
char seconds; 
{ 

") : 

blank "prompClin,O; 
pos_cursor(O,O) ; 
displays (strlng,JJ0lnter); 
timeout_restart_action (&tim,out"prompt, seconds • 1000. blank.,JJrompt_line); 

} 
} 
STATE: test_temporary -prompt 

CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 

t,mporary,JJrompt("This prompt will sell-destruct in <I seconds. It, 4); 
} 

Note that the blankJJromptJlne routine is embedded inside the 
timeoutJestart_action routine. which in turn is embedded inside the 
temporary -prompt routine. 

58-4 



58 Routines 

Note also: 

The structure timeoutyrompt is needed by the timeoutJ€start_action routine. 
The structure is explained in Table 69-1. 

The two arguments in the temporary yrompt routine are declared outside the 
body of the routine (that is, outside of the curly braces). As a result. they are 
not redeclared each time the routine is called. 

Timeout timers increment in milliseconds. so the user's seconds entry is 
multiplied by 1.000. 

(B) Example Routine: Display Binary Value of Byte 

The next sample routine takes a user-defined 8-bit value as input and expands 
it into a binary display of ASCII 1 's and O's. The routine, called 
display_binary, uses the & ("and") operator to isolate each bit and turn it into a 
"1" or "0" in an ASCII string called binary_strin8. See Section 57.6 for a 
discussion of the & operator. 

The condition-and-action program that follows the declaration of display_binary 
uses the routine to expand the packet-type byte in each DCE packet. 

{ 
extern volatile unsigned char • myacket..,ptr; 
extern event dce..,paclcet; 
char binary_string [8J; 
void display_binary (hex_value) 
char hex value; 
{ -

if «(hex_value & Ox80) == 0) binary_string[OJ '" '0'; 
else binary_stringEO J = 'I'; 
if (hex_value & Ox40) == 0) /;>inary_string[l] :: '0'; 
else binary_string[IJ:: '1'; 
if ((hex_value & OxlO) :::= 0) binary_string/2J ::: '0'; 
else binary_stringll] ::: '1'; 
if (hex_value & OxIO) =:: 0) binary_string[3J == '0'; 
else binary_string[3]:: 'J'; 
if «(hex_value & Ox08) == 0) binary_string[41 :: '0'; 
else binary_string[4J;:; '1'; 
if «(hex_value & Ox04) == 0) binary_string[5j :: '0'; 
else binary_string[5] '" '1'; 
if «hex_value & Ox02) =:: 0) binary_string{6J ::: '0'; 
else binary_string{6j ::: '1'; 
if «(hex_value & OxOl) == O} binary-.,string{7J ::: '0'; 
else binary_stringf7] ::: '1'; 
display! ("\n%$", binary_string); 

} 
} 

ST ATE: binary 
CONDITIONS: { dce...,ptlcket } 
ACTIONS: 
{ 

display_binary (m..,packet...,ptr[2J); 
} 

58-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

(C) Example Routine: Compare String Against Line Data 

Here is a routine called strcmp that matches a user-entered string to line data, 
beginning at a point in the line data that the user specifies. The arguments are 
the string itself and a pointer to the beginning of the line data. 

When the user enters his string inside double quotes. the compiler writes the 
string into memory, appends a zero (null). and returns a pointer to the first 
character in the string. The strcmp routine uses this zero to determine when the 
match is complete. 

If a complete match is found. the return (1 ) routine breaks out of the while loop, 
so the return(O) never is executed. A routine that returns 1 (or nonzero) inside 
of an if condition will make the condition true. 

The sample program that uses the strcmp routine looks on the DCE side for a 
data packet with a user-data field that begins "CR'l:-PASSWORD." This string 
occurs on the "HDLC/X.25 Data Sample" diskette, DSK-951-007-1. shipped 
with your INTERVIEW. Be sure to load in the Layer 2 and Layer 3 X.25 
packages if you tryout this program. The Layer 3 package will provide you with 
your line-data pointer (myacket_infoytr). 

{ 
extern lIo/atile unsigned char *myacket_info ytr; 
int element; 
int strcmp (user_stringytr, line_dataytr) 
char user _stringytr ll; 
char" line_dataytr; 
{ 

element = 0; 
while (user _stringytr!elementj == line_dataytr[elementj) 

{ 

} 

if (user _stringytr[++elementJ :::::: 0) 
return (1); 

return (0); 
} 

} 
LAYER: 3 

ST A TE: match user data field 
CONDITIONS:- DCe- DA 'fA 
ACTIONS; 
{ 
if (strcmp("\xOd\XOaPASSWORD", myackeUnfoytr» 
sound alarm (); 

} -

58-6 



59 Monitor/Transmit Line Data 

59 MonitorlTransmit Line Data 

The external variables and routines in this section are available for use by the programmer to 
monitor and transmit data. Their use on the Protocol Spreadsheet is not limited to any 
panicular layer, though normally they belong at Layer 1. 

The variables and routines approximate Layer 1 spreadsheet-generated conditions and actions. 
Refer to Section 28 for more detailed explanations of the purposes of specific conditions and 
actions. Sometimes the name of the variable or routine is sufficient for identifying its related 
spreadsheet token. When this is not the case, the information is provided below. 

59.1 Structures 

Type 

Use the structure xmit_list. shown in Table 59-1, when transmitting line data via the 
Ii_transmit routine. Refer to ll_transmit in Section 59.3(B) for an example of how 
to use this structure. 

Variable 

Table 59·1 
Transmit Structures 

Value (hex/decimal) Meaning 

Structure Name: xmit_list Structure of a transmit list for 11 transmit 
routine. Declared as type struct-: Reference 
member variables of the structure as follows: 
xmlUist .string _length. 

unsigned char • string 

unsigned short stringJ91'lgth O-ffffI0-65535 

59-1 

pointer to the location of the transmit string-the 
transmit string Is declared separately 

length of the transmit string 

- ------------------------------------------



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951~108 

59.2 Variables 

(A) Monitoring Events 

1. Emulate or monitor mode. Layer 1 events include characters received. good 
or bad Bee·s. aborts. parity errors, and framing errors. All event variabies 
in Table 59-2 containing a _td or Jd suffix are valid in either emulate or 
monitor mode. These event variables are !evar Jcvd_char _rd, 
!evar_rcvd_char_td, !evar-Bd_bcc_rd. !evar-Bd_bcc_td, !evar_bd_bccJd, 
!evar _bd_bcc_td. levar _abortJd. levar _abort_td, !evar "paritYJd, 
!evar "parity _td, levar Jrm_error ...rd, levar Jrm_error jd. and 
levar ...rcv _buffer Jull. The variable !evar Jrm_error ...rd, for example. 
equates to DCE FRAMING_ERROR (or RECEIVE FRAMING_ERROR when you are 
emulating DTE). 

You can use both td and rd variables relating to the same event in one 
conditions block. Suppose you want count all bad BeC' s, from either side 
of the line. Enter the following CONDITIONS/ACTIONS block: 

CONDITIONS: 
{ 

je'PlJr _bd_bcc_td II je'PlJr _bd_bccJd 
} 
ACTIONS: COUNTER bad_bee INC 

Using spreadsheet tokens, the same test needs two CONDITIONS/ACTIONS 

blocks: 

CONDITIONS: DTE BAD_Bce 
ACTIONS: COUNTER bad_bee INC 
CONDITIONS: DCE BAD_BCC 
ACTIONS: COUNTER bad_bee INC 

Use levar JCv _buffer Jull and its associated status variable. rcv _buffer Jull, 
to monitor the status of the character buffer. The moment the buffer is full. 
levar JCv _buffer Jull comes true and the value of rcv _bufferJull transitions 
from zero to a non-zero value. Then. new data begins to overwrite the old 
data. The softkey equivalent of levar ...rcv _buffer Jull is the 
layer-independent condition BUFFERfULL when it appears alone in a 
conditions block. When BUFFER_FULL is combined with another condition. 
in most cases the other condition will supply the event variable and only the 
status test will be used. See Section 27 for a discussion of this and other 
layer-independent conditions and actions. 

59-2 

---------------------------------------""-



Type 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

Table 59·2 
Monitor/Transmit Variables 

59 Monitor/Transmit Line Data 

Variable Value (hex/decimal) Meaning 

fevar yarltLtd 

59-3 

True for each character 
received on AD. Une Setup 
configured for emulate or 
monitor mode. 

True for each character 
received on TO. Line Setup 
configured for emulate or 
monitor mode. 

True when a good Bee is 
calculated for an RD block or 
frame. Line Setup configured 
for emulate or monitor mode. 

True when a good Bee is 
calculated for a TO block or 
frame. Une Setup configured 
for emulate or monitor mode. 

True when a bad Bee is 
calculated for an RO block or 
frame. Une Setup configured 
for emulate or monitor mode. 

True when a bad Bee is 
calculated for a TO block or 
frame. Une Setup configured 
for emulate or monitor mode. 

True when an abort is detected 
in an RO frame. Une Setup 
configured for emulate or 
monitor mode. 

True when an abort Is detected 
In a TD frame. Une Setup 
configured tor emulate or 
monitor mode. 

True when a parity error Is 
detected for an RD byte. Line 
Setup oonflgured for emulate or 
monitor mode. 

True when a parity error Is 
detected for a TD byte. Line 
Setup configured for emulate or 
monitor mode. 

True when an asyno framing 
error Is detected for an RO 
byte. Une Setup oonfigured for 
emulate or mOnitor mode. 

True when an async framing 
error is detected for a TO byte. 
Line Setup oonfigured for 
emulate or monitor mode. 

-----~--------------



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Table 59-2 (continued) 

Type Variable Value (hex/decimal) Meaning 

. extern fast_event 

extern fast_event 

extern volatile unsigned short 

extern unsigned short 

extern unsigned short 

extern unsigned char 

59-4 

o 
1 

O-ff/O-255 

100/256 
101/257 
1021258 
103/259 

O-fflO-255 

100/256 
101/257 
102/258 
103/259 

2 
4 
8 
10116 
20/32 
40/64 
80/128 

True when the INTERVIEW puts 
a transmIssion out onto the 
link. Line Setup configured for 
emulate mode only. 

Returns true at the moment the 
character buffer fills with data 
and will begin to overwrite 
existing data. Line Setup 
configured for emulate or 
monitor mode. 

not full 
full 
Line Setup configured for 
emulate or monitor mode. 

Most recent TO character Is 
stored In this variable. Line 
Setup configured for emulate or 
monitor mode. 

data character (lower byte in 
16-b!t data word in data buffer) 
good or bad Bee 
flag 
sync 
abort 

Most recent RO character Is 
stored In this variable. Line 
Setup configured for emulate or 
monitor mode. 

data character (lower byte In 
16-blt data word In data buffer) 
good or bad Bee 
flag 
sync 
abort 

Most recent modifier byte for a 
TO data character. This is the 
upper byte In the 16-blt data 
word reserved for each data 
character In the data buffer. 
Line Setup configured for 
emulate or monitor mode. 

data-Initial value (always 
Included In value of td modifier) 
altemate code set -
underline Ird character} 
reverse Image 
hexadecimal 
low intensity 
blink 
strike-thru (parity error) 



Type 

extern unsigned char 

59 Monitor/Transmit Line Data 

Table 59·2 (continued) 

Variable Value (hex/decimal) Meaning 

2 
4 

8 
10/16 
20/32 
40/64 
80/128 

Most recent modlfler byte for an 
RD data character. This Is the 
upper byte In the 16-blt data 
word reserved for each data 
character in the data buffer. 
Une Setup configured for 
emutate or monitor mode. 
data f always Included in value of 
rd modifier) 
alternate code set 
underline (rd character)-inltial 
value of rd modifier 
reverse Image 
hexadecimal 
low intensity 
blink 
strilce-thru (parity error) 

2. Emulate mode only. One variable is valid in emulate mode only. since it 
monitors an emulate action. "SENDing" a transmission means queuing a 
transmission to send. The layer protocol (the RTS-CTS handshake, for 
example. at Layer 1) may delay the actual transmission. The fast-event 
variable levar .-xmit_cmplt will not come true until the transmission actually 
has been sent. Use this condition to start accurate response-time 
measurements. 

If you try to use fevar _xmit_cmplt in monitor mode, you will be returned to 
the main program menu. When you go to the Protocol Spreadsheet and 
search for errors, the following message will be displayed: "Error 140; 
Unresolved reference fevar _xmit_cmplt." 

(8) Status Variables 
Status variables are those in Table 59-2 that do not include event in the Type 
column. Their associated event variables guarantee that they are updated and 
tested. 

1. Distinguishing character types. Suppose you're monitoring the DCE side of 
the link. Every time a character is detected, the event fevar Jcvd_char _rd 
comes true, regardless of whether or not the character will be stored in the 
character buffer. Not all characters are "data" characters. A character also 
may be a flag or the second byte in a block-check, for example. 
fevar Jcvd_char Jd (or fevar _rcvd_char _td) does not distinguish character 
types. 

Character type is stored in the high byte of rcvd_char Jd or rcvd_char _td. 
For data characters, the high byte is zero. The low byte contains the actual 
value of the character. 

59-5 

-------------------------_._._-------------_ .. _----------_._----



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

For a "non-data" character, hereafter referenced as a special symbol. the 
high byte of rcvd_char Jd is a non-zero value. The low byte specifies a 
special symbol to be displayed on the data screen, overwriting or replacing 
the character. The special symbols are [ID (sync). lID (good BCC) •• (bad 
BCC). II (abort), and fE) (flag). See Table 59-2. 

Notice on Table 59-2 that the value for good BCC and bad BCC is the 
same. Use levar .....sd_bccJd and levar _bd_bccJd event variables to 
distinguish between good and bad BCC's (or data BCC's in DDCMP). 
Likewise. use levar .....sd_bcc2Jd and levar _bd_bcc2Jd to differentiate 
between good and bad header BCC's in DDCMP. Refer to Section 75 for 
ODCMP variables. 

Aborts are not automatically reflected in rcvd_char _rd and rcvd_char _td. 
When seven consecutive 1-bits are received in 7E-framed protocols, the 
controller chip generates an interrupt. The bits, however, are not stored in 
memory. In this case, use levar _abortJd or levar _abort_td to detect the 
interrupt. When this event variable transitions to true, it updates 
rcvd_char Jd (or rcvd_char _td) to indicate an abort. 

Use rcvd_char _td and rcvd_char Jd to monitor received characters. 
independent of whether or not they will be buffered. The following 
condition detects RD data characters only: 

CONDITIONS: 
{ 

jellar Jcvd_char Jd &:&: (/ (rcvd_char Jd &: Oxl00)) 
} 

2. Attributes. Data characters and special symbols in the character buffer are 
available for normal or enhanced display on the data display-screen. Access 
the data display by pressing DATA on the first rack of Run-mode softkeys. or 
by selecting it as the initial Run-mode display on the Display Setup menu. 

The current attributes for RD data are stored in rd_modijier. Table 59-2 
shows how the various attributes are coded. The initial value of rd_modilier 
is always five. This value means that the character is data (1) on the RD 
(4) side. RD data is always underlined. TD data is never underlined. The 
initial value of td_modilier, therefore. is one. 

You may change some attributes by using spreadsheet tokens (or their 
equivalent C routines). The Layer 1 ENHANCE action allows you to control 
reverse-image, blink. hexadecimal. and low intensity enhancements. This 
action also updates rd_modilier. td_modi/ier. or both. 

When an RD data character is written to the character buffer, the value of 
rd_modifier is written to the high byte of a two-byte data event-word. The 
data character. found in rcvd _char Jd. is written to the low byte. See 
Section 59.3(C) on the format of character-buffer event words. 

59-6 



59. MonitorlTransmit LIne Data 

NOTE: The attributes in rd_modifier and td_modifier do not 
apply to special symbols. rd_modifier and td_modifier always 
reflect the attributes last assigned to data. Underlining applied to 
(RD) special symbols on the data display-screen comes from a bit 
in the special receive-event word. See Table 59-3. 

59.3 Routines 

Unless noted otherwise, the routines discussed below apply when the Line Setup 
menu shows either emulate or monitor mode. 

(A) Controlling Data Display 

ctl .... enhance _ td 

SynO,psis 

extern Mid cll_enhanclZ_td(enhance_type_status); 
unsigned short enhance_t:tp,_status; 

DescIjption 

This routine turns various enhancements of the data display on and off on the 
DTE side. It also updates the variable td_modifier. The softkey equivalent of 
this routine is the ENHANCE OTE action on the Protocol Spreadsheet. 

There is one two-byte parameter. The high byte identifies the type of 
enhancement to be controlled: blink (40). low intensity (20), hexadecimal 
representation (10). ~and reverse image (08). The low-order byte indicates the 
status of the enhancement. To indicate a given enhancement is on, the second 
byte has the same value as the first. If the enhancement is to be turned off. the 
value of the second byte is zero. For example. if you want to tum blink on. the 
parameter value is Ox4040. To tum blink off. it is Ox4000. 

Multiple enhancements can be controlled with one action by using hexadecimal 
addition of the parameters, as in the example for ctl_enhanc€Jd. 

Example 

Assume X.2S protocol for this example. You want to enhance the packet type 
byte on the DTE side with a blinking, reverse image. 

LAYER: 1 
ST ATE: enhance packet type 

CONDITIONS;- OTE STRING "IEl5«XXXXXXXO»~· 
ACTIONS: 
{ 

} 

etl enhance td(Ox4040}; 
ctl=enltance=td(Ox0808); 

59-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

CONDITIONS: DTE STRING 1EIfJ«XXXXXXXO»~· 
ACTIONS: 
{ 
ctC enhance _ td (Ox4000); 
ctl_enhance_td(Ox0800); 

} 

Synopsis 

extern 'Void ctl_enhanceJd (enhance _type_status); 
unsigned short enhance_type_status; 

DescriPtion 

This routine turns various enhancements of the data display on and off on the 
DCE side. It also updates the variable rd_modifier. The softkey equivalent of 
this routine is the ENHANCE DCE action on the Protocol Spreadsheet. 

See ctCenhance_td. 

Example 

Assume X.2S protocol for this example. You want to enhance the . packet type 
byte on the DCE side with a blinking, reverse image. 

LAYER: 1 
STATE: enhanceJ)acket_type 

CONDITIONS: DCE STRING '1f]5«XXXXXXXO»I8J8)" 
ACTIONS: 
{ 

ctl_enhan"Jd(Ox4848); 
} 
CONDITIONS: DCE STRING 1EIfJ«XXXXXXXO»~" 
ACTIONS: 
{ 
ctl_ enhance Jd (Ox4800); 

} 

Synopsis 

extern 'Void ctl_capture_td(status); 
unsigned short status; 

Description 

This routine turns on and off the presentation of DTE data to the screen-that 
is, it stops or II freezes" the display-and capture of data to the screen buffer 
(character RAM). Unlike the Manual Freeze mode initiated by the ~ key, 

59-8 



59 Monitor/Transmit Line Data 

however. the "capture off" action does not allow you to scroll through the buffer 
while the test continues. The softkey equivalent of this routine is the CAPTURE 

DTE action on the Protocol Spreadsheet. 

The only parameter is the status of capture, on (OxOO) or off (Oxl0). Turning 
capture off freezes the display. 

Example 

Assume X.25 protocol for this example. You want to turn capture off as soon 
as the cause byte is displayed in a Clear packet on the DTE side. Capture will 
be resumed when the spacebar is pressed. 

LAYER: 1 
STATE: find_cause 

CONDITIONS: DTE STRING 'fI5«XXXXXXXO))I818J1~· 
ACTIONS: 
{ 
ctl_capture _td(OxJO); 

} 
CONDITIONS: KEYBOARD" " 
ACTIONS: 
{ 
ctl_capture_td(OxOO) ; 

} 

ctl capture rd - -
Synopsis 

extern void ctl_captureJd(status); 
unsigned short status; 

Des~ription 

This routine turns on and off the presentation of DCE data to the screen-that 
is. it stops or "freezes" the display-and capture of data to the screen buffer 
(character RAM). Unlike the Manual Freeze mode initiated by the E§I key, 
however. the .. capture off" action does not allow you to scroll through the buffer 
while the test continues. The softkey equivalent of this routine is the CAPTURE 

DCE action on the Protocol Spreadsheet. 

~ 

The only parameter is the status of capture, on (OxOO) or off (OxlOO). Turning 
capture off freezes the display. 

Examg:le 

Assume X.25 protocol for this example. You want to turn capture off as soon 
as the cause byte is displayed in a Clear packet on the DCE side. Capture will 
be resumed when the spacebar is pressed. 

59-9 



INTERVIEW 7000 Series Advanced Proarammlna: ATLC-107-951-10B 

LAYER: 1 
STAT!':, find_cause 

CONDITIONS: DCE STRING ''If)f3((XXXXXXXO))~~· 
ACTIONS: 
{ 
ctl_captureJd (Oxl 00) ; 

} 
CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 
ctl_ capture Jd (OxOO) ; 

} 

outsync _action 

Synopsis 

extern '!Ioid outsync_action (side); 
unsigned short side; 

Pescription 

The outsync_action routine applies to synchronous format only. This routine 
sends one of the receivers (TO or RD) out of sync and initiates a search for 
sync. The softkey equivalent of this routine is the (PROTOCLI OUT _SYN action on 
the Protocol Spreadsheet. 

The only parameter identifies which side of the line is to go out of sync, 0 for 
the PTE side, 1 for the PCE side. 

Example 

To display PTE-protocol information only, initiate sync each time a start-of-text 
character is found. The results of this routine are similar to turning capture off 
and on. but here the display does not have to be turned on again. It resumes 
automatically with sync. 

LAYER: 1 
STATE: Qo_out_of_lync 

CONDITIONS: DTE STRING .~ • 
ACTIONS: 
{ 
outsync _action (0) ; 

} 

(8) Transmitting 
Use the following routines in emulate mode only. If you try to call one of these 
routines in monitor mode, you will be returned to the main program menu. 
When you go to the Protocol Spreadsheet and search for errors, a message like 
the following will be displayed: "Error 140: Unresolved reference 
ll_iljransmit. " 

59-10 



59 Monitor/Transmit Line Data 

11 transmit 

Synopsis 

extern ~oid ll_transmit(count, struct_send_stringytr, xmit_tag); 
unsigned short count; 
struct xmit _list 

unsigned char" stringytr; 
unsigned short strinLlength; 

}; 
struct xmit _list " struct _send _stringytr; 
unsigned short xmil_tag; 

Description 

The ll_transmit routine sends a specified string with a user-determined Bee. 

The first parameter is the number of strings to be sent. 

The second parameter is a pointer to a structure which in turn identifies the 
location and length of each string. 

The third parameter is a transmit tag which includes a Bee in bits 0-2: good 
(001), bad (010), or abort (011). Bits 3-7 are reserved for future use. 
Integers may be used to indicate the value of the transmit tag: good (1). bad 
(2). and abort (3). 

Example 

Assume you want to send a fox message at Layer 1 inside of an X.2S data 
packet with a good block check. You might have 2 strings, one with the Layers 
2 and 3 header information, and one with the fox message. You would send 
these strings as follows: 

{ 

} 

unsigned char headers 11 = {OxOl, OxOO, OxlO, Ox04, OxOO}; 
unsigned char message [J = "({FOX)) "; 

struct xmit _list 

unsigned char" string; 
unsigned short SIring_length; 

}; 
struct xmit_'ist send_string [] = {&headers[Oj, 5, &message[OJ. sizeo!(message) - l}; 

59-11 

,---------------------_. __ ._------



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

LAYER: 1 
STATE: send_message 

CONDITIONS: KEYBOARD •• 
ACTIONS: 
{ 
1l_transmit(2, &:send_string[Oj, 1); 

} 

SynOpsis 

extern void ll_il_transmit(il_buffer_number, relay_baton, data_start_offset, transmit_tag); 
unsigned short il_buffer _number; 
unsigned short relay_baton; 
unsigned short data_start_offset; 
unsigned short transmit_tag; 

Description 

This routine sends a designated interlayer message buffer out onto the line. 

The first parameter is the interlayer message buffer number. 

The second parameter is the maintain bit used to hold the buffer while the send 
operation is performed at Layer 1. 

The third parameter js the offset from the beginning of the buffer to the service 
data unit (SDU). • 

The fourth parameter is a transmit tag which includes a Bee in bits 0-2: good 
(001). bad (010). or abort (011). Bits 3-7 are reserved for future use. 
Integers may be used to indicate the value of the transmit tag: good (1), bad 
(2), and abort (3). 

Example 

Send the same text as in the example for ll_transmit. The softkey equivalent of 
this routine is the SEND action on the Protocol Spreadsheet. Refer to Section 
63.3(A) for a description of the Jet_il_msg_buff, _start_il_buff_list , and 
_insert_il_buff_list_cnt routines. 

{ 

} 

unsigned short il_buffer _number; 
unsigned short relay_baton; 
unsigned short data_start_offset; 
unsigned char message [) ,. ..ol\xOOO100~\xOOOa.FOX)) "; 

59-12 



LAYER: 1 
ST A TE : send_message 

CONDITIONS: KEYBOARD" • 
ACTIONS: 
{ 

59 Monitor/Transmit Line Data 

Jet_il_mS8_buff(&:il_buffer_number, &:relay_baton): 
_start_il_buff_Ust(il_buffer _number. &datajtart_offset); 
_insert_il_bufLlist_cnt(il_buffer _number, data_start _ offs,et, &:message [OJ, 

(sizeof(message) - 1); 
ll_il_transmit(il_ouffer _number, relay_baton, data_start_offset , 1); 

} 

Synqpsis 

extern lIoid idle_action(cnaracter); 
unsigned char character; 

Description 

Only for format SYNC, the idle_action routine allows you to change the idle-line 
condition applied by the INTERVIEW. The softkey equivalent of this routine is 
the (PROTOCLI IDLE_LN action on the Protocol Spreadsheet. 

The only parameter is a character or numeric value representing the idle 
character. 

Example 

X.21 or X.21BIS idles different characters in various states, "F, 16, +. for 
example. To signal a change in protocol state, you might change the idle 
character to +: 

LAYER: 1 
STATE: ohange -,die_character 

CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 
idle_action('t '); 

} 

59-13 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Synopsis 

extern void set_tcr _b (tcr _register_mask. tcr _register_value); 
unsigned char tcr _register_mask; 
unsigned char tcr _register_value; 

Pescrjption 

This routine clamps the transmit line to 0 (space) or 1 (mark). or unclamps it so 
that transmit routines may be executed. In X.21. steady zero will signal a clear 
request/indication or a clear confirm. while steady 1 will indicate one of the 
call-ready or call-setup states. In other contexts. the routine simply initiates and 
terminates a break. 

The fll'st parameter is the mask that is anded with the current TCR register to 
turn the current values of bits 3 and 4 (counting 1-8 from the right) to zero. 
This mask is always Oxf3. 

The second parameter contains the new values of bits 3 and 4 that will be 
written to the register. The three available parameters are Ox08 to clamp the line 
to zero. OxOc to clamp the line to 1. and Ox04 to unclamp the line and permit 
data transmissions. 

Example 

This program will generate a 250-millisecond break when the operator presses 
the ~ key. 

{ 
extern last_event keyboard_new _any_key; 
extern volatile unsigned short keyboard_any_key; 

} 
STATE.: generate_break 

CONDITIONS: 
{ 
keyboard_new _any_key && (keyboard_any_key == Oxle3) 

} 
ACTIONS: TIMEOUT break RESTART 0.250 
{ 
set_tcr_b (Ox13, Ox08): 

} 
CONDITIONS: TIMEOUT break 
ACTIONS: 
{ 
set_tcr_b (OxI3. Ox04); 

} 

59-14 



59 Monitor/Transmit Line Data 

(C) Writing to Character RAM 

For the sake of speed, the 64-Kbyte character buffer uses a shorter data word 
than the 32-bit word in the Display Window and traces. Refer to Table 61-4. 
A sixteen-bit event word is reserved for each character in the 64-Kbyte 
character buffer. 

Table 59-3 shows the format of event words. Two kinds of event word should be 
distinguished: data and special receive. 

1. Data Event-Words. Data event-words may contain enhancement attributes 
in the high byte. Whereas attributes comprise 24 bits of a long in the 
Display Window and the traces, in the character buffer they are contained in 
only 8 bits. Data words in the character buffer. therefore. include a less 
flexible set of attributes. Color attributes, for example, are not directly 
available in words written to the character buffer. See Section 16, Color 
Display. for an explanation of how reverse, blink. and low enhancements in 
the character buffer may be mapped to colors in the RGB output. 
Table 59-3 lists the available attributes. 

The character is located in the low 8 bits. Its value can range from 
hexadecimal 0 through FF. 

2. Special-Receive Words. The high byte in special-receive words determines 
the symbol (from the special graphic character font) that will overlay the 
character contained in the low byte. The symbols that may be written to the 
tharacter buffer are good BCC's. bad BCC's, aborts. flags, and sync. One 
bit, the td/rd indicator. controls on which side the symbol will be displayed. 
Symbols on the RD side are underlined. as all RD data is. Notice in 
Table 59-3 that the td/rd indicator bit is the same one that controls the 
underline enhancement in data event-words. 

The value in the low byte is meaningless in the context of special-receive 
words. The special symbol will overlay or replace the character. Its value, 
nevertheless. can range from hexadecimal 0 through FF. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107 951 108 

Type Mask (hex) 

data 

0100 

0500 

ffOO 

special receive 

8300 

8700 

bfOO 

reserved 0700 

reserved Of 00 

Table 59·3 
Character Buffer 1S-Bit Word 

Input (hex) Meaning 

data-event word: 

0100 the low byte contains data 

add 0100 to the following: td/rd Indicator: 

0000 td character 
0400 rd character (underlined) 

add modJlied value of td I rd enhancements: t 
Indicator to one (or 8 Gombi- t enhancements apply to data 
nation) of the following: Indioated in low byte) 

0000 normal 
0200 alternate oode set 
0800 reverse Image 
1000 hexadecimal 
2000 low intensity 
4000 blink 
8000 strike-thru (parity error on charaoter) 

special receive-event word: 

0200 special receive-event word 
8200 reserved 

add 0200 to the fol/owlng: tdJrd Indicator: 

0000 td oharaoter 
0400 rd character (underlined) 

add modified value of tdlrd special event: 
Indicator to one of the (symbols for these events overlay the 
following: data indicated In low byte) 

0800 good CRC 
1000 bad CRC 
1800 abort 
2000 flag 
2800 sync 
3000 bad CRC2 (DDCMP) 
3800 good CRC2 (DDCMP) 

0400 reserved 

0800 reserved 

t Selecting rd (0400) for the td/rd indicator results In the data being underlined. The underline enhancement shares 
the same bit. It has been omitted from the list of enhanoements to avoid an error from double counting. 

59-16 



59 Monitor/Transmit Line Data 

The routines for writing 16-bit event words to the character buffer are 
add_event_to_buff and a dd_array_to_buff. These routines may be used when 
the Line Setup menu shows either emulate or monitor mode. 

Synopsis 

extern unsigned tnt add_event_to_buff(event_word); 
unsigned int event_word; 

Description 

The add_event_to_buff routine writes the specified input to the 64-Kbyte 
character buffer. 

The only input is a 16-bit event-word to be written to the buffer. Table 59-3 
lists the coding of event words. 

Returns 

A one is returned if the event was successfully added to the character buffer. If 
the routine failed. zero is returned. 

Example 

To display only SDLe frames with an address of hexadecimal c2 f enter the 
following spreadsheet program: 

LAYER: 1 
{ 

} 

extern unsigned short rcvd_char _td; 
extern unsigned short rcvd_char -,d; 

STATE: Init 
CONDITIONS; ENTER_STATE 
ACTIONS: CAPTURE BOTH OFF 
NEXT_STATE: address 

ST ATE: address 
CONDITIONS: DTE STRING m­
ACTIONS: 
{ 

} 

if(rcvd_char _td == Oxe2) 
{ 

} 

add_event_to_buff «(short}tdJnodijier« 8) + rcvd_char_td); 
ctl_capture_td(OxOOi; 

CONDITIONS: DTE STRING "!BEl" 
ACTIONS: CAPTURE DTE OFF 

59-17 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951 108 

CONDITIONS: DCE STRING m· 
ACTIONS: 
{ 
if(rcvd_char _rd == Oxe2) 

{ 

} 

add_event_to _buff (((short)rd_modijier « 8) + revd_char Jd); 
ctl_captureJd (OxOO); 

CONDITIONS: DCE STRING W' 
ACTIONS: CAPTURE DCE OFF 

SynQPsis 

extern unsigned int add_array_to_buff(array...ptr, count); 
unsigned short" arraY"'ptr; 
unsigned char count; 

Description 

The add_array_to_buff routine writes specified elements of an array to the 
64-Kbyte character buffer. 

The first parameter is the location of the array to be written to the character 
buffer. The array consists of 16-bit shorts. 

The second parameter is the number of elements in the array to be written. 
The number of elements which can be written to the buffer must be in the range 
0-16. Elements in the array must adhere to the format of event words shown in 
Table 59-3. 

Returns 

The result of the add_array_to_buff routine is all or nothing. A one is returned 
when all requested elements of the array are successfully added to the character 
buffer. If the routine fails. zero is returned and nothing is written to the buffer. 

Example 

To display on the Data Screen only X.2S packets with an LCN of 004. enter the 
following spreadsheet program. (This program displays the DTE side of the line 
only. Additional programming similar to that entered would include DCE data.) 

59-18 



LAYER: 1 
{ 

} 

unsigned short dte_array {lOO]; 
unsigned short lcn; 
extern unsigned short rcvd_char _td; 

STATE: Inlt 
CONDITIONS; ENTER_STATE 
ACTIONS; CAPTURE BOTH OFF 
NEXT_STATE: address 

STATE: address 
CONDITIONS: DTE STRING m" 
ACTIONS: 
{ 
dte_array [0] ::: (Ox0100 + rcvd_char_td); 

} 
NEXT _ STATE : frame_type 

STATE: frame_type 
CONDITIONS: DTE STRING " ((XXXXXXXO)) • 
ACTIONS: 
{ 
dte_array [lJ ::: (OxOl00 + rClId_char_td); 

} 
NEXT_STATE: gfl 
CONDITIONS: DTE STRING "((XXXXXXX1»" 
NEXT_STATE: address 

STATE: gfi 
CONDITIONS: DTE STRING 18]" 
ACTIONS: 
{ 
dte_array [2] ::: (Ox0100 + rcvd_char _td); 

59 Monitor/Transmit Line Data 

lcn:; «unsigned int)rcvd_chaT_td & oxon «8; 
) 
NEXT_STATE: len 

STATE: len 
CONDITIONS: DTE STRING 18]. 
ACTIONS: 
{ 

} 

dte_array [3]:: (Ox0100 + revd_char_td); 
lcn += revd_char _td; 
if(len == Ox0004) 

{ 

} 

add_array_to_buff(dte_array, 4); 
ctl_capture_td(OxOO) ; 
current_state:: state_eo/; 

else 
current_state'" state_address; 

break; 

STATE: aof 
CONDITIONS: DTE STRING "Em" 
ACTIONS: CAPTURE DTE OFF 
NEXT_STATE: address 

59-19 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

59-20 



~, 
t, 

60 EIA 

60 EIA 

The Test Interface Module (TIM) located in the rear of the INTERVIEW determines the EIA 
leads available fOf monitoring and control (Section 10). The variables and routines in this 
section apply to RS-232, V.35, and RS-449 interface modules. The X.21 module is treated 
separately in Section 70. 

To use the C variables and routines explained in this section. enable EIA leads by selecting 
Buffer Control Leads: ;iiij~:~ on the FEB Setup menu. See Section 7.1(B). If no other source 
for clock is provided, use internal clock (Line Setup menu). 

The variables and routines approximate Layer 1 EIA spreadsheet-generated conditions and 
actions. Their use on the Protocol Spreadsheet is not limited to any particular layer, though 
normally they belong at Layer 1. 

60.1 Variables 

With an. RS-232, V.35, or RS-449 TIM installed, you may monitor RI. DSR, DTR. 
CD, CTS, RTS, and UA. The lead names in RS-449 are slightly different: see 
Table 60-1. 

The fast-event variable levar _eia3hanged detects a change in EIA lead~. It does 
not establish which lead(s) has changed. Two associated variables, current_eia_leads 
and previous_eia_leads. indicate the status of the seven leads. These are two-byte 
(short) variables. Each lead is represented by a different bit in the short. Some bits 
are unused. Table 60-1 lists the mask that can be used to isolate each lead. 

Whenever a lead Changes, the value in current_eia_leads is written to 
previous_eia_leads. Then current_eia_Ieads is updated. 

(A) Masking To Detect a Change in a Given Lead 

To test whether or not a given lead changed. RTS for example, while 
disregarding its status. enter the following condition on the Protocol Spreadsheet: 

CONDITIONS: 
{ 
jevar_eia_changed && «(current_eio_leads A prhious_eio_leads) & Ox80} == Ox80) 

} 

Select a mask value from the list in Table 60-1 to indicate which lead you care 
about. Specify multiple leads with a mask derived via hexadecimal addition. 

60-1 



INTERVIEW 7000 Series Advanced Proarammlna: ATLC-107-951-10B 

Type 

extern fast_event 

Table 60-1 
EIA Variables 

Variable Value (hex/decimal) Meaning 

True when the status changes 
for an EIA lead (non-data). 
Line Setup configured for 
emulate or monitor mode. 

extern const volatile unsigned short 4 

BS-2321Y.35: (RS-449) 

RI (IC) 

extern const volatUe unsigned short 

8 
10/16 
20/32 
40/64 
80/128 
200/512 

OSR (OM) 
OTR (TR) 
CO (RR) 
CTS (CS) 
RTS (RS) 
UA 
A value In this Bst. when anded 
(l) with current e/a leads. 
equals zero If the lead Is on. 
Example: 
STATE: rts on 
{ If ((currence,a_,eads & OxBO) 
== 0) sound_a/arm(): } 

Note: This variable WIll store EIA ,"-""'. 
status If (1) Internal or external 
clock Is supplied and (2) EIA 
leads are enabled on FEB 
Setup. Une Setup configured 
for emulate or monitor mode. 

Same values as 
current ela 'eads. Updated 
only after logiC has had a 
chance to compare current and 
previous leads. Line Setup 
configured for emulate or 
monitor mode. 

The mask for RTS is Ox80. In the example, the event levar _eia_changed 
updated current3ia_leads. The new current_eia_leads was 
bitwise-exclusive-ORed with previous_eia_leads to identify all the leads that 
changed. Then the result was bitwise ANDed with the RTS mask to determine if 
RTS was among the leads that changed. If this result was equal to the mask, 
the lead changed. 

(8) Masking For the Status of a Lead 
You may also test the current status of a lead, independent of any change. And 
the mask with current_eia_leads. as in this if statement testing for RTS "on": 

STATE: test_for_rts_on 
{ 
i/((cur"nt_eia_'eads de 0%80) == 0) sound_alarm(); 

} 

60-2 



60 EIA 

If the result is zero. the lead is on. If the result equals the mask. the lead is 
off. "On" means that a lead is more positive than +3 volts with respect to signal 
ground. "Off" implies only that a lead is not at or above the "on" threshold. 
not necessarily that a minus threshold has been attained. 

(C) Detect Change and Current Status 

The . two examples shown above could be combined to test for RTS changing 
from off to on: 

CONDITIONS: 
{ 

(jevar_eia_changed .lei «((current_eia_leads • prellious_eia_leads) & OxBO} == Ox80} && 
((current_eill_leads & Ox80) == 0» 

This example approximates the translator's version of the spreadsheet-token 
condition EIA RTS ON when it appears alone in a conditions block. When an EIA 

condition is combined· with another condition. in most cases the other condition 
will supply the event variable and only the EIA status test will be used. 

60.2 Routines 

You may control RS-232 EIA leads in emulate mode only. When the Line Setup 
menu shows Mode: f~~fi:!~~ij[(:;f you control CTS, CD, and DSR. An *~i£l$'l;1:'ti.t 
selection gives you control over RTS and DTR. Entries on the Interface Control 
menu may be used to set the leads' initial status (Section 10.6). 

ctl eia 

Synopsis 

extern lIoid ctCeia(on_mask, off_mask); 
unSigned short on_mask; 
unsigned short off_mask; 

Descrjption 

The ell_eia routine allows you to control the status of up to three of nine possible 
leads. Which leads you control depends on your emulation mode. The softkey 
equivalent of this routine is the EIA action on the Protocol Spreadsheet. 

The first parameter indicates which leads you want to turn on. Each bit in the 
parameter controls a given lead: RTS/CTS (01). DTR/DSR (02), CD (04). AUXO 
(10), AUXl (20). AUX2 (40). AUX3 (80). Wherever there is a zero in the first 

60-3 

--------_._._------



INTERVIEW 7000 Series Advanced Proarammlna: ATLC-107-951-108 

parameter. the corresponding lead will be turned on. A one in this parameter will 
not cause any lead to be turned off. A value of Oxff will mean don't care (no 
action). 

The second parameter indicates which leads you want in the "off" condition. Each 
bit in the parameter controls a given lead: RTS/CTS (01). DTRlDSR (02). CD (Q4). 
AUXO (10). AUX1 (20). AUX2 (40). AUX3 (80). Wherever there is a one in the 
second parameter. the corresponding lead will be turned off. Zeroes in this parameter 
do not turn leads on. A value of 0 will mean don't care (no action). 

NOTE: If both bytes are attempting to control the same lead. the 
off parameter will override the on parameter. 

Example 

Suppose your emulate mode is BtiflIIU. As a DCE. you control the CTS. DSR. 
and CD leads. (An attempt to control the status of RTS or DTR will fail, since the 
DTE controls these leads.) When RTS is raised. you want to turn CTS on; when RTS 
drops, turn CTS off. 

LAYER: 1 
STATE: controL cts 

CONDITIONS: EtA RTS ON 
ACTIONS: 
{ 
ctl_eia(OX/e. OxOO); 

} 
CONDITIONS: EIA RTS OFF 
ACTIONS: 
{ 
ctl_eia(Oxf!. OxOl): 

} 

6Q-4 



61 

61 Display Window and Trace 

Display Window and Trace 

The C structures. variables, and routines detailed in this section control the type and location 
of certain displays on the INTERVIEW. These displays can be grouped into three categories. 

The first display area is the prompt line. the second line on aU Run-mode screens. 

The second type of display utilizes the Display Window. available as a selection on the Display 
Setup portion of the Line Setup menu. or conditionally accessible via softkey during Run 
mode. To write to the Display Window. use the pos_cursor (or restore_cursor) and dispJayc. 
displayf. or displays routines. When using Display Window. you may position the cursor 
before output is generated on the screen. 

The third type of display utilizes one or a combination of the eight available trace buffers. 
Trace screens are conditionally accessible via softkey during Run mode. Seven user-traces 
appear as choices under the User Trace selection on the Display Setup' menu. The remaining 
trace is Program Trace, also an option on Display Setup. Program Trace enables you to track 
any or all layers, one or all tests, and movement between states. To write to any of the eight 
trace-screens. use the tracec. trace!, and traces routines. 

NOTE: You may not use the pos_cursor routine to position the 
cursor on any trace screen. New lines (or blank lines) may be 
generated via the "\n" specifier. 

Attributes-color. underlining. and font, for example-may be assigned to characters in the 
Display Window and all of the Trace buffers. 

61.1 

NOTE: Color attributes are applied to the ROB output signal, 
not to the plasma screen. 

Current Display Mode 

A group' of variables keeps track of sonkey movement from one display screen to 
another (see Table 61-1). When you move from the Display Window to the Program 
Trace sqreen. for example, the fast-event variable disp/ay_screen_changed indicates 
the change of display. The coded value for Display Window now is stored in 
prey _display _screen. and the value for Program Trace can be found in 
ernt _display _screen. 

61-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Type 

extern fast_event 

These variables also distinguish between Run mode and Freeze mode. This 
distinction is important since some keys on the keyboard are mode-dependent. In 
Freeze mode. for instance. cursor keys automatically become operational for scrolling 
through the buffer. The programmer will want to avoid using these keys as 
user-input when crnt_display_screen indicates that the unit is in Freeze mode. 

Table 61·1 
Current Display Variables 

Variable Value (hex/decimal) Meaning 

True when Run-mode 
display-screen Is changed. or 
when Run/Freeze mode Is 
changed. Value In 
ernt display soreen is stored In 
prev-display soreen. and 
emt -d/splay=sereen Is updated. 
Une -Setup configured tor 
emulate or monltor mode. 

extern unsigned short crnt_ display_screen Contains current dlsp.lay screen 
(low byte) and indicates whether 
unit Is in Run mode or Freeze 
mode (high byte). Une Setup 
configured for emulate or 
monitor mode. 

61-2 

o 
1 
2 
3 
4 
11/17 
12/18 
21/33 
31/49 
41/65 
42166 
43/67 
44/68 
45/69 
46/70 
47171 
51/81 
52/82 
53/83 
54/84 
55/85 
56/86 
57/87 
61/97 
62/98 

100/256 
o 

dlsplay-soreen 

no display 
single-line data 
dual-line data 
single-line data with leads 
dual-line data with leads 
tabular statistics 
graphic statistics 
Display Window 
Program Trace 
Layer 1 Protocol Trace 
Layer 2 Protocol Trace 
Layer 3 Protocol Trace 
Layer 4 Protocol Trace 
Layer 5 Protocol Trace 
Layer 6 Protocol Trace 
Layer 7 Protocol Trace 
User Trace 1 
User Trace 2 
User Trace 3 
User Trace 4 
User Trace 5 
User Trace 6 
User Trace 7 
TIM package standard stats 
TIM package aux 
Run/Freeze mode (bit 9) 

Freeze mode 
Aun mode 



81 Display Window and Trace 

Table 61-1 (continued) 

Type Variable Value (hex/decimal) Meaning 

extern unsigned short Contains previous display screen 
{low byte I and Indicates whether' 
unit was in Run mode or Freeze 
mode (high byte). line Setup 
configured for emulate or 

61.2 Prompt Line 

o 
1 
2 
3 
4 
11/17 
12/18 
21/33 
31/49 
41/65 
42/66 
43/67 
44168 
45/69 
46170 
47/71 
51/81 
52/82 
53/83 
54184 
55/85 
56/86 
57/87 
61197 
62/98 

100/256 
o 

monitor mode. 

display-screen 

no display 
single-fine data 
dual-line data 
single-llne data with leads 
dual-ftne data with leads 
tabular statistios 
graphic statistics 
Display Window 
Program Traoe 
Layer 1 Protocol Trace 
Layer 2 Protocol Trace 
Layer 3 Protocol Trace 
Layer 4 Protocol Trace 
Layer 5 Protocol Trace 
Layer 6 Protocol Trace 
Layer 7 Protocol Trace 
User Trace 1 
User Trace 2 
User Trace 3 
User Trace 4 
User Trace 5 
User Trace 6 
User Trace 7 
TIM package standard stats 
TIM package aux 
Run/Freeze mode (bit 9) 

Freeze mode 
Run mode 

Access to the prompt line is always available via the display"'prompt routine, or its 
softkey equivalent. the PROMPT action. Attributes may not be assigned to a prompt 
created via either of these methods. (To create a prompt with attributes, use the 
pos_cursor and display! routines.) Prompts appear on whatever screen is active at 
the time the prompt is written, including trace screens. With one exception, 
movement to another display erases the prompt. The only screen which retains the 
most reqent prompt is the Display Window. 

You may also pOSition the cursor to the prompt line in the Display Window via the 
pos_cursor routine. The initial position of the cursor in the Display Window is at the 
beginning of the prompt line-row zero, column zero. Anything written to this cursor 

61-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

position in the Display Window will appear as a prompt on anyone of the other 
display screens (assuming one of them is active at the time the message is written). 
Position the cursor below the prompt line for messages intended for the Display 
Window only. 

Trace buffers retain no record of prompts. When you write to a trace screen, the 
initial position of the cursor is the line immediately below the prompt line-row one. 
Since you may not position the cursor in trace buffers, all messages written to trace 
buffers are appended at the end of the buffer. You may never access the prompt 
line via tracef (or tracec or traces) routines. 

61.3 Display Window 

The Display Window preserves one screen, including the prompt line. of user-entered 
messages. When the end of the display screen is reached. the previous messages are 
overwritten, beginning at row one (the line below the prompt line). 

NOTE: Use the keyboard variables and the send_key routine 
explained in Section 69. Other Library Tools, to program the 
Run-mode use of I±l and ff) in the Display Window. (For other 
Run-mode screens, these keys control the playback speed of disk 
data.) 

(A) Variables 

There are variables accessible to the user which provide information about the 
Display Window. Table 61·2 lists the variables and their possible values. Two 
variables indicate the current position of the cursor: current_line stores the row 
number and current_col stores the column number. To find out which attributes 
are active in the Display Window, check the values stored in window _color and 
window _modifier. Color is stored in the high byte of the two-byte variable 
window _color. Enhancements are stored in the low byte. The current font code 
can be found in window _modifier. 

NOTE: Attributes assigned via the %m conversion specifier 
(refer to tracef-routine input) to characters in trace buffers will 
not alter the values of window_color and window_modifier. These 
variables refer to the Display Window only. 

The variable disp/ay_window_buffer provides the user with access to the 
display-window buffer. This variable is an array of 1,088 longs. Each element 
in the array contains one byte of character data and three bytes of attributes. 
The attributes are determined by the current values of window _color and 
window_modifier. 

61-4 



Type 

extern unsigned short 

extern unsigned short 

extern unslgned short 

61 Display Window and Trace 

Table 61-2 
Display Window Variables 

Variable Value (hex/decimal) Meaning 

current_line 

61-5 

0-1010-16 

0-3fJO-63 

o 
1 
2 
3 
4 
5 
6 
7 

o 
6 
10/16 
18/24 
20/32 
26/40 
30/46 
38156 

Contains the current row 
number of the cursor position In 
the Display Window. Line Setup 
oonflgured for emulate or 
monitor mode. 

Contains the current column 
number of the oursor position In 
the Display Window. Line Setup 
configured for emulate or 
monitor mode. 

Two-byte variable. Current 
color sefections are Indicated in 
the low byte. Current 
enhanoements are Indicated In 
the high byte. Written to by %m 
oonverslons. Attributes are 
oopied into data words in 
Display Window. Line Setup 
configured for emulate or 
monitor mode. 

Isolate bits of interest via 
bitwise andlng (&) of mask with 
variable. Compare result to 
value column. For example, 
underline attribute mask = 
Ox1oo. Therefore window color 
& Ox1oo equals 0 (underline eft) 
or Ox1oo (underline on). Line 
Setup configured for emulate or 
monitor mode. 

back.ground color mas/< = 7 (bits 
1-3) : 

black 
blue 
green 
cyan 
red 
magenta 
yellow 
White 

foreground color mas/< = Ox38 
(bits 4-6); 

blaok 
blue 
green 
cyan 
red 
magenta 
yellow 
White 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table 61-2 (continued) 

Type Variable Value (hex/decimal) Meaning 

(window_color continued) 

61-6 

o 
40/64 

o 
80/128 

o 
100/256 

o 
200/512 

o 
400/1024 

o 
800/2048 

o 
1000/4096 

o 
2000/8192 

o 
4000116384 

o 
8000/32768 

color blink mask = Ox40 (bit 7): 

no blink 
blink 

c%r strike-thru mask = Ox80 
(bit 8): 

no strlke-thru 
strike-thru 

over/lne mask = Ox100 (bit 9): 

no overllne 
overllne 

blank mask c Ox200 (bit 10): 

no blank 
blank 

underline mask = Ox400 (btt 
11) : 

no underline 
underline 

reverse Image mask = Ox800 (bit 
12): 

no reverse image 
reverse image 

hex mask", Ox1000 (bit 13): 

no hex 
hex 

low intensity mask .. Ox2000 (bit 
14): ' 

no low Intensity 
low Intensity (RS-170 output) 

monochrome blink mask ." 
Ox4000 (bit 15): 

no monochrome blink 
monochrome blink 

monochrome strlke-thru mask = 
Ox8000 (bit 16): 

no monochrome strlke-thru 
monochrome strlke-thru 



Type 

extern unsigned char 

extern unslgned long 

61 Display Window and Trace 

Table 61·2 (continued) 

Variable Value (hex/decimal) Meaning 

window_modifier 

o 
1 

2 

3 

7 

displaY-Window_buffer (1088) 

Contains the current modifiers. 
Une Setup configured for 
emulate or monItor mode. 

font mask .. 7 (bits 1-3): 

ASCII 
special graphlo charaoter set 
(refer to Table 61-5) 
primary font-code selected on 
Une Setup 
alternate font-current 
Implementation Is for call-setup 
phase In X.21 (ASCII) 
hexadecimal 

Array of 32-blt words that make 
up the one-screen Display 
Window. Each word contains 
three bytes of attributes and a 
one-byte character. Refer to 
Table 61-4. Line Setup 
oonflgured for emulate or 
monitor mode. 

(8) Structures 
Once the data word is written to the buffer as an element in the 
dispJay_window_buffer array. it can be accessed and written to-and therefore 
changed-the same as any other location in memory. There is an extern array, 
display_window_index_buffer[17), which provides a method of informing the 
display controller on the CPM card that the display needs to be updated. The 
structure of this array is shown in Table 61-3. 

Each element in the display_window _index_buffer array represents a horizontal 
row or line in the Display Window. Each element is a structure with two 
variables. mpm and cpm. The first variable in the structure, mpm. increments 
automatically whenever a line in the display-window buffer is updated by a 
display routine. (If you write to the buffer directly without using one of the 
display routines. you must increment this variable .. manually ... ) Its particular 
value at any moment is not important. What is significant is whether or not the 
value of the second variable in the structure. cpm, is the same as mpm. The 
processor on the CPM compares these two variables (for each line) periodically 
to determine if a line in the Display Window needs to be rewritten. If the 
values of the two variables do not match. it means that a line updated in 
memory now needs to be updated by the CPM display-controller software. 
After the display is changed, the value of mpm is copied automatically into cpm. 

61-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

Table 61-3 
Display Window Suffer Structures 

Type Variable Value (hex/decimal) Meaning 

Structure Name; display_window_index_buffer [171 An array of struotures used for detecting 
ohanges to the display-window buffer. There are 
seventeen elements In the array. one for each 
line In the Display Window. When a change is 
made to a line in the display-window buffer. the 
corresponding element in the array Is accessed. 
If a display' routine changes line 3. 
dispJay_window_lndex_buffer{3].mpm is 
automatically incremented. The CPM detects 
the difference between 
display_window_index_buffer [3}.mpm and 
display_window_index_buffer {3] .cpm and 
updates line 3 In the Display Window. Declared 
as type extern struct. 

unsigned char 

unsigned char 

You must increment an mpm variable manually 
when you write directly (not via a display! routine) 
to the Display Window. 

mpm O-tf/O-255 When the MPM updates a line In the 
display-window buffer, this variable is 
Incremented. 

cpm O-ff/O-255 The CPM checks the value of this variable against 
the value of mpm. If they are different. the 
value In mpm Is copied into cpm. The updated 
line in MPM is then presented on the 
display-window screen. 

(C) Routines 

You may position the cursor before output is generated on the screen via the 
pos_cursor and restore_cursor routines- The pos_cursor routine positions the 
cursor at the row and column you specify. The restore_cursor routine returns 
the cursor to a previous location. 

One routine. display!. allows you to add attributes to messages in the Display 
Window. including the prompt line. These attributes are listed in Table 61-4. 

61-8 



displayc '., 

Syno.psis 

extern void displayc(character); 
const char character; 

Description 

61 Disglay Window and Trace 

The displayc routine outputs a single ASCII character to the Display Window 
screen. The placement of the output on the screen may be controlled via the 
pos_cursor routine. Attributes may not be used in displayc. 

The parameter value may be given as a hexadecimal, octal. or decimal constant; 
as an alphanumeric constant inside of single quotes; or as a variable. A 
hexadecimal value must be preceded by the prefix Ox or OX; an octal value must 
be preceded by the prefix O. If no prefix appears before the input. the number 
is assumed to be decimal. Valid numeric entries are 00 to 127, decimal. An 
alphanumeric character placed between single quotes will be output as is to the 
display. 

Example 

The displayc entries on the left output the character given on the right. at the 
cursor location on the Display Window screen: 

displayc('a') ; a 

dispJayc(65); A 

displayc(Ox65) ; e 

displayc(065) ; 5 

displayf 

Syngpsis 

extern int display!(format"'ptr, ... ); 
const char • !ormat...ptr; 

Description 

The display/routine writes output to the Display Window screen, under control 
of the string pointed to by format ytr that specifies how subsequent arguments 
are converted for output. If there are insufficient arguments for the format, the 
behavior is undefined. If the format is exhausted while arguments remain, the 
excess arguments are evaluated but otherwise ignored. The display! routine 
returns when the end of the format string is encountered. The placement of the 
output on the screen may be controlled via the pos_cursor routine. 

61-9 

.-----------,-.---"'--,-'-~~--.---'~-----



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

The format is composed of zero or more directives: ordinary characters (not 
%), which are copied unchanged to the output stream; and conversion 
specifications, each of which results in fetching zero or more subsequent 
arguments. Each conversion specification is introduced by the character %. 
After the %, the following appear in sequence: 

• Zero or more flags that modify the meaning of the conversion specification. 
The flag characters and their meanings are: 

The result of the conversion will be left-justified within the field. 

+ The result of a signed conversion will always begin with a plus or 
minus sign. 

space If the first character of a signed conversion is not a sign, a space will 
be prepended to the result. If the space and + flags both appear, the 
space flag will be ignored. 

# The result is to be converted to an "alternate form." For d and i 
conversions, the flag has no effect. For 0 conversion, it increases the 
precision to force the first digit of the result to be a zero. For x (or 
X) conversion, a nonzero result will have Ox (or OX) prepended to it. 
For u conversions, the argument is displayed in small hex characters. 
For example, displayf (uo/o#u", 258); yields °10Z. For c and s 
conversions, if the argument contains a newline character, it is 
displayed as .".. 

• An optional decimal integer specifying a minimum field width. If the 
convened value has fewer characters than the field width, it will be padded 
on the left (or right. if the left adjustment flag, described above, has been 
given) to the field width. The padding is with spaces unless the field width 
integer starts with a zero, in which case the padding is with zeros. 

• An optional precision that gives the minimum number of digits to appear for 
the d, i. 0, u, x. and X conversions. the maximum number of characters to 
be written from an array in an s conversion, or the number of characters to 
be written from an array in an H conversion (overriding the usual 
null-termination of strings). The precision takes the form of a period (.) 
followed by an optional decimal integer; if the integer is omitted. it is treated 
as zero. The amount of padding specified by the precision overrides that 
specified by the field width. 

61-10 



61 Oisplay Window and Trace 

• An optional h specifying that a following d, i, 0, u, x, or X conversion 
.specifier applies to a short int or unsigned short Int argument (the argument 
will have been promoted according to the integral promotions, and its value 
shall be converted to short int or unsigned short int before printing); or an 
optional 1 specifying that a following d. i. 0, u. x, or X conversion specifier 
applies to a long int or unsigned long int argument. If an h or I appears 
with any other conversion specifier. it is ignored. 

• A character that specifies the type of l;onversion to be applied. (Special AR 
extensions have been added.) The conversion specifiers and their meanings 
are: 

d. i, 0, U, x, X . 

The im argument is converted to signed decimal (d or i). unsigned 
octal (0), unsigned decimal (u). or unsigned hexadecimal notation (x 
or X); the letters abcdef are used for x conversion and the letters 
ABCDEF for X conversion. The precision specifies the minimum 
number of digits to appear; if the value being converted can be 
represented in fewer digits. it will be expanded with leading zeros. 
The default preCision is 1. The result of converting a zero value with 
a precision of zero is no characters. 

c The int argument is converted to an unsigned char, and the resulting 
character is written. 

s The argument shall be a pointer to a null-terminated array of 8-bit 
chars. Characters from the string ate written up to (but not including) 
the terminating null character: if the preCision is specified. no more 
than that many characters are written. The string may be an array 
into which output was written via the sprint! routine. (If the string 
pointed to is an array which has been written via the stracef routine. 
you must use o/Db rather than %9 to display it.) 

p The argument shall be a pointer to void. The value of the pointer is 
converted to a sequence of printable characters. in this format: 
0000:0000. There are always exactly 4 digits to the right of the 
colon. The number of digits to the left of the colon is determined by 
the pointer's value and the precision specified. Use this conversion to 
display 80286 memory addresses. The 16-bit segment number will 
appear to the left of the colon and the 16-bit offset to the right. 

% A % is written. No argument is converted . 

. \n Displays". No argument is converted. 

H displays a character array (pointed to by the argument) as small hex 
characters. If precision is specified. it is used as the length of the 
array (overriding the usual null-terminati9nof strings). 

61-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

b The argument shall be a pointer to an array of 32-bit words. 
Characters from the string are written up to (but not including) the 
terminating word containing a null character: if the precision is 
specified, no more than that many words are written. If the string 
pointed to is an array into which output was written via the straceJ 
routine. you must use %b rather than %s to display it. (To display 
the information in an array written to via sprintJ. use %$.) 

m The argument is a long integer that indicates attributes to be assigned 
to subsequent characters. Attributes stay "on" until they are 
specifically turned .. off" with another %m conversion specifier. The 
lowest-order byte contains primarily font code. The next higher byte 
is not used to set attributes. (In the display-window buffer. this 
second byte is reserved for character coding.) The third byte holds 
color information. The high byte indicates which enhancements 
should be invoked. 

Attributes are written automatically to window _color and 
window _modifier variables. then copied into subsequent 32-bit data 
words in the Display Window. Table 61-4 shows the format of this 
32.-bit word. 

Attributes may not be assigned as a one-byte value. Even if you want 
to alter only one attribute setting, color for example, you must include 
it as part of a long. Append an "L" at the end of the hexadecimal 
code specifying attributes to indicate the value is a long. 

NOTE: If you are specifying an attribute in a lower-order byte of the 
long. color for example, and you want the high byte (or eytes) to be 
zero, you may omit the high byte provided you have the "L" 
appended at the end of the hexadecimal code. The high byte (or 
bytes) will be left-padded with zeroes. For example. Ox200000L is 
converted to Ox00200000L. Associated characters will be displayed 
on a color monitor as green on a black background, as dictated by the 
hexadecimal 20 in the third byte. Enhancements are controlled in the 
high byte. now assigned a value of zero. Any enhancements 
previously turned "on" will be turned "ofL" 

If a conversion specification is invalid. the. behavior is undefined. 

If any argument is or points to an aggregate (except for an array of characters 
using %8 conversion or any pointer using %p conversion). the behavior is 
undefined. 

In no case does a nonexistent or small field width cause truncation of a field; if 
the result of a conversion is wider than the field width. the field is expanded to 
contain the conversion result. 

61-12 



61 Displav Window and Trace 

The display! routine returns the number of characters displayed. 

Example 

To display a date and time in the form .. Sunday. July 3, 10:02,» where weekday 
and month are pointers to strings: 

LAYER: 1 
{ 
unsigned char weekday [lOJ; 
unsigned char month [101; 
unsigned short day; 

} 

unsigned char hour; 
unsigned char min; 

STATE: output_to_displaLwindow 
CONDITIONS: KEYBOARD' • 
ACTIONS: 
{ 
display!( "%5, %9 %d, %.2d:%.2d\n", weekday, month, day, hour, min); 

} 

sprintf 

The sprint! routine is similar to the display! routine. display! writes output with 
or without 'attributes directly to the Display Window. sprint!, fully documented 
in Section 64.3, writes output to a character array in which attributes are not 
supponed. This routine is useful for writing formatted output to a display, 
printer, or file. 

See also strace! in Section 61.4(C). 

61-13 



INTERVIEW 7000 Series Advanced Proarammlng: ATLG-107-951-10B 

Bit Mask (hex)t 

1-3 OOOOOOgzl 

4 OOOOOOML 

Table 61-4 
Display Window/Trace Buffer 32-Blt Data Word 

Input (hex) tt 

OOOOOOgJlL 
OOOOOO.Q1L 

OOOOOOQ2,l 

00OOO0113L 

OOOOOOgIL 

OOOOOOgJlL 

OOOOOOML 

Meaning 

Modifier attributes. font for example. 
are contained In the low byte of the 
32-blt word. 

f.gnt: 

ASCII 
special graphic character set (refer to 
Table 61-5) 
primary font-code selected on Line 
Setup 
alternate font-current Implementation 
18 for call-setup phase In X.21 (ASCII) 
hexadecimal 

Special character Indicator: 
(used In trace buffer only; should not 
be altered by user) 

only value In modifier In trace buffer 
header 
Character Is not displayable but 
contains control Info used Internally by 
the trace lOgic. When a "'n" Is 
Included In a tracef routine. for 
example. a new line Is generated. but 
nothing Is displayed on the trace 
screen. The tracef routine 
automatically sets this bit before the 
32-bIt word Is written Into 
trace_bur. array. 

5-8 
9-16 

OOOOOOmL 
oOOOffOOL 

OOOOOOgJlL 
OOOOgJlOOL 

unused. but should be zero 

Character data Is contained In the 
second byte of the long word. Input 
should be 00 In all %m conversions. 

t Use the masks to change attributes of characters In the Display Window or trace buffer. In the Display Window. 
characters are represented In the second byte of the longs that comprise the 1.088 array elements In 
display window buffer. In the trace bur structure. the characters are represented In the second byte of the 
longs that make up the trace but. array. To change one attribute of a character while leaving the others 
unchanged: -

display_wlndow_buffer[positlonJ = «dlsp/ay_wlndow_buffer[posltlonJ & (-attribute-mask)) I Input); 

To change only the font of the twenty-first character In the trace buffer from Its current setting to the special 
graphic font. for example: 

12_trbuf.array[20J. ((trace_buf.array[20J & (-0x00000007L)) I OxOOOOOOO1L): 

Anding the character with the mask will Indicate the current setting of an attribute: 

If (/2_trbuf.array[20J & oxooooooo7L) equals 2. then the 21st character In the Trace 2 user-trace buffer Is 
being displayed In the font selected on the Une Setup menu. 

tt In display( routines. the %m conversion specifier writes Input to the Window_color and window_modifier 
variables. These variables are copied Into subsequent data words In the Display Window. In tracef routines, the 

%m conversion specifier writes Input to trace_buffer_header. The header Is then copied Into each subsequent 
data word In the buffer. Combine attributes via hexadecimal addition. 

61-14 

1' ............... 
1 + 



61 DIsplay Window and Trace 

Table 61-4 (continued) 

Bit Mask (hex) Input (hex) Meaning 

C%r Is contatned In the third byte Of 
the long. Combine color attributes via 
hexadecimal addition. 

17-19 OO.QZOOOOL B"kgmuod eQlcr: 

OOQQOOOOL black 
OO!UOOOOL blue 
OOQZ,OOOOL green 
O0Q30000L cyan 
OOQ40000L red 
OOQ,§OOOOL magenta 
OOQ,60000L yellow 
OogzOOOOL white 

20-22 OOMOOOOL Eortground color: 

OOQQOOOOL black 
OOQ80000L blue 
001QOOOOL green 
OOlaOOOOl. cyan 
OO.zgOOOOL red 
002§OOOOl. magenta 
OO.sgOOOOl. yellow 
OOMOOOOl. white 

23 OO!lQOOOOl. Color blink: 

OO.Q.O.OOOOL no blink 
OOiQOOOOL blink 

24 OOaQOOOOL Cctor strlki-lhru: 

OOQqOOOOl. no stril<e-thru 
OOimOOOOL stril<e-thru 

Enhance attributes. underlining for 
example. are contained In the high 
byte of the long. Combine 
enhenoements via hexadeCimal 
addition. 

25 JUOOOOOOL Ovgrline: 
(for monochrome and color) 

QQOOOOOOL no overllne 
Q1000000l. overllne 

26 gaOOOOOOL 2l.IDk: 

.Q.O.OOOOOOL monochrome display. color display 
gaOOOOOOL monochrome no display. color display 

2.7 MOOOOOOl LlOgil:lllll : 
(for monochrome and oolor) 

.Q.O.OOQOOOL no underline 

~ MOOOQOOL underline 
1i" 

61-15 

------ ---------_._----------------



INTE,RVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Table 61·4 (continued) 

Bit Mask (hex) Input (hex) Meaning 

28 ,QaOOOOOOL MQ!]Q!;<brQlDfil rl~filrlUl IlDagi: 

QQOOOOOOL no reverse Image 
QaOOOOOOL reverse Image 

29 1QOOOOOOL 1::Ws: 

,QQOOOOOOL no hex 
1QOOOOOOL hex 

30 ZQOOOOOOL MQ[lQQbrQlIli !Q1l I!]tin~it!i: 

,QQOOOOOOL no low Intensity 
2.,QOOOOOOL low Intensity (RS-170 Interface) 

31 !QOOOOOOL MQDQQhrQ!!li bllek: 

QQOOOOOOL no blink 
!QOOOOOOL blink 

32 8,QOOOOOOL M!2!)QQb[Q!!l1 &idk!Hbru: 

,QQOOOOOOL no strlke-thru 
§QOOOOOOL strlke-thru 

61-16 



61.t:>I$p/ay WindOw and Trace 

Table 61-5 
Special Graphl~ Ch"r"cter Sett 

Dlsplay Input (hex/decimal) Display Input (hex/decimal) 

'1. 0 , 1a/26 

.r + 1b/27 

2 10/28 

3 ld/29 

)) 4 T 1e/30 

«( 5 .J... 1fI3l 

... 6 -I 20/32 

Iil 7 t- 21133 

§g 8 ~ 22/34 

IEl 9 ~ 23/35 

m a/10 • 24/36 

@1 b/11 .~ 25/37 

II 0112 I 26/38 

Ifil d.ll/1a,17 I 27/39 

;l e/14 § 
~ 28/40 

fIlS i 29/41 

10/16 I 2a/42 

1 12/18 ~ 2b/43 

J 13/19 wtI 20/44 

14120 • 2d/45 

15/21 ~ 28/46 

tID 16/22 ~ 2f/47 

.J 17123 • 30/48 

L 18/24 (space) 31/49 

r 19/25 

t Written to the Display Wlndow or a traoe buffer when low (modifier) byte of 32-b1t data word '" OxOl. 

61-17 



INTERVIEW 700D Series Advanced Programming: ATLC-107-951-10B 

Table 61-5 (continued) 

Display Input (hex! decimal) Display Input (hex/decimal) 

¥ 80/128 :J 9a/154 

• 81/129 +j 9b/155 

r 82/130 ~ 90/156 

.J 83/131 ;( 9d/157 

84/132 t? 90/158 

85/133 ') 911159 

:;I 86/134 5' aO/160 

" 87/135 f 811161 

..( a8/136 ').I a2/162 

., 89/137 'T a3/163 

::t 8a/138 ~ a4/164 

* 8b/139 "7 a5/165 

.,. 80/140 - a6/166 -

.::l 8d/141 X a7/167 

1lI 8e/142 ::.: a8/168 

~ 8f/143 ) a9/169 

901144 J' aa/170 

J1 91/145 I:: ab/171 

,( 92/146 J aol172 

., 93/147 ..... ad/173 

I 94/148 'lIi ae/174 

* 95/149 71 af/175 

1J 96/150 ~ bO/176 

* 97/151 6. b1l177 

lJ 98/152 j. b2/17a 

7' 99/153 :e b31179 

61-18 



61 DIsplay, Window and Trace 

Table ~1·5. (continued) 

Display Input (hex/decimal) Displa.y Input (hex/decimal) 

-p b4/180 Fit ce/206 

:2 b5/1Bl PI ef/207 

3 b6/182 It dO/20B 

'5 b71183 a! d1/209 

IJ bB/184 tE d21210 

JIJ b9/185 6 d3/211 

I,. ba/lS6 0 d4/212 

0 bb/187 0 d5/213 

'J be/18S U. d6/214 

::J bd/189 U d7/215 

~ 
l\ ben90 9 d8/216 

~:' ' 

bf/191 0 d9/217 

C 00/192 U da/21S 

U 01/193 ¢ db/219 

e 02/194 £ dc/220 

a e3/195 13 dd/221 

a 041196 R de/222 

a 05/197 s df/223 

a- c6/198 a eO/224 

C c71199 e1/225 

e c8/200 6 62/226 

e 09/201 U e3/227 

e oa/202 Pi 841228 

"i cb/203 N e5/229 

i cc1204 ~ 86/230 

~; i cd/20S Q 871231 

61-19 



INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-951-108 

Display 

i. 
.-

..., 

~ 

!4 

Table 61-5 (continued) 

Input (hex/decimal) 

e81232 

69/233 

ea/234 

ebf235 

eo/236 

displays 

Synqpsis 

extern \loid displays (stringytr); 
canst char .. stringytr; 

Description 

Display 

§ 

• 

Input (hex/decimal) 

edf237 

ee/238 

e11239 

fO/240 

The displays routine writes output to the Display Window screen, under control 
of the string that is pointed to by stringytr. The displays routine returns when 
the end of the string is encountered. The placement of the output on the screen 
may be controlled via the'pos_cursor routine. Attributes may not be used in 
displays. 

The input is a pointer to a string c'omposed of zero or more ordinary characters. 
Octal or hexadecimal values also may be included in the string, with octal 
preceded by \ and hex by \X. Pad each value to three integers with leading 
zeroes. 

Example 

The following entry 

pos_cursor( 0, 0 ); 
di$plays(UEnd of test. "); 

produces the following output on the prompt line: 

End of test. 

The following coding produces the same output: 

pos_cursor( 0, 0 ); 
const char" stringytr; 
stringytr = "End of test. "; 
displays (stringytr); 

61-20 



SYD:QlJSis 

extern void display..,prompt(string..,ptr}; 
canst char * strinc..,ptr; 

Description 

61 Display Window and Trace 

The display-prompt routine displays.a desigllated string at the beginning of the 
prompt line. The cursor is automatically positioned at row zero. column zero. 
Once the prompt is written, the cursor is returned to its previous position. The 
softkey equivalent of this routine is the PROMPT action. The prompt is visible on 
whichever display screen is active at the time the prompt is written. The most 
rec;;nt prompt is retained in the Display Window. Attributes may not be used in 
display -prompt. 

The input is a pointer to a string composed of 2:eroor more ordinary characters. 
Octal or hexadecimal values also· may be include<;! in the string, with octal 
preceded by \ and hex by \x. Pad each value to three integers with leading 
zeroes. 

EXSliIDple 

Refer to the example provided for the displays routine. The same string could 
be output to the same position without calling the pes_cursor routine: 

or 

display..,prompt(" End of test. "); 

const char"' string..,ptr; 
string..,ptr = "End of test. "; 
display..,p7ompt (.mingytr); 

SynoLlsis 

extern unsigned int pos_cursor(row, column); 
unsigned char row; 
unsigned char column; 

De$cription 

This routine pOSitions the cursor on the Display Window screen by row and 
column numbers. 

NOTE: The pos3ur~or routine. m~y not be used to position the 
cursor on trace screens. 

61-21 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

The first parameter is the row number. Possible values: 0-16. (The top line of 
the screen is reserved for header information and cannot be written to.) 

The second parameter is the column number. Possible values: 0-63. 

Returns 

The pas_cursor routine returns the previous cursor position in the form of an 
unsigned int. The high byte contains the row number; the low byte identifies the 
column number. 

Example 

To position the cursor at the far left edge of the prompt line on the Display 
Window, enter zero for both parameters. 

LAYER: 4 
STATE: wrlte_to_dlsplay 

CONDITIONS: KEYBOARD· " 
ACTIONS; 
{ 
pos_cursor(O,O): 
displays(UDisplay on prompt line. "); 

} 

restore_cursor 

Synopsis 

extern !loid resto re_curso! (position) ; 
unsigned int position; 

Description 

The restore_cursor routine returns the cursor to a previous position. 

NOTE: The restore_cursor routine may not be used to position 
the cursor on trace screens. 

The only input is an unsigned int in the same form that is used by the returned 
value of the pas_cursor routine. The high byte identifies the row number. The 

low byte identifies the column number. 

;e:x3mple 

Suppose the cursor is located in the middle of the Display Window. You want 
to write a message to the prompt line, but return to your previous location on 
the screen to continue your display. 

61-22 



} 
unsigned int previous; 

STATE: display 
CONOITIONS: KEYBOARD • • 
ACTIONS: 
{ 
pos_cursor(8 ,0); 

.61 Oitrpla't Window and Trace 

dispfays("This line begins Oil row 8, column 0 oj the Display Window. "); 
previous'" pos_cursor(O,O); 

} 

displllys("Tltis sentence is on the prompt line. "); 
rutQl'e_€ur$or(previous) ; 
displays("This sentence begins on row 8, column 58 oj the Display Window, the 
position of the cursor at the time pos_cursor(O,O) was called."); 

61.4 Program and User Traces 

Unless their sizes are increased. Program Trace and the User Traces retain a 
maximum of 4096 characters. equivalent to four full screens when every character 
space is used. (See Section (:6)2, below on increasing the size of trace buffers.) 
When a buffer's limit is reached. new characters written to the end of the buffer 
force out the same number of characters from the begiIllling of the buffer. The 
prompt line is not pan of these buffers. Messages are appended to the end of the 
buffers. . In Freeze mode you may scroll through the buffer using the cursor keys. 

You write messages to the User Traces only by using C routines. The Run-mode 
softkeys for User Traces-USER TR. TRACE 1, TRAce 2, TRAce 3, TRACE 4. TRACE 5, 

TRACE 6, TFIACE 1-appear when the buffers are used in a program. 

(A) Variables 
There are no extern variables associated exclusively with Traces. 

(8) Structures 

1. Declaring trace buffers. The trace routines that write to any of the trace 
buffers requite a pointer to the appropriate trace buffer as input. To point 
to one of the trace buffers, you must first have declared it as a structure. 
The structure that is common to trace buffers is named trace_buf. This 
structure is already declared in a file called trace_buJ.h located in the 
HRDlsyslinclude directory. The trace_buf structure contains another 
structure. trace_buffer _header, which also is declared in the trac€_buf.h file. 
(These structures are explained in Table 61-6.) Use the Ninclude 
pre-processor directive to include both declarations in your program. 

There are eight trace buffers available (including the Program Trace), each 
one having its own display screen. All are instances of the trace_buf 
~tructure. Declare each one you use as an extern struct. as in this example: 

'extern struct trace j)uj 11 jrbuj; 

The names of all the trace buffers are listed in Table 61-6. 

61 ... 23 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table 61-6 
Trace Buffer Structures 

Type Variable Value (hex/decimal) Meaning 

Structure Name: trace_buffer_header 

unsigned short logicaL end 

unsigned short logicaLend_wrap _count 

unsigned char modifier 

unsigned char oolor 

unsigned ohar enhanoe 

unsigned short writeJock 

unsigned short array-size 

unsigned ohar line_size 

unsigned char spare 

Sln.!~lu[i ~lUDi' trace_buf 

hdr 

unsigned long array {4096] 

O-ffflO-4095 

0 
non-zero 

O-ff/O-255 

D-ff/O-255 

0-ffffflO-65535 

1000/4096 

0-3t10-63 

0 

61-24 

Structure of a header for traoe buffers. 
Declared as type extern struct. Declared 
automatically if a softkey-entered TRACE aotion 
is taken, Contained In the struoture of the trace 
buffer. Declaration contained in file named 
HRDlsyslincludeltracB_buf,h. Written to by %m 
conversion specifier. 

Because It Is an extern struoture. values of 
component variables should not be altered 
dlreotly by the user. In some Instanoes. e. g .• 
altering array size, the result could be a crash, 

end of data within the buffer. Maximum value is 
one less tt:lan the array_size. 

traoe buffer is not full 
traoe buffer Is full. As new lines are written to 
the end. of the trace buffer. lines at the beginning 
of the buffer are removed. . 

Special-character Indicator bit and bit 8 must be 
zero. For other specific values and their 
meanings. see Table 61-4. 

For specifiC values and their meanlngs. see 
Table 61-4. 

For specific values and their meanings. see 
Table 61-4. 

prevents two processes from writing to the same 
buffer at the same time. Should not be altered 
by user or future acoess to the traoe buffers 
may be locked out. 

size of buffer; at present only one value 

number of characters In last line In buffer 

reserved for future use 

Structure. of a trace buffer. Declared as type 
extern struct. Declared automatioally if a 
softkey-entered TRACE aotion is taken. 
Declaration contained In file named 
HRD/syslincludeltrace _but. h. 

structure of the trace-buffer header described 
above 

array of data Words In the buffer 



Type 

unsigned long array [4096} 

hdr 

unsigned long array (4096) 

unsigned long array· [4096] 

struot trace -,ouffer -"eader hdr 

unsigned long array {4095} 

hdr 

unsigned long array 14095] 

6.1· ... D#$:Q/,YWlnt'iOWBnd Trace 

Table 8t-8 (ecmtinued) 

Value· .. (hex/decimal) 

61-25 

Meaning 

. Structure of the Program Trace buffer •. an 
instanoe of the tr6Q! bur structure declared In 
file named HRDlsysllncluaeltraoe _but. h. 
Declared as type extern struot tre.cebuf. 
Deolared. automatically If a seftkey-entered 
TRACE.actlonIs tal<en. Writing to this buffer 
makes the fMr.mode PROG TFl4leftkey appear. 

structure of th$ traoe-buffer header described 
above 

array of data words In the buffer 

Structure of one of seven user traoe buffers, an 
IMtance of the trace bUf structure deolared In 
fIl;e named HRDIsyslinOludeltrso& buf.h. 
Deolared as type extern struct trice_but. 
Writing to thisbuff$r causes the Run-mode 
TRACE 1SMtkey ~pear. 

struoture of the trace-buffer header described 
above 

array of data words In the buffer 

Struoture .of one of seven user trace buffers, an 
Instance of the frace but. structure declared in 
fHe nameqHRDlsyslinoJuaeltraoe but.h. 
De.clared.as tyJ)(il. extern struct trice bur. 
Wrltlngto this buffer oawses the Run:mOde 
TRACE 2 softkey apPear. 

structure· of the traoe-buffer header described 
above 

array of.dat~ WOTcis in the buffer 

struetur& 9f one of seven user trace buffers, an 
lnst~.· 9f th&tr8~.buf structure declared In 
~ RerMd:HftClI$ySllncluaeltre.ce _but. h . 
~iilfet:l a:s:~e~tern struot trace _ buf. 
WJ1f'l(lQto ltlls buff., causes the Run-mode 
TRACE 3 ~f~)I~ar. 

structure oHhe trace-buffer header described 
above 

array of data W9rds In the buffer 

Structure of one of seven user trace buffers, an 
Instance ofthetfaoe but structure declared In 
fitenai'netS HR91~lincJudeltraoe_buf.h. 
Ottctared a$ tVPfjI extern struot trace _ buf. 
~ to tf1ts.bUffer causes the Run-mode 
TRACE 4$~yapPGar. 
&trwture of the·· trace-buffer header desoribed 
above 
array Clf _ta wor$ In the buffer 



INTERVJEW 79m §eflttS Advanced Proarammlna: ATLC-107-95t-108 

Type. Variable 

heir 

unsigned long array [4096] 

Table 81-8 (continued) 

Value (hexldeclmal) Meaning 

Structure of oM of MYen us.,. trace~.!'''' 
Instance of the trace buf structure declared In 
file named HRDlsysliiiclude/trace buf.h. 
Declared as type extern struct trice but. 
Writing to this buffer causes the Ru"::mode 
TRACE 5 softkey appear. 

structure of the trace-buffer heaqar. ~!l.crJl)ed 
above ,or " . 

array of data words In the, buffer 

Structure Name; 16_trbut Structure of one. of seven user tra~e· buffers. , an 
Instance of the tId but~· ~1fh 
file named HRDlsysl/nelude/trace but.h. 
Declared as type extern struet trace buf. 
Writing to this buffer causes the Run=mode 
TRACE 6 softkey appear. 

unsigned long array (4096J 

structure of the trace-buffer header described 
above 

array of data words In the buffer 

Structure Name; 17 _trbut Structure of one of seven user trace buffers. an 
Instance of the tfaOt but strdOIlt'edeOleteCtltl 
file named HRDlsysllneludeltrace but.h. 
Declared as type extern struet trace bur. 
Writing to this buffer causes the Run=mode 
TRACE 7 softkey appear. 

unsigned long array [4096J 

structure of the trace-buffer header described 
above 

array of data words In the buffer 

2. Sizing trace bullers. There is a preprocessor #pragma which allows the user 
to configure the size of the data array in each user trace buffer. The syntax 
is nACE-NUMBER SIZE TRACE-NUMBER SIZE. . .. Trace number 0 
refel:soto the Program Trace buffer, and trace-number" *" allows all 
tr~ce-buffer arrays to be set at once. All sizes are giveJl in.terms.of 
four-byte array' elements. 

The example below first sets all trace-buffer arrays to 16,000 elements,'a~d 
then dowtl .... sizes array number 3 to 2,048 elements.~ 

#p,apo ,roublif* 16000 32048 

When. tra •. buffer is declared, its array will have the size specified in the 
.. ' Npmgma 'tractbu! directive. If the buffer was not referenced in a #pragma 
.lraotlbuf direaive, its array size will default to <4.096. :The ~"for 

a trace-buffer array is 16,381 elements. If you specify a size that is too 
small 'Ol'too large, an error message will be displayed. 

61-26 



61 Oi!Q,lay Window and Trace 

(C) Routines 

The four trace routines are tracec, trace!. strate!,and traces. These routines 
are defined below. The softkey TRACE action is built on the trace! routine. 

The first argument in three of the trace routines is the address of the trace 
buffer into which you want output written. Each time you call a trace routine. 
trace! for example, variables in the named trace-buff~ structure are updated. 
Those variables which store attributes are updated When the %m conversion 
specifier is used in the trace! rOUtine parameter. When %m is not present, the 
routine applies the attributes currently stored in the color, modi/ier. and enhance 
variables. 

The second argument in aU trace routines is the character , string. or format 
pointer to the data that will be written to the selected trace buffer. 

The trace! routine allows you to add attributes to messages on the Program 
Trace screen and User Traces. These attnbutesare listed in Table 61-4. 

Each trace operation appends output to the end of the trace buffer. You may 
not use the POLcursor routin~ to position tfiecUrsoron any trace screen. New 
lines (or blank lines) may be generated via the "\n" nonliteral. Put the "\n" 
nonliteral at the end of the string to generate a leading blank line on the 
selected trace screen: 

tracej(&pro8_trbuj, "This trace meSS€lse will generate a leading blank: line.\n"); 

During real-time display, this line moveS just ahead of the freshest trace message 
and continuously overwrites the oldest one. If you put the "\nU sequence at the 
beginning. of the format string. no leading blank line Will help you distinguish 
new messages from the old: 

tracej(&pro8_trbuj, "\nThis message will not 8ener41re a leading blank line. "}; 

tracec 

Synogsis 

extern void tracec(trace_buljer..,ptr, character); 
extern Struct trace_cuj" trace-,-bu!jer..1Hr; 
con$t char character; 

Deacription 

The tracec routine outputs a single ASCII character to the trace screen 
indtcated. 

The first parameter is a pointer to the trace buffer into which the character will 

be written. 

For the second parameter, see the displayc routine. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Example 

In this instance. output will be written to the Program Trace screen. 

{ 
#inelude <trace_buj. h> 
extern struct trace_buj pro8_trbuj; 

} 

LAYER: 2 
STATE; display _to_proQ_ tr 

CONDITIONS: KEYBOARD" • 
ACTIONS: 
{ 

} 

tracec(&pro8_trbuf, 'a'); 
tracec(&pro8_trbuj. '\n'); 
traeee (&proLtrbuf. 65); 
tracec(&pr08_trbuf, '\n '); 
traeee( &pro8_trbuj, Ox65); 
traeec( &prog_trbuf, '\n'); 
tracee (&proLtrbuf, 065): 

.When the user views the PRoe; TR screen, the output will look like this: 

a 
A 
e 
5 

tracef 

Synopsis 

extern int traeef(trace_bufjerJtr, formatJtr, ... ); 
extern struet trace_buj * trace_buffer Jtr; 
canst char * formatJtr; 

Description 

The tracef routine writes output to a specified trace screen, under control of the 
string, pointed to by formatytr. that specifies how subsequent arguments are 
converted for output. If there are insufficient arguments for the format. the 
behavior is undefined. If the format is exhausted while arguments remain, the 
excess arguments are evaluated but otherwise ignored. The tracef routine 
returns when the end of the format string is encountered. 

The first parameter is a pointer to the trace buffer into which the output will be 
written. 

For the second parameter, see the display! routine. Placement of "\n" in the 
format string of a call to trace! generates a blank new line on the selected trace 
screen. (In a display! routine, the newline character does not blank the new 
line.) 

61-28 



61. DifPlay Window and Trace 

Attributes are written via. the %m conversion specifier to trace_buf.hdr.modifier. 
trac€_buf.hdr.color. and trace_bu!.hdr.enhance. The attributes are copied from 
these variables into subsequent 32-bit data words mthe Program Trace and User 
Traces. Table 61*4 shows the format of this 32 ... bit word. 

Ret\;!rus 

The trace! routine returns the number of characters displayed, or a negative 
value if the unit is in freeze mode. 

Example 

This program traces X.29 PAD-control message£; in PTE and DCE data packets. 
The letters "DCE" are underlined in the DCE trace lines. 

LAYER: 3 
{ 

#include <trace buf. II> 
extern struct trace_bu/13_trbu/; 
extern unsigned char" TI'IyackittJnjoytr; 
extern unsigned short TI'Iyack.etJcn; 
unsigned char pad_ctrl_msg; 

STATE: p8,oket_type 
CONDITIONS: DTE DATA Q= 1 
ACTIONS: 
{ 

} 

pad_ctrl_msg:: TI'Iy(JckftUnfoytr[OJ; 
trace/ (&lJ_trbu/. "DTE LCN:%.3x PAD MSG:%.2x\.n". myacleet_lcn. 

pad_ctrl_TI'Isg); 

CONDITIONS; DCE DATA Q= 1 
ACTIONS: 
{ 

} 

pad_ctrl_msg"' myad:eUn!lJ,Jtr[O]; 
tracef (&13jrbu/. "%mDCE%m LCN .. %.3x PAD MSG:%.2x\n", Ox04000000L, 

OxOOOOOOOOL, mYlScket_lcn, pad_ctrl_msg); 

stracef 

Syugpais 

extern \loid stracef(arrayytr, strillgytt); 
unsi8ned long arrayytr; 
canst char" stringytr; 

DesGriptign 

The strace! routine is similar to the trace! routine, except that stracef writes 
output to a variable. while trace! writes output to a .tra¢e screen. The output is 
under control of the string pointed to by stri1t8..ptr that specifies how subsequent 
arll4ments are convened for output. If there are insufficient arguments for the 
format, the behavior is undefined. If the format is exhausted while arguments 
remain, the excess arguments are evaluated but otherwise ignored. The stracef 
routine returns when the end of the format string .·is encountered . 

. 61-29 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

The strace! routine differs from sprint! in that it generates an array of longs. 
whereas sprint! generates an array of chars. When the strace! array is written to 
a trace buffer (or to the Display Window) it carries its predefined attributes 
along with it. An sprint! array. by contrast, will receive the attributes that are 
active in the buffer at the moment. 

At the end of the output string. there will be a null character with the Special 
Character Indicator bit set in its modifier attribute-byte. 

The first parameter is a pointer to the variable into which output will be written. 
The array which will hold output must be declared as a long. By allocating 32 
bits for each element, the array may accommodate attributes assigned via the 
%m conversion specifier. Attributes comprise 24 bits of the long. The preferred 
form of the declaration is unsigned long name {1 ~O}. The size and name of the 
array are user-determined. 

For the second parameter, see the display! routine. 

gample 

This program traces X.29 PAD-control messages for DTE and DeE data 
packets. The resulting trace is identical to the one generated by the example 
under trace!. Note that attributes that are turned on in an strace! array do not 
need to be turned off after the array has been brought. via the %b conversion 
specifier. into a trace! format string. 

LAYER: :) 
{ 

#include <trace_buj. h> 
extern struct trace_bu/13_trbu/; 
extern unsigned char * m..p0cket_in/o"ptr; 
extern unsigned short m"pQcket_lcn; 
unsigned char pad_ctrl_msg; 
unsigned long source/4]; 

STATE; packet_type 
CONDITIONS: DTE DATA Q::: 1 
ACTIONS: 
{ 

strace/ (source, .. %s", "DTE"); 
} 
NEXT STATE: pad mag trace 
CONDiTIONS: DCe-DATA Q= 1 
ACTIONS: 
{ 

straee! (source, .. %m%s", Ox04000000L, "DeE"); 
} 
NEXT_STATE: pad_m$O_trace 

STATE: I,'>lild_mso_trace 
CONDITIONS: ENTER STATE 
A.CTIONS: -
{ 

pad ctrl msg:: m"pocket in/0..ptr[O]; 
trace/ (&13_trbuf, "%.1> LCN;%.3x PAD MSG: %.2x\n", source, mJQck.et_Icn, 

pod_ctrl~sg); 

61-30 



traces 
Synopsis 

exte~n void traces(trace..:.bufjerJltr, ~lringJltr); 
extern struct tt'Dcej>uf tracejJf.iffer Jtr; 
ccm:;'t char" string-ptr; 

Description 

11· . Di:fplar Window and TrIce 

The traces routine writes output to a specified trace screen, under control of the 
string that is referen~d by stri~gJJtr. The tl'ilCeS routine returns when the end 
of the string is· encountered. 

~ 

The first parameter is a pointer to the trace buffer into which the output will be 
written. 

For the second parameter, see the displays routine. 

E1Sa;i!!l?le 

In this instance, output will be written to the TRACE 1 screen. 

The following entry 

#include<.trace jluf.lI> 
extern Jtruct tNJcej>uf 11_,rbuf; 
} 

LAVeR: 1 
STATE: any 

CONDITIONS; KEYBOARD M • 

ACTIONS: 
{ 
ttaces(&l1_trl:Juj, "Emt cjf test. "}; 

} 

produces the following output on the TRACE 1 trace screen: 

End of test. 

The following coding produces the same output: 

{ 
#include <trace_bu!. 1'1> 
exteJCn struct trace_bll! lljrbuf; 
} 

LAYER: 1 
. STATE: any 

CONDITIONS: KeYBOARD" • 
ACTiONS: 
{ 

} 

const char .. string-ptr; 
strin8-ptr" "End of t~st. "; 
traces (4f;l1..:;trbtif. strin8-ptrj; 

61-31 



'':'TERVIEW 7000 Series Advanced PrOgramming: ATLC-107-9S1-10B 

61.5 Attributes 

Attributes are written to the Display Window and to the trace buffers in 32-bit words 
that include 8 bits of character data (the second-lowest byte) and 24 bits of 
attributes. The format of the 32-bit data word, given in Table 61-4, is the same for 
the Display Window and for the trace buffers. 

In display/ routines, the %m conversion specifier writes input to window _color and 
window _modifier variables. These variables are then copied into data words written to 
the Display Window by string pointers in this and subsequent display! routines. See 
Figure 61-1. 

In trace! routines, the %m conversion specifier writes input to the 
trace_buffer _header structure for a particular user-trace buffer. The header is then 
copied into each data word written to the particular user buffer by string pointers in 
this and subsequent trace! routines. See Figure 61-2. 

(A) Applying Attributes As Data Is Buffered 

There are two ways an attribute may be assigned to a character in the Display 
Window. One way uses the %m conversion specifier to assign attributes to the 
window _color and window _modifier variables. This program, for example, 
includes a display! routine that uses the %m conversion specifier to write 
underlined data to the Display Window: 

STATE: apply_attrlbutEuo_wlndow_coIor_varlable 
CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 

pos_cursor (1,0); 
display! ("%mThis data is underlined in the Display Window.", Ox04000000L); 

} 

The chart in Table 61-4 shows the hex value 04000000L in the "input" column 
alongside the underline attribute. This means that when the value Ox04000000L 
is input to the conversion specifier %m, an underline attribute is applied to the 
current display/ string and any that follow until the attribute is turned off. The 
underline attribute actually is applied to the external window _color variable. See 
Table 61-2. The window_color and window_modifier variables lend their 
attributes to every character that is written in a format string to the Display 
Window. In Run mode if the user presses the softkey for DSP WND. he will see 
his underlined string. Subsequent characters or strings written to the Display 
Window also will be underlined. 

61-32 



61.· . Display Window and Trace 

window_modifier 

16 /I 1 elts 

display_window _ btafferlO] .-. 
. display _window_buffer {1 ] °0 

--.. I I ! 

1 Bits 

display_window _buffer {2] .-. L :,'; ::.::11 I J '; :1: I; II: I 
24 1& a 1 Bits 

display_window _ bufferI3] --. I :J I'; I:: 11 : : >111 I ; : I ~ I 
24 16 

Figure 61-1 When a display! routine is called, the attributes assigned via the %m 
conversion specifier are stored in two extern variables, accessible to the user. Both 
c910r and enhancealtributesare eontaiQed in winaQw.wler. ~ low byte in 
.,J~ndQw ,-cQlorin(liutesthe color; the high bytecontai"nsenhaneements. In this 
ep.mple, the fl.dlowing attn1>utfi will. bea.$~pe41Oebarl1ctws written to the 
Qisplay Window: rev(!fse""ima~~an(letJliClnt,~n"'1ln-ld~.ok color. and ASCII 
fdnl •. Before a eharaeteri$wnttento the Display Win($oliV. jUs combined in a long 
with its attributes, as mapped in the figure. 

61-33 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

tracef(&11_trbuf, 

11_trbuf .array[O] 

11_trbuf .array[11 

11_trbuf . array [2] 

11_ trbuf . array [3 J 

"%mDATA", OxQ,8!QOOg,QL); 
// .......... 

/// 
/ // 

/ // 
/1/ 

/ II 
I /1 11_trbuf 
/ If r--------------------------------------.-I I I 
I \ \ 
\ \\~~~-----------~-~~-~~-~--~-~ 
\ \ " modifier' 

\ ,~---------------------~-----\, ~ i color I 
,~~-~~~-~~-T-~~--~-~-~-r~-~~~ 
"i I enhance I 

~---~-----T-----------r-----
! l ! 
f I I 
.... t 

(enhance) (color) (character) (modifier) 

.- .... L: 0, 1 10 11:~"l °0 I I I I I II I I I I 
3.2 24 16 8 1 Bits 

.-.... L °Il 1 10 11I:~,,1 °0 I I II I ! I I I I I 
32 24 16 8 1 Bits 

.- .... I: :-- 1 I';:"'III~:J, 1>0 : I I I I ! I 

32 24 16 8 1 Bits 

.- .... I '.: J I :~: J A 1 °0 I I I I I I ! ! ! ! 

32 24 16 8 

11 .... trbuf . array [4096] 

Figure 61-2 When a trace! routine is called, the attributes assigned via the %m 
conversion specifier are stoted in three variables in the trace-buffer header of a 
designated buffer. In this example. ll_trbu/.hdr holds the following attributes: 
reverse-image enhancement, green-on-black color, and ASCII font. Before a 
character is written to 1he buffer, it is combined in a. long with Its attributes, as 
mapped in the figure. 

61-34 

1 Bits 



61 Display Window and Trace 

The same attribute could be applied to a string in any of the user-trace buffers. 
as follows: 

#include <trace_btlf. h> 
extern struct trace_buf ll_trbu/: 

} 
STATE: applL attribute_to _header 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
tracef (&ll_trbuf. "%mThis data is underlined. ", Ox04000000L); 

} 

Only the header for the TRACE 1 display is affected by this %m conversion. 
Only the TRACE 1 buffer is written to. When other trace buffers are 
subsequently written to. the strings will not receive underlining as a result of the 
attributes applied above to the TRACE 1 header. 

(8) Applying Attributes to Buffered Data 

The Display Window is an array of 1.088 long integers. each including one byte 
of character data and three bytes of attributes. The character data is generated 
by strings in display routines. The attributes for each character are derived from 
the current window _color and window _modifier values at the time the character 
is written to the display-window buffer. 

Once the data word is written to the buffer as an element in the array, it can be 
accessed and written to-and therefore changed-the same as any other location 
in memory. In the example that follows, a string is written to the Display 
Window without underlining. Then. as a result of a keyboard input from the 
operator, the first 32-bit word in the string (containing the first character, the 
letter "Tn) is given a new value that includes the underline attribute. 

{ 

} 

extern unsigned long display_window _but/err 1088J; 
extern struet 

{ 

} 

unsigned ehar mpm; 
unsigned char epm; 

display_window _index_buffer 117]; 

STATE: apply _attribute_directly _ to_ display_window 
CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
pos_cursor(l.O); 
displaYf (U This data is not underlined."); 

} 

61-35 



INTERVIEW 7000 Series Advanced Programming: A TLC-1 07-951-108 

CONDITIONS: KEYBOARD • * 
ACTiONS: 
{ 
display_window_buffer/64] = ((display_window_buffer{64] & ~Ox04000000L) 

Ox04000000L) ; 
display_window _index_buffer[1]. mpm ++; 

} 

Incrementing display_window_index_bujjer.mpm is necessary to alert the 
processor on the CPM card (containing the display-controller software) that the 
program has changed the contents of the Display Window. Refer to Table 61-3 
for an explanation of this structure. 

The bitwise anding and oring in the example are necessary if you want to change 
certain bits in the word without affecting others. Note that the value whose 
complement (-) is anded with dispJay_window_bujjer element #64 is the "mask" 
for the underline attribute in Table 61·4; and the value to the right of the or 
operator (!) is the "input" value for the underline attribute. 

61-36 



Specifier 

%b 

%1 

%c 

%#c 

%d 

%Id 

%H 

%m 

%0 

%10 

%#0 

%#10 

%p 

%8 

%#8 

%u 

%11.1 

%#1.1 

~. 
%#11.1 

61 Display Window and Trace 

Table 61·7 
Conversion Specifiers 

Argument type 

integer-array pointer 

integer 

unsigned oharacter 

unsigned character 

integer 

integer 

character-array pointer 

integer 

integer 

integer 

integer 

integer 

Integer 

oharacter-array pointer 

oharacter-array pointer 

Integer 

integer 

Integer 

integer 

61-37 

Conversion Type 

array of long integers. 2nd byte of each 
long Is displayed as character. 1 st, 3rd, and 
4th bytes interpreted as attributes. Array 
begins at pointer. ends at element containing 
null character and Special Character bit = 1. 

signed decimal representing 15-blt value 

unsigned oharacter 

newline oharacter displayed as ~ rather than 
.aoted on 

signed decimal representing lS-bit value 

signed deolmal representing 31-bit value 

oharacter array indicated by argument 
appears as small hex oharacters. 
(Precision as to number of characters 
becomes length of the array. overriding 
usual null-termination of strings.) 

long Integer not displayed or printed, but 
written to attribute header-variable tor Display 
Window or tor one of the trace buffers 

unsigned ootal representing 1S-bit value 

unsigned ootal representing 32-bit value 

unsigned octal representing 1S-blt value, 
preoeded by 0 

unsigned octal representing 32-b!t value, 
preceded by 0 

unsigned hexadecimal (lower-case letters) 
representing 32-bit value. with a minimum 5 
digits displayed and a oolon between the 4 
right-hand digits and the 1-4 left-hand digits. 
Useful for displaying CPU segment number and 
offset. 

array of oharacters beginning at pointer and 
ending at null terminator or at array-length 
preoision, whichever oocurs first 

newline character displayed as ~ rather than 
acted on 

unsigned deoimal representing 16-bit value 

unsigned decimal representing 32-blt value 

hex characters lexample: 9f ES ) representing 
16-bit value 

hex characters (example: BFES30 1:J ) 

representing 32-bit value 



INTERVIEW 7000 SerIes Advanced Programming: ATLC-107 951 108 

Specifier 

%x 

%Ix 

'Yo#x 

%#ix 

%X 

%IX 

%ItX 

%#iX 

%\n 

%% 

Table 61·7 (continued) 

Argument type 

Integer 

integer 

Integer 

integer 

Integer 

Integer 

integer 

integer 

none 

none 

Conversion Type 

unsigned hexadeolmal (lower-case letters) 
representing 16-blt value 

unsigned hexadecimal (lower-case letters) 
representing 32-blt value 

unsigned hexadecimal (lower-case letters) 
representing 16-blt value. preceded by Ox 

unsigned hexadecimal (lower-case letters) 
representing 32-blt value. preceded by Ox 

unsigned hexadecimal (upper-case letters) 
representing 1S-blt value 

unsigned hexadecimal (upper-case letters) 
representing 32-blt value 

unsigned hexadecimal (upper-case letters) 
representing 16-blt value, preceded by Ox 

unsigned hexadecimal (upper-case letters) 
representing 32-bit value. preceded by Ox 

displays an ... 

displays a % 

61.6 Protocol Trace Buffers 

There are two Protocol Trace buffers. one dedicated to Layer 2 and the other to 
Layer 3 data. Run-mode softkeys for accessing these traces-PROTOCL, L2TRACE, 
and L3TRACE-appear when personality packages are loaded in at Layers 2 and 3. 
The prompt line is not part of these buffers. 

The size of each Protocol Trace buffer is 65,536 bytes. Of this total, two bytes are 
dedicated to the buffer header and two bytes to the trailer. The usable size of a 
Protocol Trace buffer. therefore, is 65.532 bytes. When a buffer'S limit is reached. 
new characters written to the end of the buffer force out the same number of 
characters from the beginning of the buffer. In Freeze mode you may scroll through 
the buffer using the cursor keys. 

You cannot write directly to the Protocol Trace buffers. Monitor the position within 
the buffers, as well as the wrap count. using the variables and structures discussed 
below. 

(A) Variables 
The addresses of the variables in Table 61-8 identify the physical location of the 
beginning and end of each Protocol Trace buffer. The beginning position is at 
the first data byte in the buffer. The end is just after the last data byte. 

61-38 



Type 

extern unsIgned char 

extern unsigned long 

extern unsigned char 

extern unsigned long 

61 Display Window and Trace 

Table 61·8 
Protocol Trace Buffer Variables 

Variable Value (hex/decimal) Meaning 

12pp _ trbuff 

61-39 

" First data byte In the Layer 2 
Protocol Trace buffer. Address 
of this variable-segment 
number plus offset-will indicate 
the physical location of the first 
data byte, two bytes from the 
beginning of the buffer. Line 
Setup configured for emulate or 
monitor mode. 

First byte In the two-byte trailer 
of the Layer 2 Protocol Trace 
buffer-I.e .• after the last data 
byte. Address of this 
variable-segment number plus 
offset-will Indicate the physical 
location of the end of the data 
area, hexadecimal FFFE bytes 
from the beginning of the 
buffer. Line Setup configured 
for emulate or monitor mode. 

First data byte in the Layer 3 
Protocol Trace buffer. Address 
of this variable-segment 
number plus offset-will Indicate 
the physical location of the first 
data byte, two bytes from the 
beginning of the buffer. Line 
Setup conngured for emulate or 
monitor mode. 

First byte In the two-byte trailer 
of the Layer 3 Protocol Trace 
buffer-i.e., after the last data 
byte. Address of this 
Variable-segment number plus 
offset-will indicate the physical 
location of the end of the data 
area, hexadecimal FFFE bytes 
from the beginning of the 
buffer. Line Setup configured 
for emulate or monitor mode. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

(8) Structures 

The structure variables in Table 61-9 contain the high and low bytes of a 
beginning and ending offset and wrap-count in the Layer 2 and Layer 3 
Protocol Trace buffers. Create a logical beginning (or ending) offset within a 
buffer by combining the two offset-variables relating to a beginning (or ending) 
pOSition into a single. two-byte offset. Add the resulting offset to the address of 
13 _trbuff to identify the physical address of a logical location. 

The. example below uses #define preprocessor directives for determining 
beginning and ending offsets in the Layer 3 Protocol Trace buffer. When 
get_13pp_value_end is encountered in a program. for example. each of the two 
"end" offset-variables is cast into a long and. if necessary. shifted left to its 
appropriate position in an offset. Then the two variables are added together. 

#define get _13pp _value_begin 
«(unsigned long)(13pp_trbuILctl.begin_ofLhi) «8) + 
«unsigned long)(13pp _trbulL ctl. begin _ ofLlo))) 

#define get_13pp_lIalue_end 
(((unsigned long)(13pp_trbuILctl.end_oILhi) «8) + 
«(unsigned fong) (l3pp_trbufLctl. end_ofLlo))) 

When the ending offset. in this example, is added to the address of 13 _trbuff, 
the result is the address of the logical end in the buffer: 

unsigned long end_address; 
end_address = &13 _trbuff + get_lJpp_vQlue_end; 

You may also use the offsets and wrap counts to determine how much data is 
currently in the buffer. Include the wrap count in the high two bytes of a 
four-byte offset. Then subtract the beginning offset from the ending offset. 

#define get_13pp_lIalue_begin 
((unsigned long)(/3pp_trbufLctl.begin_wrapjli) «24) + 
((unsigned long) (/3pp_trbufLctl.begin_wrap_Io) « 16) + 
«(unsigned long)(/3pp_trbuff_ctl.begin_ofLhiJ «8) + 
«unsigned long) (13pp _trbulL ctl. begin_ olLlo) ) ) 

#define get_13pp_lIalue_end 
(((unsigned long} (lJpp_trbuILctl.end_wrap_hi) «24) + 
((unsigned long)(l3pp_trbulf_ctl.end_wrap_lo] «16) + 
((unsigned long)(13pp_trbuff_ctl.end_oILhi) «8) + 
((unsigned long) (/3pp_trbulf_ctl. end_ofLlo)) 

unsigned long end. begin. count; 
.end = get_13pp_va/ue_end; 
begin = get_13pp_value_begin; 
count = end - begin; 

61-40 



Type Variable 

Structyre Name: Ipp_trbufCcti 

unsigned char 

unsigned char 

unsigned char 

unsigned char begin_wrap Jo 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

Structure Name; 12pp_trbuff_ctl 

61 Display Window and Trace 

Table 61-9 
Protocol Trace Buffer Structures 

Value (hex/decimal) 

O-fflO-255 

O-ff/O-255 

O-ffJO-255 

O-fflO-255 

0-ffl0-255 

0-fflO-255 

O-ff/O-255 

0-(flO-255 

61-41 

Meaning 

Declared as type struct. The variables contained 
In this structure monitor logical location In a 
Protocol Trace buffer. Reference structure 
variables as follOWS: Ipp_trbuff_ctl.begin_off_hi. 

High byte of a 2-byte offset from the physical 
beginning of the Protocol Trace buffer to a 
logical beginning In the buffer. Range of the 
two-byte offset is 2 through hexadecimal FFFE. 

low byte of a 2-byte offset from the physical 
beginning of the Protocol Trace buffer to a 
logical beginning In the buffer. Range of the 
two-byte offset Is 2 through hexadecimal FFFE. 

High byte of a 2-byte count of the number of 
times a logical beginning has wrapped through 
the Protocol Trace buffer. 

Low byte of a 2-byte count of the number of 
times a logical beginning has wrapped through 
the Protocol Trace buffer. It will have a value of 
zero only once. Once the count reaches 
hexadecimal FFFF, It will wrap to one. 

High byte of a 2-byte offset from the physical 
beginning of the Protocol Trace buffer to a 
logical end In the buffer. Range of the tWO-byte 
offset is 2 through hexadecimal FFFE. 

low byte of a 2-byte offset from the physical 
beginning of the Protocol Trace buffer to a 
logical end in the buffer. Range of the two-byte 
offset Is 2 through hexadecimal FFFE. 

High byte of a 2-byte count of the number of 
times a logical end has wrapped through the 
Protocol Trace buffer. 

Low byte of a 2-byte count of the number of 
times a logical end has wrapped through the 
Protocol Trace buffer. It will have a value of zero 
only once, Once the count reaches hexadecimal 
FFFF, It will wrap to one. 

An Instance of the Ipp_trbuff_ctl structure, 
declared as type extern struct Ipp_trbuff_ctl. 
The variables contained In this structure monitor 
loglcat location In the Layer 2 Protocol Trace 
buffer. Has the same structure as 
Ipp trbuff etl. Reference structure variables as 
follows: 12pp _ rrbuff _ct!. begin_off _h. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Type Variable 

Structure Name: 13pp_trbuff_ctl 

ee) Routines 

Table 61-9 (continued) 

Value (hex/decimal) Meaning 

An Instance of the Jpp trbuff ctl structure, 
declared as type extern struct /pp trbuff ctl. 
The variables contained In this structure monitor 
logical location In the Layer 3 Protocol Trace 
buffer. Has the same structure as 
Ipp trbuff cO, Reference structure variables as 
follows: i3pp_trbuff_ctl.begin_off_h. 

There are no routines associated exclusively with Protocol Traces. 

61-42 



62 Counters, Timers! and Accumulators 

62 Counters, Time,rs, and Accumulators 

62.1 Coun~ers 

The translator declares the following structure for counters that are entered as softkey 
tokens on the Protocol Spreadsheet: 

struct counter _struct 

unsigned long current; 
unsigned long last; 
unsigned long maximum; 
unsigned long minimum; 
unsigned short sample_count; 
unsigned long total_high; 
unsigned short total_low_low; 
unsigned ShOTt total_law_high; 
unsigned short out_of_rtlTtge; 
unsigned short changed; 
unsigned long prev; 
unsigned long old; 

}; 
struet counter_struct counter_name={O,O,O.-Oul}; 

The first eight counter variables in the structure are used to calculate statistical values 
whenever the counter is sampled. See Table 62-1. Three of the 

. variables-counter _name. current. counter _name.prev. and counter _name , oid-come 
into play each time the counter is incremented. decremented. or set to a particular 
value. 

Counters are internal program variables and counter interrupts are strictly 
program ... generated signals, so the C programmer is free to ignore this structure and 
maintain counts and statistics in a different way. Please note. however, that the 
68010 CPU expects this counter structure when it polls the 80286 periodically for 
statistical values to display in columns on the tabular and graphic stats screens. 

(A) Current, Previous, and Old Values 
When a counter is incremented, decremented. or set to a specific value on the 
Protocol Spreadsheet, the program does not signal a counter _name_change 
interrupt automatically, First it verifies that the new value of the counter really 
is a change from the previous value. See Table 62-2. For this comparison, the 
program needs to maintain two variables, counter _name. current and 
counter_name .prev. 

62-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Type Variable 

Table 62-1 
Counter Structures 

Meaning 

Structure Name: counter _struct Structure of a counter. Declared as type struct. 
Declared automatically If a program counter Is 
used. Program oounters assigned to structure 
as follows: struct counter struct counter name. 
Reference a structure variable as follows:­
counter _name. current. 

unsigned long 

unsigned long 

unsigned long 

unsigned long 

unsigned short 

unsigned long 

unsigned short 

unsigned short 

unsigned short 

unsigned short 

unsigned long 

unsigned long 

current 

last 

maximum 

minimum 

sample_count 

total_high 

totaUow JOw 

totaUow_hlgh 

out_ofJange 

changed 

prey 

old 

This value of the counter Is acted on directly by 
program actions. 

Last sampled value; displayed on the tabular 
statistics screen. 

Maximum value of all samples; displayed on the 
tabular statistics screen. 

Minimum value of all samples; displayed on the 
tabular statistics screen. Should be initialized as 
-Oul. 

Number of samples. 

High four bytes of an eight-byte counter total. 

Low two bytes of an eight-byte counter total. 
This two-byte variable counts to 65.535. 

Bytes 3 and 4 of an eight-byte counter total. 

Number Is out of range. either incremented 
beyond the range or decremented below 0; 
should not be factored into averages. 

For future use. 

When converting a counter action to C. the 
translator compares prey with ourrent to 
determine whether counter has changed. Then 
prey is updated to ourrent and 
counter_name_change is signaled. 

When converting a counter condition to C. the 
translator compares old with current to 
determine whether true condition Is new 
(tranSitional). After program logiC has examined 
counter, old is updated to prey. 

Here. for example, is the C translation of the simple action COUNTER example 

SET 5. 

counter_example. current = s; 
if (counter _example.prev 1= counter _example. current) 

{ 

} 

counter_example. old '" counter_tlxample.prev; 
counter_example.prev '" counter_exampfe.current; 
signal (counter _example _change); 

62-2 



Type 

extern event 

Table 62-2 
Counter Variables 

Variable 

62 Counters, .Timers, and Accumulators 

Meaning 

True when the named counter Is 
Incremented, decremented, or 
set to new value. This event will 
not be triggered unless a 
spreadsheet condition names 
the counter. Une Setup 
configured for emulate or 
monitor mode. 

It is clear from the translation that the variable counter_example .prev is used to 
limit the number of counter _example_change interrupts to those cases where the 
current value of the counter really has changed. 

What is counter _name. old used for? We will preface the answer by citing the 
behavior of the counter in the following spreadsheet example. 

STATE: threshold condition 
CONDITIONS: KEYBOARD ~ • 
ACTIONS: COUNTER spac$bar INC 
CONDITIONS: COUNTER spacebar GE 7 
ACTIONS: ALARM 

Each time you press the space bar while this program is running, the counter will 
increment, but no matter how many times you press the space bar the alarm will 
only sound once. It will sound on the seventh keystroke, the first time the 
counter is greater than or equal to 7. If the program had a decrement or set 
action that lowered the counter to less than 7. the alarm would sound again 
when the counter reached the 7 threshold. 

The translator accomplishes this threshold condition by coding the waitfor clause 
as follows: 

c()unttr~spacebar_chQngt && (/ (counre:,_spacebar.old >= 7» && (cQunte,_spacebar.current >: 7): 

Since counter _spacebar.prev was used (and then updated to "current") in the if 
statement that sent the counter _spacebar _change interrupt, the "old" value is 
required in the waitfor condition to insure a "transitional" or "threshold" 
COlil11ter condition. 

62-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

(8) Sampling a Counter 

Here is the translator's version of a counter sample action: 

coun ter _name. last :; counter _name. current; 
il (counter _name. current> counter _name. maximum) 

{ 
counter_name. maximum:; counter _name. current; 

} 
il (counter_name. current < counte,_name.minimum) 

{ . 
counter _name. minimum:: counter _name. current; 

} 
counter_name. sample_counttt; 
{ 

} 

unsigned long temp; 
temp:: (counter _name. current & OxOOOOllfl) + counter _name. total_low _low; 
counter_name. total_low_low :; temp; 
temp:: (counter_name. current »16) t counter_name. total_low_high t (temp» 16); 
counter _name. total_low _high:: temp; 
counter _name. total_high += temp » 16; 

counter_name. current '" 0; 

In order to establish an average value for all samples. a grand total for current 
values at the time of each sampling must be maintained. Since an ordinary 
INTERVIEW current counter is 32 bits, the counter that maintains the grand 
total of current counts must be larger (64 bits). There is no data type this large 
in C, and so the "total" counter is distributed among three variables and the 
somewhat complicated coding involving the temp variable is required to add the 
current counter to this composite counter. 

(C) Updating the Statistics Screen 

The CPM polls the MPM continuously to see if data is available to be output to 
the printer or the plasma display. This data includes character data. trace data, 
prompts. and values to be posted to the statistics screens. 

In order to know where on the statistics screens the values for the particular 
counters (and timers and accumulators) should be placed, the 68010 CPU on 
the CPM needs some help from the program (that is. from the MPM). This 
help is in the form of a "stat message" that the translator (or the programmer) 
codes once at the beginning of the program. The stat message is a structure that 
the MPM sends to the CPM. See Table 62·3. The stat message says. in effect. 
"Here is the address of a counter structure. When you access this structure 
during the running of the program in order to pull out the current. last. 
maximum, minimum, total. and sample-count values. display those values on the 
row of the tabular stats screen where the user has typed spacebar" (for 
example). 

62-4 



62 Counters, Timers, and Accumulators 

Table 62-3 
Counter, Timer, and Accumulator Structures 

Type Variable Value (hex/decimal) Meaning 

Structure Nome: stat_msg Structure of a stat message. A stat message Is 
sent once for each named counter, timer, or 
accumulator. Declared as type struct. Declared 
automatically if a softkey-entered COUNTER is 
used as a condition, or If softkey-entered 
COUNTER. TIMER, or ACCUMUL action is taken. 
Program stat messages assigned to structure as 
follows: struct stat_msg name. You must 

unsigned short 

unsigned short 

unsigned long 

unsigned long 

type 

OaOO/2560 

o 
0100/256 
0200/512 

assign values to the elements of the structure. 
Reference a structure variable as follows: 
name.type. 

Register statistics objects from the MPM to the 
CPM. Other values and meanings for future use. 

accumulator 
counter 
timer 

The MPM (80286) address of a counter. timer. 
or accumulator name, converted to CPM (68010) 
format. To get an object name address. enter: 
name. obJect_name = -
get_68k_phys_addr(" name_of_counter" , ; 

object_address The MPM (80286) address of a counter, timer, 
or accumulator structure. converted to CPM 
(68010) format. To get a structure address for 
a oounter. enter: name.object address = 
get_68k_phys_addr(&counter _name _of_counter) ; 

Here is a C program that causes the current value of a counter named "key" to 
increment on the tabular-statistics screen each time an ASCII-keyboard key is 
struck. 

struet 

unsigned short op_type; 
unsigned short type; 
unsigned long object_name; 
unsigned long object_address; 

} stat_msg; 
extern unsigned long get_68k.J'hys_Qddr(}; 

62-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

} 

struc.t counter _struct 

unsigned long current; 
unsigned long last; 
unsigned long maximum; 
unsigned long minimum; 
unsigned short sample_count; 
unsigned long total_high; 
unSigned short total_law_low; 
unsigned short total_low _high; 
unsigned short out_at_range; 
unsigned short changed; 
unsigned long prey; 
unSigned long old; 

} ; 
struct counter _structure counter_key; 
extern fast_event keyboard_new _key; 

STATE: update_stat_screen 
{ 

} 

stat_msg.op_type :: 2560; 
stat_msg. type = 256: 
stat_msg.object_name = get_68kJhys_oddr("key"); 
stat_msg. object_address::; get_68kJhys_addr(&counter _key); 
send_stat_message(&stat_msg} ; 
waitfor 

{ 
keyboard_new_key: 

{ 
counter_key. currenltt; 

} 

The variable stat_msg.object_name is a pointer to the name of the counter that 
the user has entered on the protocol spreadsheet. The program gives this name 
to the CPM. and expects the CPM to locate the name among the names that 
the user has entered on the tabular or graphic statistics menu. The delivery to 
the CPM of a pointer to the stats-menu name and a pointer to the counter 
structure is the purpose of the stat message. The message allows the CPM to 
correlate a line on the statistics results screen with an actual program counter (or 
timer or accumulator). 

62-6 



62 Counters, Timers, and Accumulators 

NOTE TO C PROGRAMMERS: When the translator creates a 
counter variable it adds the prefix counter _ to the spreadsheet 
name. but the programmer who is working primarily in C and is 
not making use of spreadsheet counters can name the counter 
any way he wishes, with or without the prefix. Similarly, the 
string that is communicated to the CPM in stacmsg.objecf_name 
("key" in the example above) must agree with the name on the 
stats menu. but it need not bear any resemblance to the name of 
the counter structure. 

NOTE ALSO: In most of the examples in this manual. we have 
not bothered to declare routines since it is not necessary. In the 
absence of a declaration. the compiler assumes that the routine is 
external and that it returns an integer. In nearly an cases, this 
assumption works. get_68/r.yhys_addrO returns a long, however. 
and must be declared. 

62-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

62.2 Timers 

The translator declares the following structure for timers that are entered as softkey 
tokens on the Protocol Spreadsheet: 

struct timer _struct 
{ 

unsigned long current; 
unsigned long last; 
unsigned long maximum; 
unsigned long minimum; 
unsigned short sample_count; 
unsigned long total_high; 
unsigned short total_low_low; 
unsigned short total_low _high; 
unsigned long start_tick_value; 
unsigned short running: 
unsigned short changed; 

}; 

There are no timer conditions in the software (since timeouts provide the 
time-triggering function), and therefore all of the variables in the structure serve as 
data for the CPM when it updates the stats screens. See Table 62-4. A stat message 
must be sent so the CPM can correlate a line on the statistics results screen with the 
correct program timer. The stat message is documented in the previous section on 
counters. The timer stat message is different only in respect that the stat_msg.type 
element should be set to 512 instead of 256. 

Timer restart, continue. and stop actions are explained in this section. The clear 
action is simply a matter of changing the elements in the structure to zero (except for 
timer _name.minimum, which becomes the one's complement of zero). 

(A) Time Ticks 

Time ticks are timed increments of either of two hardware counters in the 
INTERVIEW. The programmer can select which of the two timing mechanisms 
to use for a given timer. 

One tick-counter is on the FEB card and is used to time-stamp incoming data 
and EIA leads. The intervals between ticks is determined on the FEB Setup 
menu. Ticks can be enabled/disabled on the same menu. The current value of 
this counter is available in a variable called ll_tick_count. See Table 62-5. The 
current value always reflects the number of ticks since the program entered Run 
mode. The number of ticks mayor may not equate to the amount of time in 
Run mode, since ticks are also encoded in playback data and the playback rate 
is subject to "local conditions" such as playback speed and idle suppression. 

FEB time ticks are the most precise timing mechanism in that they have a 
resolution to 10 microseconds. They also represent the most durable method of 
timekeeping, since they preserve the original data timings even during playback. 

62-8 



Type Variable 

Structure Name; tlmer_struct 

unsigned long current 

unsigned long last 

unsigned long maximum 

unsigned long minimum 

unsigned short sample_count 

unsigned long total_high 

unsigned short totaUow -,ow 

unsigned short totaUow_high 

unsigned long start_tick_value 

unsigned short running 

unsigned short changed 

62 Counters, Timers, and Accumulators 

Table 62-4 
Timer Structures 

Value (hex/decimal) 

o 

-0 

-0 

62-9 

Meaning 

Struoture of a timer. Declared as type struct. 
Declared automatically If a program timer is 
used. Program timers assigned to structure as 
follows: struot timer struct timer name. 
Reference a structure variable as follows: 
timer_name . current . 

Current value of timer. not updated while timer Is 
running. Values are In microseconds rounded to 
tick-unit on FEB Setup screen. 

Value of last sample; displayed on the tabular 
statistics screen. 

Maximum value of all samples; displayed on the 
tabular statistics screen. 

Minimum value of all samples; displayed on the 
tabular statistics screen. Should be Initialized as 
-Oul. 

Number of samples. 

High four bytes of an eight-byte timer total. 

Low two bytes of an eight-byte timer total. 

Bytes 3 and 4 of an eight-byte timer total. 

Tiok-oount in microseconds when timer was 
started, restarted, or continued. For 
line-related conditions at Layer 1. this value is 
stored In 11 tick count; for non-line condlt.ions, 
use get_waittime_286_tiCKs routine. 

Stopped. This variable Is polled and a zero stops 
the timer from Incrementing and sets the current 
value to timer name.current (understood as 
microseconds). 

Running. All l' s In this variable causes the timer 
to inorement, showing a value that equals 
(wall-time ticks - timer name.start tick value) + 
timer_name. current. - --

For future use. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951 108 

Type 

extern unsigned long 

extern unsigned long 

extem unsigned long 

Table 62·5 
Timer Variables 

Variable 

start_ofJun_t!me 

Meaning 

This variable counts ticks from 
the start of Run mode. 
Tick=sec, msse, etc., 
depending on FEB setup. 
Subtract early value from later 
value to create a timer. 
ACTIONS: 
{ dlsplayf (. %Id msecs •• 
(/1 tick count-
timer_name. start_tick _va/ue) ) ;} 
Add to start of run time to 
determine more preolse current 
time for time-stamping events. 
Une Setup configured for 
emulate or monitor mode. 

Date when Run mode entered. 
Byte '1 (low byte) Indicates day; 
byte 2 stores month; and bytes 
3 and 4 Indicates year. May be 
used to time-stamp events. 
See also start of run time. 
Line Setup configured-for 
emulate or monitor mode. 

Time when Run mode entered. 
Byte 1 flow byte) indicates 
seconds; byte 2 stores minutes; 
and byte 3 indicates hours. 
May be used to time-stamp 
events. See also 
start of run date and 
11 tick count. t 
une Setup configured for 
emulate or monitor mode. 

t In the example below, the display( (or tracet) routine uses timer variables to time-stamp good BCCs on the DCE 
side. (Similar programming could determine the current date.) The tick unit selected on the FEB Setup menu is 
secondS. Adjust the program as needed for other tick units. 

{ 

} 

extern unsigned long start_of_run_date, start_of_rul'!_time, lI_tick_count; 
unsigned short seconds, hours, minutes, tick_mins, tick_sees, tick_hours; 
#define SECS(run_time) (unsigned short)(run_time & Oxff) 
#define MINS(run_time) «unsigned short)(rulf_time »8) & Oxffl 

STATE: time 
CONDITIONS: DCE GOOD BCC 
ACTIONS: -
{ 

} 

tick sees :: 11 tick count % 60; 
tick=mins:: (ll_tick_count + SECS(start_o!Junjime)) I 60; 
tick_hours = (tick_min! + MINS(start_o!Jul'I_time)) I 60; 
display!("Time: %.2d:%. 2d: %. 2d\n", 

(unsigned short)((start_o!Julf_time» 16) & Oxff) + tick_hours)%24, 
(MINS(start_o!Jun_time) + tick_mins) %60, 
(SECS(start_ofJun_time) + tick_secs)%60;; 

62-10 



62 Counters, Timers, and Accumulators 

The other tick-counter is on the MPM and is referred to as the wall-time clock. 
This clock ticks once per millisecond and drives the timers displayed on the 
statistics results screens-at least while they are incrementing. At the moment a 
timer stops incrementing, the programmer can reach in and replace the 
incremented value with a timer value based the FEB tick-counter instead. 

The current value of this wall-time tick-counter is available to the program via 
theget_wall_time_286_ticks routine. The current value always reflects both the 
number of ticks and the actual elapsed time ("wall time") since the program 
entered Run mode. 

(8) Running 

While it increments on the stats screen, a timer always is driven by waH-time 
ticks. To start a current timer incrementing. first you must have sent a stat 
message to correlate the timer structure with a timer line on the stats screen. At 
that point the simple statement timer _name.running = -0 will stan the timer. 
The value of the timer at any given time while it is running will be the MPM 
(wall-time) ticks minus the timer _name.start_tick_value plus any 
timer _name. current value. 

To stop a timer, change timer _name.running to zero. The current column of 
the timer will immediately display the value of timer _name. current (zero, unless 
you have done something in your program to calculate the current value of the 
timer). The stats display will interpret timer _name. current as a value in 
microseconds and convert it to the unit selected for that timer line. 

(C) Restart 

The translator has two different versions of the timer restart action, depending 
on what condition precipitated the action. The first version is used if the 
condition was data-related (or EIA-related) and time ticks are enabled on the 
FEB Setup menu. Here is this data-timer version: 

unsigned long temp; 
convert _tick_count (ll_tick_count, &:temp); 
timer _name. current::: 0; 
limer_name.start_tick_value .. temp; 
timer _name. running::: -0; 

The convert tick count routine converts 11 jick_count into microseconds and 
stores the result in temp. The value of temp is assigned immediately to 
timer_name.start_tick_value. When the 68010 sees that timer_name.running 
equals the one's complement of zero, it subtracts the start-tick value from the 
ll-tick count and displays the difference in the current column of the timer line. 
Since the start-tick value was derived a moment before from the l1-tick count. 
the difference win be zero. The current column on the stats screen should begin 
a timer at zero following a restart. 

62-11 

~ - -~~~~--~-- ------~-----------------~---~---------------------------------------"-------------------."--~.-.-



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

A slightly different version of the program is used if the condition was 
nondata-related or if time ticks are disabled in the FEB. The 
convert_tick_count routine is not used and the following routine is used in its 
place: 

get_walCtime_286_ticks (&'temp); 

This routine returns the current value of the wall-time tick-counter, in 
milliseconds zero-padded to microseconds. It stores the value in temp and the 
program proceeds as above. 

(D) Continue 
The timer-continue action is very similar to the restart. There are just two 
differences. One, the action is enclosed in an if statement that verifies that 
timer _name. running equals zero-that the timer actually is stopped, in other 
words; and two. timer _name. current is not set to zero, but retains the value it 
received the last time the timer stopped. 

(E) Stop 
Here is one of the two versions of a timer stop action: 

if (timer_name. running /= 0) 
{ 

unsigned long temp; 
convert_,ick_count (lJ_tick_count, &temp); 
timer _name. current += ump - timer _name.start_tick_'Ila[ue; 
timer_name. running '" 0; 

} 

In this translation, the start-tick value is subtracted from the current tick count. 
and any pending current value (held over if the timer was continued) is added 
in. The result is a new timer_name. current value. This value is posted to the 
stats screen as soon as the 68010 sees timer _name.running = O. 

The other version of the stop action uses get_wall_time_286_ticks instead of 
convert_tick _count. 

(F) Sample Action 
The code that produces the sample action is identical to the code that sampled a 
counter. See Section 62.1 (B). The timer _name.sample_count variable's not 
equaling zero causes minimum, maximum. and average values to be displayed. 

62.3 Accumulators 
Shown below is the structure of an accumulator as the translator declares it (and 
as the 68010 accesses it to update the statistics screens). Also refer to 
Table 62-6. Note that there is no current value, since an accumulator neither 
counts nor times. There are no "previous" and "old" values. because in its 
spreadsheet implementation an accumulator never is tested in a Conditions 
block. 

62-12 



14"" ., I 
i 

62 Counters, Timers, and Accumulators 

struct accumulator _struct 
{ 

unsigned long last; 
unsigned long maximum; 
unsigned long minimum; 
unsigned short sample_count; 
unsigned long total_high; 
unsigned short total_low_low; 
unsigned short totaLlow _high; 
un$igned short changed; 

}; 
struct accumulator _struct accumulator _name={O,O, -Gul}; 

Here is the translator's version of an accumulate action when the object of the 
accumulation (selected by the user) was the maximum sampled value of a 
counter named framechar. 

accumulator _name. last :: accumulator Jramechar. maximum; 
if (occumulator_,ulme.last > accumulalO,_name.maximum) 

{ 
accumulator _name. maximum :: accumulator _name. last: 

} 
if (accumulator_name. last < accumulator_name. minimum) 

{ 
accumulator -,tame. minimum;:: accumulator _name. last; 

} 

accumulator_name. sample_counttt; 
{ 

} 

unsigned long temp; 
temp;:: (accumulator ....name. last &: OxOOOOffff) t accumulator _name. total_low _low; 
accumulator _name. total_low_low = temp; 
temp;:: (accumulator_nome. last »16) t accumulator_name. total_low_high t (temp» 16); 
accumulator _name. total_low_high:: temp; 
accumutato,_name.total_high t= temp» 16; 

accumulator _name. changed :: -0; 

A stat message must be sent so the CPM can correlate a line on the statistics 
results screen with the correct accumulator. The stat message is documented in 
the previous section on counters. The accumulator stat message is different only 
in respect that the stat_msg.type element should be set to 0 instead of 256. 

The accumulator _name. sample_count variable's not equaling zero causes 
minimum. maximum, and average values to be displayed. 

62-13 



INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B 

Type Variable 

Table 62-6 
Accumulator Structures 

Meaning 

Structure Name: accumulator_struct Structure of an accumulator. Declared as type 
struot. Declared automatically by program when 
the user softkey-enters an ACCUMULATE 
action. Specific accumulator assigned to 
structure as follows: struct accumulator struct 
accumulator name. Reference a structure 
variable as follows: accumulator_nama. last. 

unsigned long last 

unsigned long maximum 

unsigned long minimum 

unsigned short sample_count 

unsigned long total_high 

unsigned short totaUow_low 

unsigned short totaUow _high 

unsigned short changed 

Value of last sample; displayed on the tabular 
statistics screen. 

Maximum value of all samples: displayed on the 
tabular statistics screen. 

Minimum value of all samples: displayed on the 
tabular statistics screen. Should be Initialized as 
~Oul. 

Number of samples. 

High four bytes of an' eight-byte accumulator 
total. 

Low two bytes of an eight-byte accumulator 
total. 

Bytes 3 and 4 of an eight-byte accumulator total. 

For future use. 

62.4 Routines 

Synopsis 

extern unsigned long get_68kJlhys_addr(variableJltr); 
unsigned char· variableJltr; 

Description 

This routine converts the address of a specified variable in the 80286 processors 
(MPM boards) to 68010 (CPM) format. This routine must be declared. 

The only parameter is the address to be converted. 

62-14 



62 Counters , Timers! and Accumulators 

Returns 

The get_68kyhys_addr routine returns the converted address. 

Example 

See send_stat_message routine. 

send _ stat_message 

Syno,psis 

extern void send_stat_message(struct_stat_msgytr}; 
struet stat_msg 

{ 
unsigned short op _type; 
unsigned short type; 
unsigned long object_name; 
unsigned long object_address; 

}; 

Description 

The send_stat_message routine sends the stat message structure to the 68010 
CPU (CPM board). The current use of this routine sends the addresses of 
program counters, timers, and accumulators in the 80286 processors (MPM 
boards) to the CPM board where the tabular and graphic statistics displays are 
located. 

The routine is called only one time in a program for each named counter, timer, 
or accumulator. Entering COUNTER as a condition or action (or TIMER or 
ACCUMUL as actions) via softkey on the Protocol Spreadsheet automatically 
declares the counter named and sends the stat message. 

The only parameter is a pointer to the structure of the stat message. For an 
explanation of the elements of the stat message, see Table 62-3. 

Example 

You plan on incrementing a counter named "dte_info" when a DTE Info frame 
is detected. 

{ 
struct 
{ 
unsigned short op_type; 
unsigned short type; 
unsigned long object_name; 
unsigned long object_address; 

} stat_msg; 

62-15 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

} 

struct counter_structure 
{ 
unsigned long current; 
unsigned long last; 
unsigned long maximum; 
unsigned long minimum; 
unsigned short sample_count; 
unsigned long total_high; 
unsigned short total_low _low; 
unsigned short total_low _high; 
unsigned short out_at_range; 
unsigned short changed; 
unsigned long prev; 
unsigned long old; 

}; 
struct counter_structure counter_dte_info :: {O, 0, 0, -Oul}; 
extern unsigned long get_68kyhys_addr(); 

LAYER: 2 
STATE:send_stat_message 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 

} 

stat_msg.op_type = 2560; 
stat_msg. type:: 256; 
stat_msg. object_name:: get_68kyhys_addr("dte_in/o" ); 
stat_msg. object_address = get_68kyhys_addr( .lcounter _dte_info); 
send_stat_message( .lstat_msg); 

NEXT_STATE: count_Info 
STATE: count_Info 

CONDITIONS: OTE INFO 
ACTIONS: 
{ 
counter _ dte _info. curren 1++; 

} 

SynQpsis 

extern void get_wall_time_ticks(ticks_68kJormatytr); 
unsigned long" ticks_68kJormatytr; 

Description 

The get_wall_time_ticks routine gets the number of wan-time ticks (in CPM 
storage format) from the time ~ was hit. The wall clock gives millisecond 
resolution rounded to microseconds. 

The only input is a pointer to the location where the returned time-tick value 
will be stored. 

62-16 



-----~-; 'I'. f 
I 

r-. , ! . 
; 

Example 

unsigned long ticks; 
} 
LAYER: 2 

STATE: get_ tioks 
CONDITIONS: KEYBOARD • ~ 

ACTIONS: 
{ 
get _ wall_time _ticks (&ticks); 

} 

get wall time 286 ticks - - - -
Synopsis 

62 Counters t Timers! and Accumulators 

extern \laid get_wall_time386_ticks{ticks_286Jormatytr); 
unSigned long" ticks_286Jormatytr; 

Desgiption 

The get_wall_time_286_ticks routine gets the number of wall-time ticks (in 
MPM storage format) from the time 8 was hit. The wall clock gives millisecond 
readings rounded to microseconds. Use this routine prior to setting the 
start_lick_value in a timer action when Time Ticks: 1~;; has been selected on 
the Front-End Buffer Setup screen. Also use this routine to derive the 
start_tick_value if the condition is not line-related, e.g., KEYBOARD, even when 
time ticks are enabled on the FEB Setup menu. . 

The only input is a pointer to the location where the returned time-tick value 
will be stored. 

Example 

{ 
unsigned long tick.s_286; 

} 

LAYER: 3 
STATE: get ticks 

CONDITioNS; KEYBOARD' • 
ACTIONS: 
{ 

} 

get_wall_time _286 _'icks ( &ticks _286}; 
display! (" %lu". ticks _286); 

62-17 

..•. _. __ ._--- --- _._ .... _---_. __ .-._._-_ .. __ .. _-_._----- ._----_._-_._ .. _--- --------,------.--~------------.. ---.-------



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

convert_tick _count 

Syno.psis 

extern void convert_tick _count (mpm Jormat _ticks. converted_ticks ytr); 
unsigned long mpmJormat_ficks; 
unsigned long • converted_ticksytr; 

Description 

The convert_tick_count routine converts a designated tick count into 
microseconds. 

Use this routine to derive the start_tick value for a timer action if ticks are 
enabled on the FEB Setup menu and the condition is line-related, e.g., RCV 

INFO. 

The first parameter is a designated tick count as long as it is in MPM storage 
format. It may be any of the layer tick counts. The unit of the ll_tick_count 
(and other layers' tick counts) value is determined on the Front End Buffer 
menu. 

The second parameter is a pointer to the location where the returned tick count 
converted to microseconds will be stored. 

Example 

} 

extern unsigned long II _tick_count; 
unsigned long converted_ticks; 

LAYER: 1 
STATE: oonvert_ ticks 

CONDITIONS: RECEIVE GOOD_BCC 
ACTIONS: 
{ 

} 

convert_tick_count (II_tick_count, &converted_ticks); 
display! (" %lu'·. converted_ticks); 

62-18 



It·· 
i 
I 

63-1 

63 OSI 

630S1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107 951-108 

POU 

iL buffer_number 

data _ start_offset -- ------- ~ 

sou 

"" --- "'-
"­- .... , 

\ 
Pointer-List 
IL BUFFER ...... 

"'- -"- ", 
\ 

\ HEADER 

\ DATA 

! list_header list node 

first_node _offset --. data_pointer 

'" 
last_node _offset data_length 

/ 
I ---

I / next node offset 
list_node { - -

I 
I 
I data_pointer 
I \ 
I \ Internal 
\ data_length , 

data \ 
\ \ (Layer 2 \ next_node _offset 

" \ protocol info) \ , 
"-'. 

/" 
I 

I 
I 
I 
I 
I 
\ 
\ 

list_node 

data_pointer 

dataJength 

n~~et 
~ -..;.,;;:.:: 

External 
data 

(User data) 

\ \ 
\ \ 

II' 
\ 
\ 
\ Internal , 

data 

(Layer- 3 
protocol info) 

" "-
\ 

\ 
\ 
I 
I 
I 

/ 

I 

Figure 63-1 Primitive Data Unit and sample Pointer-List Buffer being passed down 

the layers. 

63-2 



63 OSI 

63 OSI 

The most conveni,ent tools for handling protocol headers while data is moving down and up 
the layers in the ll'."TERVIEW are the spreadsheet SEND and GIVE_DATA actions in the various 
protocol packages. For instances when a protocol package is not loaded, such as when you 
are developing a new protocol or simply using a protocol that is not yet an option on the . 
Layer Setup screen, OS1 structures. variables. and routines in C become essential tools also. 

63.1 Structures 

The programmer may access the information in primitive data units conveniently by 
using a C structure as a multibyte pointer that is superimposed on data in the PDU's. 
Before using a structure-pointer, it is necessary to understand the contents of IL 
buffers and primitive data units. All structures referenced may be found in 
Table 63-1. 

(A) Interlayer Message Buffers 

There are a maximum sixteen IL buffers in use at a given time. These buffers 
may be one of two kinds: data-character or pointer-list. In buffers being 
pas~ed up the layers. data-character buffers (Figure 63-2) are always used. In 
buffers going down the layers, pointer-list buffers (Figure 63-1) are primarily 
used. The difference is that pointer-list buffers contain list-nodes which provide 
information about the location of data (or "lists") inserted or referenced in the 
buffer, while data-character buffers do not. 

1. Header. Each IL buffer contains a header that stores useful information 
such as the status of the maintain bits that prevent the buffer from being 
returned to the general pool; the position of the buffered data in the 
INTERVIEW's display buffer; and the tick count (time) when the data was 
buffered from the Hne. (See iI_buffer structure.) 

2. Service Data Unit. The IL buffer also contains the data itself. This data 
component, the service data unit (or "SDU"). is added to as the buffer is 
passed down the layers. and subtracted from as a buffer travels up the 
layers. A data-character IL buffer includes all the data that was present 
when the data was first buffered, and the contents of this buffer do not 
change as the buffer is passed up the layers. What changes is the service 
data unit. derived from the data-start offset in the PDU. 

63-3 



INTE:RVIE:W 7000 Series Advanced Programming: ATLC-107-951-108 

PDU 

The first part of the SDU in a pointer-list buffer is a list-header node 
(structure ii_list_header) which contains information about the location of 
the first and last text nodes. As a buffer is passed down from Layer 3 to 

Layer 2 in X.2S (see Figure 63-1), a new text node containing a Layer 3 
protocol header is inserted in buffer. Since the Layer 3 data will precede 
user data, the list node for the protocol information is referenced ahead of 
any other list nodes, changing the first-node reference in the Ust header. (If 
text is appended to the end of existing data, the list node referenced as last 
will change.) 

The SDU in a pointer-Ust buffer also includes list nodes (structure 
ii_list_node) which give a pointer to data, the length of the data pointed to, 
and the offset from the start of the buffer to the next list node. 

Finally. the service data unit in all buffers includes data, whether copied into 
the buffer (usually protocol information) or located in memory outside of the 
buffer (usually user data). 

ii_buffer _number 
Data-Character 

------- ..... IL BUFFER " -" data _ start_offset 
~ 
---- ............ __ ...... 0.-. ..... \ 

data_length 

l 
l;; 

I 
~ 
t< .;r' 

SOU Size'/ ~ 
Layer 2 1 sou Size J 

I Layer 3·~. 
~ ~ 
~, ~,~ 

., 

HEADER 
DATA 

\ '\ \ ,... .... t-... -.-. _....L._ .. _ .. - .. -... -.. -... -... -.. -.... -.. -. -1 .. -- at Layer 2 

. ~(Lay.'~P'QI.C.,l"IQ) 
····'r ....... : .. --................................. _ ..................... --- at Layer 3 

Figure 63·2 Primitive Data Unit and sample Data-Character Buffer being passed up 
the layers. 

63-4 



.r~. 
r I 

I 

63 OSI 

(B) Primitive Data Units 

Like interlayer message buffers. PDU's have a format that is dependent on 
which direction the primitive is being passed. Refer again to Figure 63-1 and 
Figure 63-2. 

1. IL buffer number. The buffer number to be passed with the primitive is 
always stored in the primitive. This buffer number is actually an 
80286-processor segment number. 

2. Data-start offset. The offset to the beginning of the service data unit for a 
given layer is different for the two types of buffers. In a pointer-list buffer 
going down the layers. the data-stan offset will indicate the offset from the 
beginning of the buffer to the list-header node. This offset will vary if 
different linked lists have been started at different layers. Each list will have 
its own list header. In a data-character buffer going up the layers. the 
data-stan offset will change from layer to layer. For example. a buffer 
containing X.25 data that is being passed from Layer 2 to Layer 3 will have 
an offset at Layer 3 two bytes beyond the offset at Layer 2. 

3. Data length. The size of the SDU in a data-character buffer also varies 
from layer to layer. In the example just given. the SDU will be smaller by 
two bytes at Layer 3 than it was at Layer 2. In pointer-list buffers. the 
length of all data is unknown at any given layer. 

(e) Accessing Information in Structures 

Th~re are two stages that are preliminary to accessing the information in these 
stnlctures. The first step is to convert the 80286-processor segment number into 
a 32-bit address. The second stage is to place a pointer, in the shape of an IL 
buffer structure. at that address. Let's use an IL buffer as an example. 

1. Converting a segment number. The IL-buffer segment number is returned 
any time you access one of the external. protocol-independent iCbufjer 
variables listed in Table 63-1. These variables have names like 
mjo_dl_il_buff and up_n.J1_buff. 

To make a pointer to an IL buffer. (1) shift the 80286 segment number to 
the left sixteen bits, since a full address in the 80286 is 32 bits long; (2) cast 
it as a long. so that the segment number is in the high 16 bits and the offset 
to a buffer for that segment is zero (the low 16 bits); and (3) cast it as a 
pointer. The fonowing expression will take care of all three requirements: 

(void .) ((long) m _lo _ dUU>uff «16): 

Now you have a pointer to the first memory location of the most recent 
monitor-mode IL buffer passed up from Layer 2 to Layer 3. An 
upward-moving IL buffer was illustrated in Figure 63·2. The precise 
structure of both the IL buffer is given in the fan owing declaration. 

63-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

{ 
struct ii_buffer 

{ 

}; 

unsigned short lock; 
unsigned short maintain_bits; 
unsigned short buffer_size; 
unsigned short transmit_tag; 
unsigned short receive_tag; 
unsigned long char_buffJrame_start; 
unsigned long char _buffJrame_end; 
unsigned short tick_count_high; 
unsigned short tick_count_mid; 
unsigned short tick_count_low; 
unsigned short available_space_offset; 
unsigned short bytes_remaining; 
unsigned long bee_indicator; 
unsigned char data [4064J; 

2. Create a structure-pointer at a given address. First, declare the structure of 
il_buffer, as indicated above. Then declare ii_buffer yointer as a 
structure-pointer, as follows: 

Converting the segment number and assigning it to ii_buffer yointer may be 
accomplished with this one statement: 

Now a structure has been created around the most recent upward-moving IL 
buffer at Layer 3. This means that rather than moving a pointer around in 
the IL buffer, you can access elements in the buffer directly. The 
tick_count..Jow variable. for example, would be called 
jebuffer yointer->tick_count..Jow. (The -> operator is used in place of the 
dot operator in structure-pointers.) 

The first element of the data string would be called 
il_bufferyointer->data[Oj. Here is a program that displays on the prompt 
line the fifth data element. the packet-type byte, in every IL buffer that is 
monitored at Layer 3. 

63-6 



r - I 

{ 
extern event m_lo_dl"'prmtv; 
extern volatile unsigned short m_lo_dl_iCbuf/; 
struct ii_buffer 

{ 
unsigned short lock; 
unsigned short maintain_bits; 
unsigned short bufjer _size; 
unsigned short transmit_tag; 
unsigned short receive_tag; 
unsigned long char_buffJrame_start; 
unsigned long char_bufjJrame_end; 
unsigned short tick_countyigh; 
unsigned short tick_count_mid; 
unsigned short tick_count_low; 
unsigned short available_space_offset; 
unsigned short bytesJemail.lil.lg; 
unsigned long bcc_indlcator; 
unsigned char data [4064]; 

}; 
struct iCbufjer .. ii_buffer "'pointer; 

} 
LAYER: 3 

STATE: monitor _ILbuffers 
CONDITIONS: 
{ 
mjo_dlyrmt\J 

} 

ACTIONS: 
{ 

iCbufjeryointer = (void *) ((long) m_lo_dl_iCbufj«16); 
pas_cursor (0,0): 

displayf ("%02x ", ii_buffer yointer->data{4 J); 
} 

63 OS! 

If you run this program, be sure to load in the Layer 2 and Layer 3 
personality packages for X.25. These packages will take care of delivery of 
the monitor primitives to Layer 3. 

63-7 

----------_._-----_._---------



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Type Variable 

Structure Name: pdu 

unsigned char 

unsigned char 

unsigned long 

unsigned short 

unsigned short 

unsigned char 

unsigned short 

unsigned short 

primitive_code 

path 

parameter 

relay _baton 

buffer_contents 

Table 63-1 
OSI Structures 

Value (hex/decimal) 

0-8 

o 

63-8 

Meaning 

Structure of an OSI primitive data unit (PDU). 
Declared as type struct. Use this structure as follows. 
Declare the entire structure. Make a pointer to a PDU 
by shifting m 10 dl pdu seg (or up n pdu seg) 16 bits 
to the left. Then convert this pointer to a pointer to a 
PDU structure: struct pdu * pdu_polnter 
pdu pointer =( void *}((long)m 10 dl pdu seg« 16). 
Reference a structure-pointer variable as-follows: 
pdu _polnter->prlmltive _code. 

Codes for OSI variables are listed In Table 63-2 
through Table 63-8. For Layer 3 primitive codes, 
for example, refer to Table 63-4. The value of this 
variable Is also stored In external variable 
mJo_d,-prmtv_code (or up_nJlrmtv_code). 

Path number, both directions. The value of this 
variable Is also stored In extemal variable 
mJo_dlyrmtv_path (or up_n_prmtv_path). 

For future use. At present. under user control. 

Maintain bit passed with an Interlayer-message 
buffer, both direotlons. Zero In this variable 
Identifies maintain bit. 

Segment number of the interlayer-message 
buffer. both directions. The value of this variable 
Is also stored in external variable m 10 dl II buff 
(or up_n-'I_buff). - - --

Contains data-character buffer type. Must be 
used for buffer being passed up. 

Contains pointer-list buffer type. May be used 
for buffers being passed uP. but is currently used 
primarily for buffers being passed down. 

Offset from the beginning of the buffer to the 
header node In the SOU of an interlayer-message 
buffer In an OSI primitive being sent down from a 
layer above. In a primitive being sent up from a 
layer below, It Is the offset to the SOU. Varies 
according to the layer at which the buffer is 
located. For example. In a buffer passed up to 
Layer 3 from Layer 2, the offset would be to the 
beginning of the Layer 3 header. bypassing Layer 
2 header Information. The value of this variable 
is also stored In external variable 
m_lo_dl_sdu_offset (or up_n_sdu). 

Length of the service data unit, Including headers 
and user data. Only for primitives sent up from 
layer below. Varies with the layer where the 
buffer is located. For example. at Layer 3, 
length would exclude Layer 2 header (or trailer) 
information. The value of this variable Is also 
stored In external variable m_lo_dl_sdu_Slze. 



Type Variable 

Structure Name: ii_buffer 

unsigned short 

unsigned short 

unsigned short 

unsigned short 

unsigned short 

unsigned long 

unsigned long 

lock 

buffer _ slle 

transmit_tag 

receive_tag 

char_buff_frame_start 

char _buff_frame _end 

63 OSI 

Table 63-1 (continued) 

Value (hex/decimal) 

o 

1000/4096 

o 
1 
2 
3 
4 

0 
1 
2 
3 
4 

0 
1 

0 
1 

Meaning 

Structure of an Interlayer-message buffer. both 
directions. Declared as type struct. Use this 
structure as follows. Declare the entire structure. 
Malee a pointer to an II_buffer by shifting 
mJo_dUU,uff (or up_n_"_buff) 16 bits to the left: 
"_buffer _pointer = (void .1( (long)(lo_dLII_buff « 16). 
Then convert this pointer to a pointer to an II buffer 
structure: struct 1I buffer • II buffer polnter:­
Reference a structure-painter-variable as follows: 
'L buffer Jlolnter->tlck _ countJow . 

Internal variable which prevents structure from 
being updated by more than one program at the 
same time. 

Two-byte variable which provides the status of 
the maintain bits. A bit with a value of 1 Is in 
use. 

Currently. the only value. 

alts 1-3 define bcp Ind!patlon: 

no bee 
good bee 
bad bee 
abort 
half bad bee (DDCMP) 

Bits 4-8 for future use. 

Bits 1-3 define bQC Indlcatlon: 

no bee 
good bee 
bad bee 
abort 
half bad bee (DDCMP} 

Bit 4 Identlfies side Clf the Une: 

td 
rd 

Bit 5 msssa.ge bYffer overflow: 

frame fits In buffer 
frame too large for the buffer 

Bits 6-8 for future use. 

Looatlon in the character buffer of the start of 
the buffered data. 

Location In the character buffer of the end of the 
buffered data. 

(ii_buffer structure continued on next page) 

63-9 



INTERVIEW 7000 Series Advanced Programmina: ATLC-107-951-10B 

Type Variable 

ii_buffer (continued) 

unsigned short 

unsigned short 

unsigned short 

unsigned short 

unsigned short 

unsigned long 

unsigned char 

tick _ count_mid 

ticK_count JOw 

available_space _offset 

bytesJemalning 

bcc Jndicator 

data [4064] 

Structure Name: iUist_header 

unsigned short 

unsigned short la9t_ node_offset 

unsigned long reserved 

Table 63·1 (continued) 

Value (hex/decimal) 

o 

63-10 

Meaning 

Value of Internal variable that oounts the number 
of times 11 tick count has reaohed Its maximum 
value. Together. the three II_buffer tick-count 
variables preserve at each layer the original time 
when the end of the data (BCC) was clocked Into 
the buffer. 

16 high-order bits of 32-blt it_rick_count. 

16 low-order bits of 32-blt l1_f/ck_count. 

Offset to the next available space In the 
Interlayer-message buffer. 

Available number of bytes remaining In the buffer. 

reserved 

Contains all data Including each layer's header 
Information. as well as the first of two block 
oheck characters. Does not vary from layer to 
layer. 

Struoture of the header node in an 
Interlayer-message buffer. Only for primitives 
sent down from the layer above. Declared as 
type struct. Use this structure as follows. 
Deolare the entire structure. Make a pOinter to 
an II list header by shifting up n II buff (or 
m 10 dill buff) 16 bits to thelett-and adding the 
data -staff offset from the PDU structure (also 
stored as external variable up n sdu or 
m 10 dl sdu offset): - -
(ifs(headeryointer = 
(void .)( ((long)up_n_ILbuff) « 16) + up_n_sdu). 
Then convert this pointer into a pointer to an 
II list header structure: 
struot 'Lllst_header * II-,ist_header yointer. 
Reference a structure-pointer variable as follows: 
1\Jlst_header yolnter->last_node _offset. 

Offset from the beginning of the buffer to the 
first text node In the buffer. Varies acoordlng to 
the layer at which the buffer Is looated. At Layer 
2, the offset would be to different starting node 
than at Layer 3. 

Offset to the location of the last text node In the 
buffer, from the beglnnlng of the buffer. 

reserved 



Type Variable 

Structure Name: iUist_node 

unsigned char • 

unsigned short 

unsigned short 

dataJlolnter 

dataJength 

next_ node_offset 

63 OSI 

Table 63-1 (continued) 

Value (hex/decimal) 

63-11 

Meaning 

Structure of text nodes In an interlayer-message 
buffer. Only for prlrntlives sent down from the 
layer above. Declared as type struct. Use this 
structure as foUows. Declare the entire 
structure. Make a pointer to an IUlst_node by 
shifting lIP_n_lI_buff (or mJo_dULbuff) 16 bits to 
the left and addlng the first_MOde_offset (or 
last node offset) from the H list header 
structure: ILDst_nOdeJl0lnter ::-
(void *)((fIong)I.IPJI_"_buff« 16) + 
KJlst_ header Jl0lnter->first_node _offset). Point 
to the next node as foDows: 
next_nodeJlolnter =- (IIJI8t_"odeJlolnter + 
IUIst_nodeJlointer->next_oode_offset) . 

Pointer to the data In a text node. 

Length of the data in a text node. 

Offset to the location of the next text node In the 
buffer. from the beginning of the buffer. 

Generally, there Is a text node for each layer's 
header informatiOn and one for the Year data. A 
buffer th.t stwted at Layer 3 would have two 
text nodes, one for Layer 3 header Information 
and one for user data (If any}. At Layer 2, the 
buffer would acquire an additional text node. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

63.2 Variables 

LAYER 3: 

LAYER 2: 

OSI variables are layer-specific. The information stored in the OSI variables may be 
obtained by using the structure-pointer to IL buffers and primitives. But rather than 
requiring the user to repeat this process at each layer as a buffer moves through the 
layers. monitor and emulate variables have been made available at Layers 2-7 to 
store layer-specific, as well as general. information: the interlayer-buffer number, 
the offset to the service data unit. the path number, the size of the SDU. the 
segment number of the PDU, etc. There are also event variables which indicate that 
a primitive has been received at a given layer. Table 63-2 through Table 63.-8 give 
the current OSI variables and their meanings. 

The. exchange of connect primitives shown primarily in Figure 30-4 is demonstrated in 
Figure 63-3 using C variables and routines. The SEND actions insert data in a buffer 
and send the buffer in a DATA REQ primitive. See Section 63.3 for an explanation of 
the _insert_il_buff_list_cnt and send primitive routines. The conditions use event 
variables to detect primitives and non-event variables to identify specific primitive 
types. 

{send d! prmtv below 
(II buffer nuriiber, relay baton, 

- data start offset. 1). 
OX40. path);} 

{Io dl prmtv && ,l 
(lo_dlJ>rmt~code == OX4SIlj SEND RESTART 

1----1 
.. ..J DL_DATA L_ 

" REO ,," 

',,," 
etc. 

{up d! prmtv && 
(up_dLprmtv:.code == Ox40)} SEND SABM 

(II buffer number, relay baton, I {send dl prmtv above 

Rev UA - data-start offset, slie, 
l)x43 ,-path I ;} 

Figure 63-3 Layer 3 uses connect primitives to be sure that the Layer 2 entity below has 
established a link. 

63-12 



Type 

extern volatile unsigned char 

Table 63·2 
Layer 1 OSI Variables 

63 OSI 

Variable Value (hex/decimal) Meaning 

63-13 

20/32 
21/33 
22/34 
23/35 
24/36 
25/37 
2a/42 
2b/43 
2c/44 
2d/45 
26/46 
2f/47 
30/48 
31/49 
33/51 
34152 
35/53 
38/56 
39/57 

ph activate req 
ph activate Ind 
ph activate resp 
ph activate conf 
ph data req 
ph data ind 
ph reset req 
ph reset ind 
ph reset resp 
ph reset conf 
ph deactivate req 
ph deactivate Ind 
ph debug req 
ph debug Ind 
ph error report Ind 
ph xmlt req 
ph set Idle req 
ph mgt facility req 
ph mgt faclUty ind 

OSI primitive code for primitives 
moving between Layers 1 and 2. 
Una Setup configured for 
emulate mode only. 



INTER.VIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table 63-3 
Layer 2 OSI Variables 

Type Variable Value (hex/decimal) Meaning 

extern event 

extern event 

extern event 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile const unsigned char 

extern volatile canst unsigned char 

loyhJlrmtv 

63-14 

21/33 
23/35 
25/37 
2b/43 
2d/45 
2f147 
31/49 
33/51 
39/57 

24/36 
25/37 

True when an OSI primitive Is 
received at Layer 2 from Layer 
1. Line Setup configured for 
emulate mode only. 

True when an OSI primitive Is 
received at L.ayer 2 from Layer 
1. Une Setup configured for 
emulate or monitor mode. 

True when an 051 primitive Is 
received at Layer 2 from Layer 
3. Une Setup configured for 
emulate mode only. 

OSI primitive data unit (PDUj 
IAPX-286 segment number 
received at Layer 2 from Layer 
1. This segment number can 
be converted to a pointer by 
shifting It left 16 bits. Line 
Setup configured for emulate 
mode only. 

OSI primitive data unit (PDU) 
iAPX-286 segment number 
received at Layer 2 from Layer 
1. This segment number can 
be converted to a pointer by 
shifting it left 16 bits. Line 
Setup configured for emulate or 
monitor mode. 

ph activate Ind 
ph activate conf 
ph data ind 
ph reset Ind 
ph reset con1 
ph deactivate Ind 
ph debug ind 
ph error report ind 
ph mgt facility ind 

OSI primitive code received at 
Layer 2 In a PDU from Layer 1. 
Line Setup configured for 
emulate mode only. 

td ph data Ind 
rd ph data ind 

051 primitive code received at 
Layer 2 in a PDU from Layer 1 . 
Line Setup configured for 
emulate or monitor mode. 



Type 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatHe unsigned short 

extern volatile unsigned short 

63 OSI 

Table 63·3 (continued) 

Variable Value (hex/decimal) Meaning 

0-8 

0-8 

63-15 

Path number received at Layer 
2 in a PDU from Layer 1. Line 
Setup configured for emulate 
mode only. 

Path number received at Layer 
2 In a PDU from Layer 1. Line 
Setup configured for emulate or 
monitor mode. 

Interlayer-buffer number (an 
IAPX-286 segment number) 
received at Layer 2 in a PDU 
from Layer 1. This segment 
number can be converted to a 
pointer by shifting It left 16 bits. 
Line Setup configured for 
emulate mode only. 

Interlayer-buffer number (an 
IAPX-286 segment number) 
reoeived at Layer 2 in a PDU 
from Layer 1. This segment 
number can be converted to a 
pOinter by shifting It left 16 bits. 
Une Setup configured for 
emulate or monitor mode. 

In OSI primitive received at 
Layer 2 from Layer 1, the offset 
to where the service data unit 
begins. Line Setup configured 
for emulate mode only. 

In 051 primitive received at 
Layer 2 from Layer 1 , the offset 
to where the service data unit 
begins. Line Setup configured 
for emulate or monitor mode. 

Size of the service data unit in 
an Interlayer-message buffer, 
displayed as SIZE on the Layer 
2 trace soreen. Received at 
Layer 2 from Layer 1. Same as 
data length in a PDU. Line 
SetuP configured for emulate or 
monitor mode. 

051 primitive data unit (PDUj 
IAPX-286 segment number 
received at Layer 2 from Layer 
3. This segment number can 
be converted to a pointer by 
shifting It left 16 bits. Line 
Setup configured for emulate 
mode only. 

-----------------------------.---



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table 63-3 (continued) 

Type Variable Value (hex/decimal) Meaning 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile unsigned short 

extern volatile unsigned short 

extern unsigned long 

up _ dlyrmtv yath 

63-16 

40/64 
42166 
44/68 
48/72 
4a174 
40/76 
4e/78 
50/80 
52/82 
58/88 

0-8 

dl oonn req 
dl oonn resp 
dl data req 
dl expd data req 
dl reset req 
dl reset resp 
dl disoonn req 
dl debug req 
dl unit data req 
dl mgt faoillty req 

051 primitive code received at 
Layer 2 In a PDU from Layer 3. 
Une Setup configured for 
emulate mode only. 

Path number received at Layer 
2 in a PDU from Layer 3. LIne 
Setup configured for emulate 
mode only. 

Interlayer-buffer number (an 
iAPX-286 segment number) 
received at Layer 2 In a PDU 
from Layer 3. This segment 
number can be converted to a 
pointer by shifting It left 16 bits. 
Line Setup configured for 
emulate mode only. 

Offset to the start (header 
node) of the service data unit in 
an Interlayer-message buffer. 
Received at Layer 2 from Layer 
3. Same as data starr offset in 
a PDU. Une Setup configured 
for emulate mode only. 

32-blt 11 tlok count stored in 
header 01 most recent IL buffer 
passed up to Layer 2. 
Preserves at each layer the 
original time when the end of 
the data (Bee I was clocked 
into the buffer. Une Setup 
configured for emulate or 
monitor mode. 



Type 

extern event 

extern event 

extern event 

extern volatile unsigned short 

'T .. 
extern volatile unsigned short 

extern volatUe const unsigned ohar 

Table 63·4 
Layer 3 OSI Variables 

63 OSI 

Variable Value (hex/decimal) Meaning 

up_n_prmtv 

63-17 

41165 
43/67 
45/69 
49/73 
4b/75 
4d177 
41179 
51/81 
53/83 
55185 
59/89 

True when an OSI primitive is 
reoeived at Layer 3 from Layer 
2 . Line Setup configured for 
emulate mode only. 

True when an OSI primitive is 
reoeived at Layer 3 from Layer 
2. Line Setup configured for 
emulate or monitor mode. 

True when an OSl primitive Is 
reoeived at Layer 3 from Layer 
4. Une Setup configured for 
emulate mode only. 

OSI primitive data unit (PDU) 
IAPX-286 segment number 
received at Layer 3 from Layer 
2. This segment number can 
be converted to a pointer by 
shifting It left 16 bits. line 
Setup configured for emulate 
mode only. 

OSI primitive data unit (PDU) 
iAPX-286 segment number 
received at Layer 3 from Layer 
2. This segment number oan 
be oonverted to a pOinter by 
shifting it left 16 bits. Line 
Setup configured for emulate or 
monitor mode. 

dl connind 
dl conn conf 
ell data!nd 
dl expd data ind 
dI reset !nd 
dl reset oonf 
dl disconn ind 
dldebuglnd 
dl unit data Ind 
dl error report Ind 
dl mgt facility lnd 

OSI primitive oode received at 
Layer 3 in a PDU from Layer 2. 
Une Setup configured for 
emulate mode only. 



INTERVIEW 7000 Series Advanced Programming: ATLG-107-9S1-10B 

Table 63-4 (continued) 

Type Variable Value (hex/decimal) Meaning 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

63-18 

44/68 
45/69 
48/72 
49/73 
54/84 
55/85 

0-8 

0-8 

td df data Ind 
rd dl data Ind 
td dl expd data Ind 
rd dl expd data Ind 
td dl unit data Ind 
rd dl unit data Ind 

OSI primitive code received at 
Layer 3 In a PDU from Layer 2. 
Une Setup oonfigured for 
emulate or monitor mode. 

Path number received at Layer 
3 In a PDU from Layer 2. Une 
Setup oonfigured for emulate 
mode only. 

Path number received at Layer 
3 In a PDU from Layer 2. Une 
Setup configured for emulate or 
monitor mode. 

Interlayer-buffer number (an 
IAPX-286 segment number) 
received at Layer 3 In a PDU 
from Layer 2. This segment 
number can be converted to a 
pOinter by shifting it left 16 bits. 
Line Setup configured for 
emulate mode only. 

Interlayer-buffer number (an 
IAPX-286 segment number) 
received at Layer-3 In a PDU 
from Layer 2. This segment 
number can be converted to a 
pointer by shifting it left 16 bits. 
Une Setup configured for 
emulate or monitor mode. 

In OSI primitive received at 
Layer 3 from Layer 2, the offset 
to where the service data unit 
begins. Une Setup configured 
for emulate mode only. 

In OSI prlmltlve received at 
Layer 3 from Layer 2. the offset 
to where the service data unit 
begins. Line Setup configured 
for emulate or monitor mode. 

Size of the service data unit In 
an Interlayer-message buffer, 
displayed as SIZE on the Layer 
3 trace screen. Received at 
Layer 3 from Layer 2. Same as 
data length in a PDU. Line 
Setup configured for emulate or 
monitor mode. 



Type 

extern volatile unsigned short 

extern volatlle conat unsigned ohar 

extem volatile canst unsigned ohar 

extem volatile unsigned short 

extern volatile unsigned short 

extem unsigned long 

63 OSI 

Table 63-4 (continued) 

Variable Value (hex/decimal) Meaning 

63-19 

60/96 
62/98 
641100 
66/102 
68/104 
5a/106 
50/108 
6.1110 
70/112 
72/114 
74/116 
76/118 
78/120 

0-8 

OSI primitive data unit (PDU) 
IAPX-286 segment number 
received at Layer 3 from Layer 
4. This segment number can 
be converted to a pointer by 
shifting It left 16 bits. Line 
Setup configured for emulate 
mode only. 

n conn req 
n oonn resp 
n data req 
n data aok req 
n expd data req 
n reset req 
n reset resp 
n dlsoonn req 
n debug req 
n unit data req 
n qual data req 
n qual data ack req 
n mgt facUlty req 

OS! primitive code received at 
Layer 3 In a PDU from Layer 4. 
Line Setup configured for 
emulate mode only. 

Path number reoeived at Layer 
3 In a PDU from Layer 4. Line 
Setup oonfigured for emulate 
mode only. 

Interlayer-buffer number (an 
IAPX-286 segment number) 
received at Layer 3 In a PDU 
from Layer 4. This segment 
number can be converted to a 
pointer by .shlftlng It left 16 bits. 
Line Setup oonfigured for 
emulate mode only. 

Offset to the start (header 
node) of the service data unit in 
an Interlayer-message buffer. 
Reoeived at Layer 3 from Layer 
4. Same as data start offset in 
a PDU. Line Setup configured 
for emulate mode only. 

32-blt 11 tick count stored In 
header of most reoent IL buffer 
passed up to Layer 3. 
Preserves at each layer the 
original time when the end of 
the data (BCC) was olocked 
Into the buffer. LIne Setup 
configured for emulate or 
monitor mode. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Table 63-5 
Layer 4 OSI Variables 

Type Variable Value (hex/decimal) Meaning 

extern event 

extern event 

extern event 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile const unsigned char 

63-20 

61/97 
63/99 
65/101 
67/103 
69/105 
6b/107 
6d/10S 
6f/l11 
71/113 
73/115 
75/117 
771119 
79/121 
7a/122 

True when an OSI primitive Is 
received at Layer 4 from Layer 
3. Une Setup confIgured for 
emulate mode only. 

True when an OSI primitive Is 
received at Layer 4 from Layer 
3. Line Setup configured for 
emulate or monitor mode. 

True when an OSI primitive is 
received at Layer 4 from Layer 
5. Line Setup configured for 
emulate mode only. 

OSI primitive data unit (PDU} 
IAPX-286 segment number 
received at Layer 4 from Layer 
3. This segment number can 
be converted to a pointer by 
shifting It left 16 bits. Line 
Setup configured for emulate 
mode only. 

OSI primitive data unit (PDUI 
IAPX-286 segment number 
received at Layer 4 from Layer 
3. This segment number can 
be converted to a pointer by 
shifting It left 16 bits. Une 
Setup configured for emulate or 
monitor mode. 

n conn Ind 
n conn cont 
n data Ind 
n data ack Ind 
n expd data Ind 
n reset Ind 
n reset conf 
n dlsconn lnd 
n debug Ind 
n unit data Ind 
n qual data Ind 
n qual data ack Ind 
n mgt facility Ind 
n error report Ind 

OSI primitive code received at 
Layer 4 In a PDU from Layer 3. 
Line Setup configured for 
emulate mode only, 



Type 

extern volatile const unsigned char 

extern volatile canst unsigned char 

extern volatile const unsigned char 

extern volatUe unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

63 OSI 

Table 63-5 (continued) 

Variable Value (hex/decimal) Meaning 

63-21 

64/100 
651101 
68/102 
69/103 
74/116 
75/117 

0-8 

0-8 

td n data Ind 
rd n data Ind 
td n expd data Ind 
rd n expd data Ind 
td n unit data Ind 
rd n unit data ind 

OSlprlmltlve code received at 
Layer 4 In a POU from Layer 3. 
Line Setup configured for 
emulate or monItor mode. 

Path number received at Layer 
4 In a POU from Layer 3. Une 
Setup configured for emulate 
mode only. 

Path number received at Layer 
4 In a POU from Layer 3. Line 
Setup configured for emulate or 
monitor mode. 

Interlayer-buffer number (an 
IAPX-286 segment number) 
received at Layer 4 In a POU 
from Layer 3. This segment 
number can be converted to a 
pointer by shifting It left 15 bits. 
line Setup configured for 
emulate mode only. 

Interlayer-buffer number (an 
IAPX-28S segment numben 
received at Layer 4 In a POU 
from Layer 3. This segment 
number can be converted to a 
pointer by shifting It left 1 S bits. 
line Setup configured for 
emulate or monitor mode. 

In OSI primitive received at 
Layer 4 from Layer 3, the offset 
to where the service data unit 
begins. Line Setup configured 
for emulate mode only. 

In OSI primitive received at 
Layer 4 from Layer 3, the offset 
to where the service data unit 
begins. line Setup configured 
for emulate or monitor mode. 

Size of the service data unit In 
an Interlayer-message buffer. 
Received at Layer 4 from Layer 
3. Same as data_length In a 
POU. Line Setup configured for 
emulate or monitor mode. 

--- - --- ._----------_.- --.. -------.-.--.--------.--.--.. ~-.--- ... --------'".---_ .. _----_ .. --------_ .. _._--_ ..... _--



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Table 63·5 (continued) 

Type Variable Value (hex/decimal) Meaning 

extern volatile unsigned short 

extern volatile oonst unsigned ohar 

extern volatile oonst unsigned char 

extern volatile unsigned short 

extern volatile unsigned short 

extern unsigned long 

63-22 

80/128 
82/130 
84/132 
88/136 
8e/142 
90/144 
921146 
98/152 

0-8 

OSI primitive data unit (PDUl 
IAPX-286 segment number 
reoelved at Layer 4 from Layer 
5. This segment number can 
be converted to a pOinter by 
shifting It left 16 bits. Line 
Setup configured for emulate 
mode only. 

t oonn req 
t oonn resp 
t data req 
t expd data req 
t dlsconn req 
t debug req 
t unit data req 
t mgt facility req 

OSI primitive code received at 
Layer 4 In a PDU from Layer 5. 
Line Setup configured for 
emulate mode only. 

Path number received at Layer 
4 In a PDU from Layer 5. Line 
Setup configured for emulate 
mode only. 

Intenayer-buffer number (an 
iAPX-286 segment number) 
received at Layer 4 In a PDU 
from Layer 5. This segment 
number oan be converted to a 
pointer by shifting It left 16 bits. 
Line Setup configured for 
emulate mode only. 

Offset to the start (header 
node) of the service data unit In 
an Intenayer-message buffer. 
Received at Layer 4 from Layer 
5. Same as data start offset In 
a PDU. Line SetuP configured 
for emulate mode onty. 

32-bit /1 tick count stored In 
header 01 most recent IL buffer 
passed up to Layer 4. 
Preserves at each layer the 
original time when the end of 
the data (BeC) was olocked 
Into the buffer. Una Setup 
configured for emulate or 
monitor mode. 



Type 

extern event 

extem event 

extem event 

extem volatile unSigned short 

extern volatile unsigned short 

extern volatile const unsigned char 

extern volatHe const unsigned char 

Table 63-6 
layerS OSI Variables 

63 OSI 

Variable Value (hex/decimal) Meaning 

63-23 

81/129 
83/131 
85/133 
89/137 
8f/143 
91/145 
93/147 
95/149 
99/153 

841132 
85/133 
88/136 
89/137 
941148 
95/149 

True when an OSI primitive is 
received at Layer 5 from Layer 
4. Une Setup configured for 
emulate mode only. 

True when an OSI primitive Is 
received at Layer 5 from Layer 
4. Une Setup configured for 
emUlate or monitor mode. 

True when an OSI primitive Is 
received at Layer 5 from Layer 
I). Une Setup configured for 
emulate mode only. 

OSI primitive data unit (PDU) 
IAPX-286 segment number 
reoeived at layer 5 from Layer 
4. This segment number can 
be oonverted to a pointer by 
shifting It left 16 bits. Una 
Setup configured for emulate 
mode only. 

OSI prtmitlve data unit (PDU) 
IAPX-286 segment number 
received at layer 5 from layer 
4. This segment number can 
be converted to a pointer by 
shifting it left 16 bits. Line 
Setup configured for emulate or 
monitor mode. 

t oonn Ind 
t conn conf 
t data ind 
t expd data Ind 
t dlsconn Ind 
t debug iOO 
t unit data Ind 
t error report ind 
t mgt faollity ind 
OSI primitive code received at 
layer 5 In a PDU from layer 4. 
LIne Setup oonfigured for 
emUlate mode only. 

td t data Ind 
rd t data 100 
td t expd data Ind 
rd t expd data Ind 
td t unit data 100 
rd t unit data Ind 
OSI primitive code reoeived at 
Layer 5 In a PDU from layer 4. 
Une Setup configured for 
emulate or monitor mode. 

._----,----



INTERVIEW 7000 Series Advanced Programming; ATLC-107-951-108 

Table 63-6 (continued) 

Type Variable Value (hex/decimal) Meaning 

extern volatile const unsIgned char 

extern volatile const unsIgned char 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

63-24 

0-8 

0-8 

Path number received at Layer 
5 In a PDU from Layer 4. Une 
Setup configured for emulate 
mode only. 

Path number received at Layer 
5 in a PDU from Layer 4. Line 
Setup configured for emulate or 
monitor mode. 

Interlayer-buffer number (an 
IAPX-286 segment number) 
received at Layer 5 In a PDU 
from Layer 4. ThIs segment 
number can be converted to a 
pointer by shifting It left 16 bits. 
Line Setup configured for 
emulate mode only. 

Interlayer-buffer number (an 
IAPX-266 segment number) 
received at Layer 5 In a PDU 
from Layer 4. This segment 
number can be converted to a 
pointer by shifting It left 16 bits. 
Line Setup configured for 
emulate or monitor mode. 

In OSI primitive receIved at 
Layer 5 from Layer 4. the offset 
to where the service data unit 
begins. Line Setup configured 
for emulate mode only. 

In OSI primitive received at 
Layer 5 from Layer 4. the offset 
to where the service data unit 
begins. Une Setup configured 
for emulate or monitor mode. 

Size of the service data unit In 
an Interlayer-message buffer. 
Received at Layer 5 from Layer 
4. Same as data _length in a 
PDU. LIne Setup configured for 
emulate or monitor mode. 

OSI primitive data unit (PDUj 
IAPX-266 segment number 
received at Layer 5 from Layer 
6. This segment number can 
be converted to a pointer by 
shifting it left 16 bits. Une 
Setup configured for emulate 
mode only. 



Type 

extern volatile const unsigned char 

extern volatHe const unsigned char 

extern volatile unsigned short 

extern volatile unsigned short 

extern unsigned long 

63 OSI 

Table 63·6 (continued) 

Variable Value (hex/decimal) Meaning 

63-25 

aO/160 
821162 
84/164 
a8/168 
8c/172 
ael174 
bO/176 
b2l178 
b8f184 

0-8 

s conn req 
s conn resp 
s data req 
s expd data req 
s release req 
s release resp 
s debug req 
s unit data req 
s mgt facility req 

OSI primitive code received at 
Layer 5 In a PDU from Layer 6. 
Une Setup oonfigured for 
emulate mode only, 

Path number received at Layer 
5 in a POU from Layer 6, Une 
Setup configured for emulate 
mode only, 

Intertayer-buffer number (an 
IAPX-286 segment number) 
reoelved at Layer 5 in a POU 
from Layer 6, This segment 
number can be converted to a 
pointer by shifting It left 16 bits. 
Une Setup configured for 
emulate mode only. 

Offset to the start (header 
node) of the service data unit in 
an interlayer-message buffer. 
Received at Layer 5 from Layer 
6. Same as data start offset in 
a POU. LIM SetUp coriftgured 
for emulate mode only. 

32-bit 11 tick count stored In 
header of mOst recent IL buffer 
passed up to Layer 5. 
Preserves at eaoh layer the 
original time when the end of 
the data IBCC) was clooked 
Into the buffer. Line Setup 
oonflgured for emulate or 
monitor mode. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Table 63·7 
Layer 6 OSI Variables 

Type Variable Value (hex/decimal) Meaning 

extern event 

extern event 

extern event 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile const unsigned char 

extern volatile const unsIgned char 

63-26 

a1/161 
a3/163 
a5/165 
a9/169 
ad/173 
af/175 
bl/177 
b3/179 
bS/18l 
b9/l85 

a4/164 
a5/165 
a8/168 
a9/169 
b4/180 
b5/181 

True when an OSI primitive Is 
received at Layer 6 from Layer 
5. Une Setup configured for 
emulate mode only. 

True when an OSI primltive Is 
received at Layer 6 from Layer 
5. Une Setup configured for 
emulate or monitor mode. 

True when an OSI primitive is 
received at Layer 6 from Layer 
7. LIne Setup configured for 
emulate mode only. 

OSI primitive data unit (POU) 
IAPX-286 segment number 
received at Layer 6 from Layer 
5. This segment number can 
be converted to a pointer by 
shifting It left 16 bits. Une 
Setup configured for emulate 
mode only. 

OSt prlmitl.ve data unit (POU) 
IAPX-286 segment number 
received at Layer 6 from Layer 
5. This segment number can 
be converted to a pOinter by 
shifting It left 16 bits. Line 
Setup configured for emulate or 
monitor mode. 

s conn Ind 
s conn conf 
s data Ind 
s expd data Ind 
$ release Ind 
s release conf 
s debug Ind 
s unit data Ind 
s error report Ind 
s mgt facility Ind 

OSI primitive code received at 
Layer 6 In a POU from Layer 5. 
Une Setup configured for 
emulate mode only. 

td s data Ind 
rd s data Ind 
td s expd data Ind 
rd s expd data Ind 
td s unit data Ind 
rd s unit data Ind 
OSI primitive code received at 
Layer 6 In a POU from Layer S. 
Line Setup configured for 
emulate or monitor mode. 



Type 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatUe unsigned short 

extern volatile unsigned short 

extern volatile unsIgned short 

63 OSI 

Table 63-7 (continued) 

Variable Value (hex/decimal) Meaning 

0-8 

0-8 

63-27 

Path number received at Layer 
6 In a PDU from Layer 5. Une 
Setup configured for emulate 
mode only. 

Path number received at Layer 
6 In a POU from Layer 5. Une 
Setup configured for emulate or 
monitor mode. 

Interlayer-buffer number (an 
IAPX-286 segment number) 
received at Layer 6 In a POU 
from Layer 5. This segment 
number can be converted to a 
pointer by shlftinQ It left 18 bits. 
line Setup configured for 
emulate mode only. 

Interlayer-buffer number (an 
iAPX-266 segment number) 
received at Layer 6 In a POU 
from Layer 5. This segment 
number can be converted to a 
pointer by shifting It left 16 bits. 
Une Setup configured for 
emulate or monitor mode. 

In OSI primitive received at 
Layer 61rom Layer 5, the offset 
to where the service data unit 
begins. Line Setup configured 
for emulate modit only. 

In OSI primitive received at 
Layer 6 from Layer 5. the offset 
to where the service data unit 
begins. LIne Setup oonflgured 
for emulate or monitor mode. 

Size of the servioe data unit In 
an Interlilyer-message buffer. 
Received at Layer 6 from Layer 
5. Same as dins_'ength in a 
PDU. Line Setup configured for 
emulate or monitor mode. 

OSI prtmltlve data unit (POU) 
IAPX-286 segment number 
received at Layer 6 from layer 
7. This segment number oan 
be oonverted to a pointer by 
shifting It left 16 bits. Line 
Setup configured for emulate 
mode only. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Table 63·7 (continued) 

Type Variable Value (hex/decimal} Meaning 

extern volatile canst unsigned char 

extern vo/atlle canst unsigned char 

extern volatile unsigned short 

extern volatile unsigned short 

extern unsigned long 

63-28 

00/192 
c2/194 
04/196 
c8/200 
00/204 
ce/206 
dO/208 
d2/210 
d8/216 

0-8 

p conn req 
p conn resp 
p data req 
p expd data req 
p release req 
p release resp 
p debug req 
p unit data req 
p mgt facility req 

OSI primitive code received at 
Layer 6 from Layer 7 In a PDU. 
Line Setup configured for 
emulate mode only. 

Path number received at Layer 
6 from Layer 7 In a PDU. Line 
Setup configured for emulate 
mode only. 

Interlayer-buffer number (an 
IAPX-286 segment number) 
received at Layer 6 from Layer 
7 In a PDU. This segment 
number can be converted to a 
pOinter by shifting It left 16 bits. 
Line Setup configured for 
emulate mode only. 

Offset to the start (header 
node I of the service data unit In 
an Interlayer-message buffer. 
Received at Layer 6 from Layer 
7. Same as data start offset In 
a PDU. Line Setup configured 
for emulate mode only. 

32-blt 11 tick count stored In 
header of most recent IL buffer 
passed up to. Layer 6. 
Preserves at each layer the 
original time when the end of 
the data (BCC) was clocked 
Into the buffer. Une Setup 
configured for emulate or 
monitor mode. 



Type 

extern event 

extern event 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile oonst unsigned char 

extern volatile const unsigned ohar 

extern volatile const unsigned char 

Table 63-8 
Layer 7. OSI Variables 

63 OSI 

Variable Value (hex/decimal) Meaning 

63-29 

011193 
03/195 
c51197 
09/201 
od1205 
of!207 
d11209 
d3/211 
d5/213 
d9/217 

04/196 
05/197 
08/200 
09/201 
d4/212 
d51213 

0-8 

True when an OSI primitive is 
reoelved at Layer 7 from Layer 
6. Une Setup oonfigured tor 
emulate mode only. 

True when an OSI primitive is 
received at Layer 7 from Layer 
6. Line Setup configured for 
emulate or monitor mode. 

OSI primitive data unit (POU) 
IAPX-286 segment number 
received at Layer 7 from Layer 
6. This segment number can 
be oonverted to a pointer by 
$hitting It left 16 bits. Une 
Setup oonfloured for emulate 
mode only. 

OS! primitIve data unit (POU) 
IAPX-286 segment number 
received at Layer 7 from Layer 
6. This segment number can 
be converted to a pointer by 
shifting It left 16 bits. Line 
Setup configured for emulate or 
monitor mode. 

p conn Ind 
p conn conf 
p data Ind 
p expd data Ind 
p release Ind 
p release conf 
p debug Ind 
p unit data ind 
p error report Ind 
p mgt facility Ind 

Ost primitive code received at 
Layer 7 In a POU from Layer 6. 
Line Setup configured for 
emulate mode only. 

td p data Ind 
rei p data Ind 
td p expd data Ind 
rd p expd data Ind 
td p unit data Ind 
rd p unit data Ind 
OSI primitive code received at 
Layer 7 In a POU from Layer 6. 
Un. Setup configured for 
emulate or monitor mode. 

Path number reoeived at Layer 
7 In a POU from Layer 6. Line 
Setup configured for emulate 
mode only. 



INTERVIEW 7000 Series Advanced Proarammlng: ATLC-107-951-10B 

Type 

extern volatUe .const unsigned char 

extern voiatHe unsigned short 

extern volatile unsigned short 

extern volatile unsigned Short 

extern volatile unsigned short 

extern volatile unsigned .hort 

extern unsigned long 

63.3 Routines 

Table 63·8 (continued) 

Variable Value (hex/decimal) Meaning 

mJo-p-prmtv-path Path number received at Layer 
7 In a PDU from Layer 6. line 
Setup conflQured for emulate or 
monitor mode. 
Interlayer-buffer number (an 
IAPX-286 segment number) 
received at Layer 7 In a PDU 
from Layer 6. This segment 
number can be converted to a 
pointer by shifting It left 16 bits. 
line Setup confioured for 
emutate mode only. 
Interlayer-buffer number (an 
IAPX-286 .egment number) 
received at Layer 7 In a PDU 
from Layer 6. This segment 
number can be converted to a 
pointer by shifting It left 16 bits. 
line Setup configured for 
emulate or monitor mode. 
In OS! primitive received at 
Layer 7 from Layer 6. the offset 
to where the service data unit 
begins. line Setup configured 
for emulate mode only. 
In OSI primitive received at 
Layer 7 from Layer 6. the offset 
to where the service data unit 
begins. LIne Setup. conflQured 
for emulate or monitor mode. 
SIze of the service data unit In 
an Interlayer-message buffer. 
Received at Layer 7 from Layer 
6. Same as data length In a 
PDU. Une Setup -configured for 
emulate or monitor mode. 
32-blt 11 tick count stored In 
header Of most recent IL buffer 
passed up to Layer 7. 
Preserves at each layer the 
original time when the end of 
the data (BCC) was clocked 
Into the buffer. line Setup 
configured for emulate or 
monitor mode. 

OSI routines available at each layer make sending primitives to a layer above or 
below possible (see Figure 63-3). The routine name and its argUments provide the 
same information as the softkey selections on the Protocol Spreadsheet. (In the early 
phases of compiling the program, the. C translator uses the routines to convert the 
spreadsheet softkey-token primitives into C.) All routines are protocol-independent. 

63-30 



$< .• ~\ ~' i ' 
I 

63 OSI 

(A) Layer-Independent 081 Routines 

The following interlayer buffer service routines operate at any layer, regardless of 
protocol (or in the absence of a protocol package). 

Synqpsis 

extern void Jet_il_msLbuff(buffer _number ytr, maintain_bUytr); 
unsigned short" bUffer_numberytr; 
unsigned short" maintainj,itytr; 

Description 

The Jet_iCmsg_buff routine gets a free interlayer message buffer from the pool 
and returns the buffer number to the caller for use in subsequent calls to other 
interlayer buffer services. It also returns a maintain bit for use in the freeing 
operation. 

The first parameter is a pointer to the location where the buffer number is to be 
stored. The buffer number that is returned is actually an iAPX-286 segment 
number which can be converted to a pointer by shifting it 16 bits to the left. If 
there is no free buffer available, the routine will wait for one to become 
available. 

The second parameter is a pointer to the location where the maintain bit will be 
stored. Since it must be· used in the freeing operation, the maintain bit value 
should not be modifie.d. The zero bit in this variable indicates your maintain 
bit. 

Example 

The variables in which the returned buffer number and maintain bit will be 
stored must be declared. When calling the routine, reference the addresses of 
these variables. 

} 

unsigned short iI_buffer_number; 
unsigned short relay_baton; 

LAYER: 4 
ST ATE: get a buffer 

CONDmONS; KEYBOARD· • 
ACTIONS: 
{ 
Jet _iCmsgjJlt/f( &il_buffer _number, &retay _baton); 

} 

The routine will get a buffer number and store it in variable ii_buffer _number. 
It will also return a maintain bit and store it in variable relay_baton. 

63-31 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

SynQPsis 

extern void _start_il_bufLlist(il_buffer_number, stt1rt_offsetJ'tr); 
unsigned short ii_buffer _number; 
unsigned short • start_offset"'ptr; 

Description 

The jtart_il_bufLlist routine starts a linked list of text inside an interlayer 
message buffer. The list is made up of a header node and text nodes. The 
header node contains offsets to the first and last text nodes. Each text node 
contains a pointer to the actual text, the length of the text, and the offset to the 
next text node. This routine actually creates the header node inside the 
interlayer message buffer and initializes the first and last text node offsets to 
zero, indicating an empty list. It will return the offset to the list header node for 
use in subsequent list service calls. 

The first parameter is the interlayer message buffer number that will contain the 
list. 

The second parameter is a pointer to the location where the offset to the list 
header will be stored. The returned offset will be zero if there is insufficient 
room in the buffer for the header node and one text node. Otherwise, it is the 
offset from the beginning of the message buffer to the start of the header node. 

To convert the offset into a pointer. shift the buffer number 16 bits to the left 
and add the offset: 

Example 

Get a buffer and start a linked list. The variable in which the returned offset 
will be stored must be declared. When calling the routine, reference the address 
of this variable. 

} 

unsigned short il_buffer _number; 
unsigned short relay_baton; 
unsigned short data_start_offset; 

63-32 



'~' , 

STATE: start_a_list 
CONDITIONS: KEYBOARD' " 
ACTIONS: 
{ 
Jet_il_msLbuff(&.il_bufferJlumber, &relay_haton); 
_start _il_bufLlist (ii_buffer _number, &.data_start _offset); 

'* See _insert_il_bufLlist_cnt routine on how information is inserted in the buffer. *; 

} 

63 OSI 

The routine will get the offset to the header node and store it in variable 
data~start_offset. 

Syngpsis 

extern unsigned short _dupjl_buff_li!tjtart(iJ_buffer _number, start_offset, 
new _start_offsetJltr): 

unsigned short ii_buffer_number; 
unsigned short start_offset; 
unsigned short" new _start_ofJsetJltr; 

Description 

This routine duplicates the header node of a pointer list. In order for a layer to 
retain the ability to resend a buffer-that is, to reference again the same list 
header with the same fll'St-nade offset-it must keep its own linked list safe from 
data inserted at a layer below. The _dup_iCbuff_list_start routine allows the 
lower layer to start its own list. 

If the lower layer will insert data into the buffer, it need duplicate only the list 
header ("listjtart"). not the entire list. If the layer will append data to the 
end of the buffer. it must duplicate the complete linked list via the 
_dup_il_bufLlist routine. 

The first parameter is the interlayer message buffer number in which the header 
node will be duplicated. 

The second parameter is the offset to the header node to be duplicated. 

The third parameter is a pointer to the location where the offset to the new 
header node will be stored. 

Returns 

This routine returns zero if there is not enough room in the buffer for the 
duplicated header node and at least one list node. 

63-33 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Example 

Duplicate the header node of a buffer passed down from Layer 3. 

} 

extern lIolatile unsigned short up_dl_il_buff; 
extern volatile unsigned short up_dCsdu; 
unSigned short 12_data_start_offset; 

LAYER: 3 
STATE: message 

CONDITIONS: KEYBOARD· • 
ACTIONS: DL_DA T A REO· CiS !'t,(FOX)) • 

LAYER: 2 
STATE: duplicate_header 

CONDITIONS: DL_DATA REO 
ACTIONS: 
{ 
_dup_il_bufLlisl_start{up_dl_il_buff, up_dl_sdu, &12_data_start_offset); 

/* See _insert_il_bufLlist_cnt routine on how information is inserted in the buffer. "/ 

} 

dup n buff list - - - -
Syn9.Qsis 

extern unsigned short _ dup _il_bufLlist (ii_buffer _number. start _offset, new _start_offset Jlr); 
unsigned short ii_buffer _number; 
u1ISigned short start_offset; 
unsigned short • new _start_offsetJtr; 

DescriptiQn 

This routine duplicates an entire pointer list. In order for a layer to be able to 
retain the ability to resend a buffer-that is, to reference again the same list 
header with the same first- and last-node offsets-it must keep its own linked 
list safe from data inserted and appended at a layer below. The 
_dup_il_buff_list routine allows the lower layer to have its own list. 

If the lower layer will append data to the buffer, it should duplicate the entire 
linked list. If the layer will only insert data into the buffer, it need only 
duplicate the header node via the _dup_iCbufLlist_start routine. 

The first parameter is the interlayer message buffer number in which the list will 
be duplicated. 

The second parameter is the offset to the header node of the list to be 
duplicated. 

63-34 



f~ 
< ! 

~, 
i 

63 OS! 

The third parameter is a pointer to the location where the offset to the header 
node for the new list will be stored. 

Returns 

This routine returns zero if the duplication is successful. If there is not enough 
room in the buffer to duplicate the list, one is returned. 

Example 

Duplicate the entire pointer list of a buffer passed down from Layer 3. 

{ 

} 

extern ..,olatile unsigned short up_dl_il_bufj; 
extern ..,olatile unsigned short up_dl_sdu; 
unsigned short 12_data_startj>ffset; 

LAYER: 3 
STATE: message 

CONDITIONS: KEYBOARD' " 
ACTIONS: DI._OATA REQ 00 .. "'~«FOX»· 

LAYER: 2 
STATE: duplicate Jist 

CONDITIONS: DL_DAT A REO 
ACTIONS: 
{ 
_dup_il_buJl_Ust(up_dUl_buff, up_dl_sdu, &12_datajtart_offset}; 

/* See _oppend_il_bufLlisl_cnt routine on how information is appended to the buffer. */ 

_open _space_in JI_ buff 

Synqpsis 

extern ..,aid _open _spact_in_il_buJlOCbuJler _number, length, space _ affse(ytr); 
unsigned short it_buffer_number; 
unsigned short length: 
unsigned short * space_ofjsetytr; 

Description 

The _open_space_in_il_buff routine opens up the requested amount of space in 
the specified interlayer message buffer. It returns an offset from the beginning 
of the buffer to the start of the open space. 

The first parameter is the interlayer message buffer number in which space is to 
be made. 

63-35 

-< < --<------------<-<-<-_._<----- <-- -------_ .. _---<_._<---<-----------,-----



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

The second parameter is the amount of space (number of bytes) requested. 

The third parameter is a pointer to the location where the returned offset will be 
stored. The returned offset will be zero if there is insufficient room in the 
buffer. 

To convert the offset into a pointer. shift the buffer number 16 bits to the left 
and add the offset: 

Example 

Always open space in the buffer if you are going to copy data (usually header 
information) into the buffer. If you are not going to copy data into the buffer. 
but reference its location in memory outside the buffer (usually user data), you 
do not need to open space. 

The variable in which the returned offset will be stored must be declared. When 
caIling the routine. reference the address of this variable. The length may be 
entered as a numeric value. in which case a length variable need not be 
declared. 

For example, a buffer at Layer 3 will have three X.25-header bytes inserted. 
The call for space to hold the header would look like this: 

{ 

} 

unsigned short il_buffer_number; 
unsigned short relay_baton; 
unsigned short data_start_offset; 
unsigned short available"-space_o!!set; 

STATE: get_space 
CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 
Jet_il_msg_buff( &i1_buffer _number, &rell1Y _baton); 
_stl1rt_il_bufLlist(il_buffer _number, &data_start_offset); 
_opeIlJpace_ill_il_buff(il_buffer_number, 3, &available_space_offset ); 

, .. See _illsert_il_bufLlist_cnt routine on how information is inserted in the buffer. */ 

The routine will get the offset to the next available space in the buffer and store 
it in variable availablejpace_o!!set. 

Once space has been opened. the buffer-number and available-space variables 
can be converted into an open-space pointer. With this pointer. data can be 
copied into the space. The pointer can then be referenced in an 
_insertJi_bu!!_list_cnt routine. so that the opened space becomes threaded onto 
the linked list in the IL buffer. See the programming example under 
_insert_iIj'u!! jist_cnt. 

63-36 



~, 
.. ! 

Syncmsis 

extern void Jree_il_msLbuff(il_bufferJlumber, relay_baton); 
unsigned short il_buffer_number; 
unsigned short relay_baton; 

Description 

63 OSf 

The Jree_iCms8_buJJ routine returns an interlayer message buffer to the pool of 
free buffers. Before actually returning the buffer to the pool, this routine 
verifies that all maintain bits have been reset. assuring that all users have freed 
this buffer. 

The first parameter is the interJayer-buffer number to be freed. 

The second parameter is the maintain bit associated with the buffer user to be 
freed. 

Example 

SynQpsis 

extern. void _set_maint_bufLbit(il_buffer _number. new _bit..ptr); 
unsigned short il_buffer _number; 
unsigned short • new_bit "'plr; 

Descdption 

The jet_maint_bufLbit routine sets a new maintain bit for a given interlayer 
message buffer. It returns that bit to the caller to be used in the freeing 
operation. 

The maintain bit allocated in the ....seCil_msg_buff routine should be considered 
valid only for the layer at which it was obtained. Once you pass a buffer, the 
maintain bit win hold the buffer at the next layer only until action on it has been 
processed. (In Spreadsheet terms, the buffer will be held until the ACTIONS 

block has been processed in response to the first CONDITIONS block identifying 
the buffer. In any other CONDITIONS block referring to the buffer. the buffer 
will not be found unless an additional maintain bit was set.) The maintain bit 

63-37 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

eventually will be freed automatically whether or not any action is taken on it at 
the next layer. To hold a buffer at a particular layer, or to continue passing the 
buffer (in either direction), a new maintain bit must be set. The same maintain 
bit cannot be used continuously, since it will be freed after the first process on it 
(an ACTION to send. for example). 

If you wish to keep a buffer available for your use while also sending it to 
another layer, set two maintain bits. One will be used to pass the buffer; the 
other will "maintain" the buffer for other processes. The latter will have to be 
freed via the Jree_il_msLbuff routine. 

The first parameter is the interlayer-buffer number in which the new bit will be 
set. 

The second parameter is a pointer to the location where the returned maintain 
bit will be stored. There are sixteen maintain bits reserved for each interlayer 
buffer. Each bit is identified by a two-byte variable with a single zero. The first 
maintain bit allocated is the least significant, so the value returned is 
hexadecimal FFFE (binary 11111111 11111110). The last maintain bit 
allocated is 7FFF (01111111 11111111). If all the maintain bits are already in 
use, FFFF will be returned. 

The maintain bit value should not be modified. It must be used in the freeing 
operation to make sure the buffer is returned to the free buffer pool. 

Example 

The variable in which the returned maintain bit will be stored must be declared. 
When calling the routine, reference the address of this variable. For example. 
you receive a buffer at Layer 2 from Layer 3 (up _dCil_buff) and insert 
information into it. Before passing the buffer to Layer 1. set two maintain bits. 
The one stored in variable maintain_bit will hold the buffer for the purpose of 
repeated resends of the frame, if necessary. and win have to be freed via the 
Jree_iCms8_buff routine. When you pass the buffer down, use the bit in 
variable 12Jelay_baton. When you resend the frame. set a new resend_baton 
bit and pass that down, still holding maintain_bit in reserve for subsequent 
resends. 

unsigned short 12_relay_baton; 
unsigned short resend_baton; 
unsigned short maintain_bit; 
extern lIolatile unsigned short up_dl_il_buff; 
extern volatile unsigned short up_dl_sdu; 
U1Isigned short 12_data_start_offset; 
unsigned short allailablejpace_o!!set; 
static unsigned char 12_data{2] = {OxOI, OxOO}; 
int i; 
unsigned char" ptr _12; 

63-38 



#define makeJtr(number,ofjset) ((Mid "')(((long)numbe7« 16) + oJJset)) 
} 
LAYER: 3 

ST ATE: send fox message 
CONDIT10NS:-KEVBOARD· * 

ACTIONS: DL_DATA REO oCt .... "6 ((FOX)) " 
LAVER: 2 

STATE: send_a_buffer 
CONDITIONS: DL_DATA ReQ 
ACTIONS: 
{ 

63 OSI 

/* See _i7lsert_il_buJf_list_cnt routine for an explanation of how information is inserted in the 
buffer. *1 

_dup _il_bufj_list_start (up _dCi/_buff, up _dl_sdu. &12_data _start_offset); 
_open_spaceJ7I_il_bufj(up_dl_il_bufj. 2, &avaiTable_space_ofjstt): 
plr_12 = malce-Pt7(Up_dCil_bujJ. aMJlab/e_space_offsl!t); 
for(i = 0; i < 2; iH) 

{ 
*pt7_l2 '" data_12[i}; 
pI7_12++; 

} 
plr_12 -=2; 
_inserUI_bufLlist_cnt(up_dl_il_buJf. 12_data_start_ofjset. plr_12. 2); 
_set_maint_bufj-'Jjt(up_dCil_buJJ •. &maintain_bit); 
_set_maint_bufj_bit(up _dl_iCbuff. &12Jelay_baton); 
sendJh-prmtv_below(up_dUCbuJJ. 12Jelay_bato7l, 12_data_start_ofjset, 0, Ox24, OJ; 

} 
LAYER: 1 

ST A TE: resend buffer 
CONDITIONS: RECEIVE STRING iEl°;J((XXXX1001))' 
ACTIONS; 
{ 
Jtt_main t_bufLbit (up_dl_il_bufj, &resend .... bato7l); 
l1_il_transmU(up_dl_il_buff. resend_baton, 12_data_start_ofjset. 1); 

/* See Section 59, MonitorlTransmlt Line Data, for an explanation of the l1_il_transmit 
routine. */ 

} 
CONDITIONS: RECEIVE STRING m«XXXXQ001»· 
ACTIONS: 
{ 
Jree_il_msg_buff(up_dUI_buff, maintain_bit); 

/. See Jree_il_ms8_buff for an explanation of this routine. -/ 

} 

Syn<wsis 

extern unsigned short _insert_il_buff_list_C7It(iCbuffer _number, data_start_oJfset, textJtr. 
text_length); 

unsigned short ii_buffer _number; 
unsigned short data_start_ofjset; 
unsigned char" text-ptr; 
unsigned short text_length; 

63-39 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Description 

The _insert_il_buff_list_cnt routine inserts a text node at the beginning of a 
linked list of text inside of an interlayer message buffer. It will set the text 
pointer and byte-count in the text node to the values specified. 

The first parameter is the interlayer-buffer number in which the linked list will 
be inserted. 

The second parameter is the offset to the header node for the linked list. from 
the beginning of the buffer. 

The third parameter is a pointer to a text. 

The fourth parameter is the length of the text. 

Returns 

If the insert is successful. a value of 0 is returned; if it is not successful, a value 
of 1 is returned. If you want to check the returned value. do so at the time the 
routine is called, as in the following example at Layers 2 and 3. 

Example 

If text is to be copied into the buffer. a pointer to the text must be declared. If 
not, when calling the _insert_iI_buff_list_cnt routine, reference the address of 
the text. The length of the text may be entered as an integer, in which case a 
length variable need not be declared. 

Always open space in the buffer if you are going to copy data (usually header 
information) into the buffer. If you are not going to copy data into the buffer, 
but reference its location in memory outside the buffer (usually user data). you 
do not need to open space. 

In the following spreadsheet example, an interlayer-buffer number is obtained at 
Layer 5. a header node is created in the buffer, and the address of a fox 
message text (located in memory outside of the buffer) is inserted into a text 
node in the buffer. 

unsigned short ii_buffer _number; 
unsigned short relay_baton; 
unsigned short 14_relay_baton 
unsigned short 13_relay_baton; 
unsigned short 12_relay_baton; 
unsigned short dataJtart_oJJset; 
unsigned short 12_dato_start_oJJset; 

63-40 



unsigned short Illuzilable_space_offset; 
static unsigned char datal! = "(FOX»"; 
static unsigned char i3_dataI3] = {OxlO, Ox04, OxOO}; 
static unsigned char 12_data[2] = {OxOl, OxOO}; 
int i; 
int length: 
extern 'Volatile unsigned short up_t_il_bufJ; 
extern volatile unsigned short up_n_il_bujJ; 
extern lIolatile unsigned short up_dl_il_buff; 
extern volatile unsigned short up_n_sdu; 
extern volatile unsigned short up_dl_sdu; 
extern volatile unsigned short up_t_sdu; 
unsigned char" ptr_13 • .. ptr.J2; 

63 OS! 

'* Whenever makeytr is encountered, fhe fifst parameter will be shifted 16 bits to the left. . 
The second parameter will be added,and the result east Into a. pointer. */ 

#define makeytr(number,offset) ((void *)((long)number« 16) + offset}} 
} 
LAYER: 5 

STATE: begin_message 
CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 
Jet_il_msLbufJ(&Uj>uffer_number. &relay_baton); 
_starUE_bufLtin (iCbtt/fe; _number, &data _start_offset); 

/* Do not include the terminating null character in the length determination of a string. */ 

length = sizeof(data) - 1; 

,. The address of data outside of the bufter is given for insertion. The data itself is not copied 
into the buffer. The buffer is tb,en palJsed down to Layer 4 (5ee sendJyrmtv_below for an 
explanation of this routine). */ 

_insert_il_bufLlist_cnt(il_buffer _number, data _start_offset. &data [0], length); 
send_tyrmtvjJelow(il_hujfer_number, relay_haton, data_start_offset, 0, Ox84 , 0); 

} 

At Layer 4 a new maintain bit is s~t to use in passing the buffer to Layer 3. 
Since no data is inserted. the same data_start_ollset is used (in the form of the 
variable up_t_sdu). The buffer is then passed down to Layer 3 (see 
send_nJ1l'mtv_belcw for an explanation of this routine). 

LAYER: 4 
STATE: pass 

CONDITIONS: T_DATA_REQ 
ACTIONS: 
{ 

} 

_set_maint_bufLbit(up_t_il_Duff, &14Jelay_baton); 
send_nJrmtv_below(up_Cil_buff. 14Jelay_baton, up_t_setu, 0, Ox64 , 0); 

At Layer 3, space is opened for an X.2S packet header. A pointer to the 
op$ned space is createdandthe~ta is inserted into the linked list passed down 
from Layer 4. 

&3...41 



INTERVIEW 7000 Series Advanced Pr0Q,rammina: ATLG-107-951-108 

LAYER: 3 
STATE: Insert_and_send 

CONDITIONS: N_DATA_REQ 
ACTIONS: 
{ 
_open_space_in_il_bujj(up_n_il_buff, 3, &available_space_offset); 
ptr_i3 = makeJtr(up_n_il_bl.iff, allailable_space_o!fset); 
for(i = 0; i < 3; i++) 

{ 

} 

"ptr_13 = I3_data!;]; 
ptr_13tt; 

/* The location of the data in the buffer Is referenced in the insert routine, so the pointer must 
be moved back to the beginning of the opened space. The offset to the Layer 3 header node is 
given in the insert routine. If the insertion is not successful, an alarm will sound and a message 
will be displayed on the prompt line of the screen. */ 

ptr_lJ -=3; 
ifUnsert_il_bufLlist_cnt(up_n_il_buff. up_n_sdu, ptr_IS. 3) /: 0) 

{ 
sound_alarm(); 
displaYJrompt("lnsert jailed at Layer 3. "); 

} 

/* A new maintain bit is set for passing the buffer. The buffer is then passed down to Layer 2 
(see send_dlJrmtv _below for an explanation of this routine). "1 

} 

_set_main t_bujLbit (up_n_il_bujf, &13Jelay_batonj; 
send_dlJrmtll_below(up_n_il_bufj, 13Jelay_oaton. up_n_sdu, 0, Ox44, 0); 

At Layer 2. a new linked list is started. The Layer 2 header could be inserted 
into the linked list passed down from Layer 3; but if Layer 3 wants to retain the 
ability to resend a buffer-that is, to reference again the same list header with 
the same first-node offset-it must keep its own linked list safe from data 
inserted at Layer 2. 

LAYER: 2 
STATE: insert more 

CONDITIONS: DL_DATA_REQ 
ACTIONS: 
{ 

/* The _dup_il_bujLlist_start routine allows Layer 2 to start its own list. Part of this routine 
copies the Layer 3 header into the Layer 2 header node. .. I 

_dup_il_bufLlist_start(up _dUl_buff. up _dl_sdu. &12_data_start_offset); 

/* Space is opened in the buffer. A pointer to this location is created and the data is copied 
into the buffer. "I 

_open_space_i"_il_bufj(up_dl_il_buff. 2, &Qvailable_space_ofjsct); 
ptr_12 = makeJtr(up_dl_il_buff. a1Jailable_space_ofjset); 
for(; = 0; j < 2; i+t) 

{ 

} 

"ptr_l2'" 12_data[il; 
ptr_12+t; 

/* The location of tbe data in the buffer is referenced in the insert routine, so the pOinter must 
be moved back to tbe beginning of ~e opened spac::e. Tbe offset to the Layer 2 header node is 
given in the insert routine. If the insertion is not successful, an alarm will sound and a message 
will be displayed on tbe prompt line of the screen. ,. I 

63-42 



....... 
f!~ j >' 

, 

63 OSI 

pt,_12 -=2; 
ifCinserUl_bufLlist_cnt(up_dUl_buff, 12_data_start_offset, ptr_I2, 2) 1= OJ 

{ 
sound_alarm (); 
pos_cursor(O, 30) ; 
displays(" InseTt failed at Layer 2. "); 

} 

/* PI. new maintain bit is set for passing the buffer. The buffer is then passed down to Laye~ 1 
(see sendyhJJrmtll_below for an explanation of this routine). */ 

_set_ma in t_bufLbit (up_dJ_il_buff, &12Jelay_baton); 
sendJJhJJrmtv_below(up_dl_il_buff. 12Jelay_baton. 12_data_start_offset, 0, OxU, 0); 

} 

The following text will be sent out onto the line and displayed as line data: 

~"6D~ "r "6 THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456789f\@ 

SynQPSis 

extern unsigned short _append_il_bufLlist_cnt(il_buffer _number, data_start_offset, textytr. 
text_length) ; 

unsigned short it_buffer_number; 
ul'lSigned short data_staTt_offset; 
unsigned char" textytr; 
unsigned short text_length; 

Description 

The _append_il_bufLlist31it routine appends a text node at the end of a linked 
list of text inside of an interlayer message buffer. It will set the text pointer and 
count in the text node to the information provided. 

Returns 

Example 

Two modifications to the program shown for the _insert_il_bufLlist3nt routine 
are all that is required to make the program work for appending data. The 
changes primarily involve Layer 2 in the example. so we will replicate only that 
ponion of the program below. Substitute _append_il_buff_list_c1it for every 
occurrence _insert_iCbuff_list_cnt. When data is to be appended in a buffer, 
you should duplicate the entire linked list received from the layer above, not just 
the header node. So also substitute _dup_i(pufLlist for _dup_il_buff_list_start. 

63-43 

-------_._----------------------------- ... _ ... _ .. __ ._-----_._._--_._._-------------,,--. __ ._----



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

LAYER: 2 
STATE: insert_more 

CONDITIONS; DL_DATA_REQ 
ACTIONS: 
{ 
_dup_iCbufLlist(up_dl_il_buff, up_dZ_sdu, &12_data_start_offset); 
_open_space _in_il_buff(up _dl_il_ buff, 2. &available _space_offset); 
ptT _12 :: make....ptT(up_dl_il_buff. available3pace_offset); 
for(1 = 0; i < 2; i++} 

{ 

} 

"ptT_l2 = 12_data[i]; 
ptr_12t+: 

ptrj2 -=2; 
ifCappend_il_bufLlist_cnt(up_dl_it_buff. 12_data_start_offset. ptT _l2, 2) 1= OJ 

{ 
soundjllarm (); 
POS_cUTsor(O,JO); 
displays ("[nsert failed at Layer 2. "); 

} 
_set_maint_bufLbit(up_dZ_il_buff. &I2Jelay_baton); 
send""pn....prmtv_below(up_dl_iCbuff, 12Jelay_baton, 12_data_start_oJfset, 0, OxU, OJ; 

} 

The following text will be sent out onto the line and displayed as line data: 

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456789°1. f;,.~!f..~l%@] 

(B) Layer 1 OSI Routines 

OSI data primitives are handled automatically between Layers 1 and 2. In the 
"up" direction, line data is placed in an IL buffer and the associated data 
primitive is given automatically to Layer 2. In the "down" direction, data 
primitives are received at Layer 1 and put out automatically onto the line. 

In the absence of line data, if you want to originate a buffer at Layer 1 and 
send it upward, use the following routine. In primitives being sent down the 
layers, Layer 1 will automatically send the primitive out onto the line. 

SynOl'sis 

extern void send""ph_to_above(il_buffer _number, relay_baton, data_stort_offset, size, code, 
poth); 

unsigned ShOTt ii_buffer Jlumber; 
unsigned short relay_baton; 
unsigned short data_staTt_offset; 
unsigned short size; 
unsigned char code; 
unsigned char path; 

63-44 



IT' 
I 

63 OSI 

Description 

The send"ph_to_above emulate routine passes a specified interlayer message 
buffer from Layer 1 to Layer 2 in an OSI primitive. Received line data is 
placed in an IL buffer and passed automatically to Layer 2. If you wish to get a 
buffer "manually" at Layer 1 and then pass it up, use this routine. 

The first parameter is the interlayer buffer number returned by the 
Jet_il_mSLbuff routine. 

The second parameter is the .returned maintain bit from the Jet_il_msLbuff 
routine. As soon as Layer 2 processing on the buffer is completed, the bit is 
automatically freed. 

The third parameter is the returned offset (from the call to _start_il_buff_list) to 
the Layer 1 service data unit in a buffer. 

The fourth parameter is the length of the data in the buffer. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable lO"ph"prmtv_code in Table 63-3 for the 
appropriate primitive code. 

The sixth parameter is the path number along which the buffer will be sent. 

Example 

Get a buffer at Layer 1. Assuming X.25 protocol, insert data into the buffer 
and pass it up to Layer 2. 

{ 
unsigned short ii_buffer _number; 
unsigned short relay_baton; 

} 

unsigned short data_start_offset; 
unsigned short available_space_offset; 
int lengthi 
int Ii 
static unsigned char data[] = {Ox01, Oxoo, Ox10, Ox04, Oxoo, OX02, Ox01, Ox01}; 
unsigned char" ptr; 

LAVER: 1 
STATE: get buffer 

CONDITiONS: KEYBOARD • • 
ACTIONS: 
{ 
JeCil_msg_buff(&:il_buffer_numbtr, &:relay_baton); 
_start_il_buff-Ust (il_buffer_n umber, &:data_start_offset ); 
length::: sizeof(data): 
_open _space_in _iCbuff(il_ buffer_number, length, &:a'tlailable _space_offset) ; 
ptr'" (void "')(((lollg)ICbuffer_lIumber« 16) + available_space_offset ); 

63-45 



INTERVIEW 7000 Series Advanced Programming: ATLC-107 951-108 

for(i :: 0; i < length; itt) 
{ 
"ptT;; data[i}; 
ptrH; 

} 
ptr-=length; 
_insert_il_buff_list_cnt(il_buffer _number, data_stan_offset, ptr, length); 
sendyh_to_above(il_buffer_number, relay_baton, data_start_offset, length, Ox25, 0); 

} 

(C) Layer 2 OSI Routines 

The following routines pass OSI primitives from Layer 2 to either Layer 3 or 
Layer 1. 

Synopsis 

extern void send_dlyrmtlJ _above (iCbuffer _number, 12Jelay_baton, 12_data_start_Offset, size, 
12_code, path); 

unsigned short ii_buffer _number; 
unsigned short 12 Jelay _baton; 
unsigned short 12_data_start_offset; 
unsigned short size; 
unsigned char 12_code; 
unsigned char path; 

Description 

The send_dlyrmtv __ above emulate routine passes a specified interlayer message 
buffer from Layer 2 to Layer 3 in an OSI primitive. 

The first parameter is the interlayer buffer number to be sent. For a buffer 
which has been received at Layer 2 from Layer I, the variable loyh_il_buff 
may be used to identify the buffer number. 

The second parameter is the returned maintain bit from a call to 

_set_maint_buff_bit. It is used only to pass a received buffer from Layer 2 to 
Layer 3. As soon as Layer 3 processing on the buffer is completed, the bit is 
automatically freed. 

The third parameter is the offset to the Layer 2 service data unit in a received 
buffer. The variable loyh_sdu contains the offset to the service data unit when 
the buffer reached Layer 2. The offset must be incremented by the length of 
the Layer 2 header. 

63-46 



NOTE: In general, do not modify extern variables. such as 
loyhjdu, which may be updated by other processes. Name 
another variable. assign it the same va)ue, and then increment 
that variable. Or. after loyhjdu has been named in the 
argument of the send routine, add the length of the Layer 2 
header. as in the example below. 

63 OSI 

The fourth parameter is the length of the data in the buffer. Use the length 
indicated in the pdu structure-pdu.data.Jength. Then subtract the length of the 
Layer 2 header. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable lo_dlyrmtv_code in Table 63-4 for the 
appropriate primitive code. 

The sixth parameter is the path number along which the buffer will be sent. For 
a buffer which has been received at Layer 2 from Layer 1, the variable 
loyhyrmtvyath may be used to specify the path number. 

Example 

A l?uffer is received at Layer 2 from Layer 1. Assuming X.2S protocol. the 
data specific to Layer 2 (the frame header) begins at the SOU offset 
(to yh_sdu) and consists of two bytes. Before the buffer is passed up to Layer 3, 
the offset to the SOU and the size of the snu will be ~djusted by two bytes and 
a new maintain bit will be set. 

{ 
struct pdu 

} 

{ 
unsigned char primitive_code; 
unsigned char path; 
unsigned long parameter; 
unsigned short relay_paton; 
unsigned short U-,!uffer _number: 
unsigned char buffer_contents; 
unsigned short data_start_offset; 
unsignltd short data_'ength; 

}; 
strucl pdu • pduytr; 
extern volatile unsigned short loyhydujeg; 
extern lIolatile canst unsigned char loyhyrmtvyoth; 
ext.ern yo/a tile unsigned short 10 yh_febuff; 
ex~ern lIolatile unsigned Short l.oJh_sdu; 
unfigned short 12JelaY-'1flton; 

63-47 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

LAYER: 2 
STATE: send_butter_up 

CONDITIONS: PH DATA IND 
ACTIONS: -
{ 
pdu..ptr = (void <0) ((long}lo"ph"pdu_seg« 16); 
_set_main t_bujLbit (lo"ph_iljJujj, &12Jelay_bQton); 
send_dl"'prmN_abolle(lo"ph_iljJuf!, 12Jelay_baton, IO"ph_sdu + 2, 

pdu"ptr->data_length - 2, Ox45, IO"ph"prmtll"path); 

send m dl prmtv above - - - -
Synopsis 

extern void send_m_dl"prmtll_abolle(il_buf!er _number, 12Jelay_baton, 12_data_start_ojjset, 
size, 12_code, path); 

unsigned short it_bujjer _number; 
unsigned short 12_relay_baton; 
unsigned short 12_dara_start_of!set; 
unsigned short size; 
unsigned char 12_code; 
unsigned char path; 

Description 

The send_m_dlyrmtv_obove monitor routine passes a specified interlayer 
message buffer from Layer 2 to Layer 3 in an OS! monitor primitive. 

See send_dlyrmtv_above. Use the monitor variables m_loyh_il_buff, 
m_loyh_sdu_offset, and m_loyh_sdu_size as input. Refer to variable 
m_lo_dlyrmtv_code in Table 63-4 for the appropriate primitive code. 

Example 

Make the appropriate variable declarations. For a condition monitoring RD data 
primitives. the Layer 2 programming block should look like this: 

LAYER: 2 
STATE: send_buffer_up 

CONDITIONS: PH_RD_DATA IND 
ACTIONS: 
{ 
_set_maint_bufLbit(m_l0..Ph_il .... buf!,&l2Jelay_baton); 
send_m_dl"prmtv_abolle(mjo"ph_il_buf!, 12Jelay_baton,m_ IQ"'ph_sdu_ojjset + 2, 

m_lo"ph_sdu_size - 2, Ox45, m_Io"ph"'prmtv....path}; 

63-48 



63 OSI 

send ph prmtv below - - -
Synppsjs 

extern void send.J>h....Prmtv_below(il_buffe'_number. 12Jelay_baton, 12_data_start_offset. size, 
12_code. path); 

unsigned short ii_buffer _number; 
unsigned short 12Jelay_baton; 
unsigned short 12_data_start_offset; 
unsigned short size; 
unsigned char 12_code; 
unsigned char path; 

DeScription 

The sendyhyrmtv_below emulate routine passes a specified interlayer message 
buffer from Layer 2 to Layer 1 in an OSI primitive. 

The first parameter is the interlayer buffer number to be sem. For a buffer 
which has been received at Layer 2 from Layer 3. the variable up_dl_il_buff 
may be used to identify the buffer number. If the buffer originated at Layer 2, 
use the buffer-number variable named in the Jet_ilJns8_buff routine. (See 
_insert_il_bufLlist_cnt routine example at Layer 5.) 

The second parameter is the returned maintain bit from a call to 
_set_maint_buff_bit. It is used only to pass a received buffer from Layer 2 to 
Layer 1. As soon as Layer 1 processing on the buffer is completed. the bit is 
automatically freed. If the buffer originated at Layer 2. use the maintain bit 
variable named in'the ...set .... il_ms8_buff routine. (See _insert_il_bufLlist_cnt 
routine example at Layer 5.) 

The third parameter is the offset to the Layer 2 Ust header node in the buffer. 
For a buffer which has been received at Layer 2 from Layer 3, the variable 
up _dCsdu may be used to indicate the offset. 

The fourth parameter is the size of the data in the buffer. It will always be set 
to zero since the data length is unknown in a primitive being passed down the 
layers. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable phyrmtv _type in Table 63-2 for the 
appropriate primitive code. 

The sixth parameter is the path number along which the buffer will be sent. For 
a buffer which has been received at Layer 2 from Layer 3, the variable 
up_dlyrmtvyath may be used to specify the path number. 

63:-49 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Example 

A buffer is received at Layer 2 from Layer 3. No text will be inserted at Layer 
2. (For information on inserting text. see _insert_il_buff_list_cnt routine.) The 
buffer will be passed to Layer 1. requiring a new maintain bit to be set. If 
values are entered for the code and path. variables for code and path need not 
be declared. 

{ 
extern \lola tile unsigned short up_dl_il_buff; 
extern yolatile unsigned short up_dl_sdu; 
unsigned short lZJelay _baton: 

} 
LAYER: 2 

STATE: pass_buffer_down 
CONDITIONS: DL_DATA REQ 
ACTIONS: 
{ 
_set _ maint _bufLbit (up _dl_ii_buff. &lZJelay _baton); 
sendJhJrmt\l_below(up_dl_il_bufJ. lZJelay_baton, up_dl_sdu, 0, OxU. 0); 

} 

(0) Layer 3 OSI Routines 

The following routines pass OS! primitives from Layer 3 to either Layer 4 or 
Layer 2. 

Synopsis 

extern \loid send_nJrmtll_abo\le(il_buffer_number, 13Jelay_baton, 13_da ta_s tart_offset, size. 
C3_code, path); 

unsigned short ii_buffer _number; 
unsigned ShOTt l3Jelay_baton; 
unsigned short 13_data_start_ofJset; 
unsigned short size; 
unsigned char IJ_code; 
unsigned char path; 

DescriPtion 

The send_nyrmtv_above emulate routine passes a specified interlayer message 
buffer from Layer 3 to Layer 4 in an OS1 primitive. 

The first parameter is the interlayerbuffer number to be sent. For a buffer 
which has been received at Layer 3 from Layer 2. the variable lo_dJ_iCbuff may 
be used to identify the buffer number. ' 

63-50 



63 OSI 

The second parameter is the returned maintain bit from a call to 
_set_mainC::"bu//_bit. It is used only to pass a received buffer from Layer 3 to 
Layer 4. As soon as Layer 4 processing on the buffer is completed, the bit is 
automatically freed. 

The third parameter is the offset to the Layer 3 service data unit in a received 
buffer. The variable lo_dCsdu contains the offset to the service data unit when 
the buffer reached Layer 3. The offset must be incremented by the length of 
the Layer 3 header. 

NOTE: In general. do not modify extern variables. such as 
lo_dl_sdu, which may be updated by other processes. Name 
another variable. assign it the same value. and then increment 
that variable. Or, after Jo_dl_sdu has been named in the 
argument of the send routine. add the length of the Layer 3 
header. as in the example below. 

The fourth parameter is the length of the data in the buffer. Use the length 
indicated in the pdu structure-pdu.data_length. Then subtract the length of the 
Layer 3 header. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable lo_nyrmtv_code in Table 63-5 for the 
appropriate primitive code. 

The sixth parameter is the path number along which the buffer will be sent. For 
a buffer which has been received at Layer 3 from Layer 2, the variable 
lo_dlyrmtvJath may be used to specify the path number. 

Example 

A buffer is received at Layer 3 from Layer 2. ASSuming X.2S protocol, the 
header conSists of three bytes. The offset to and size of the service data unit 
will be adjusted by three bytes. a new maintain bit will be set, and the buffer will 
be passed up to Layer 4. 

struct pdu 
{ 
unsigned char primitive_code; 
unsigned char path; 
unsigned long parameter; 
unsigned short relay_baton; 
unsigned short ii_buffer _number; 
unsigned char buffer _ctmtents; 
unsigned short data_staTt_offset; 
unsigned short datil_length; 

}; 

63-51 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

} 

strucl pdu .. pdu"'ptr; 
extern 1I0latile unsigned short 10_dl"'pdu_seg; 
extern volatile const unsigned char lo_dl"'prmtv"'path; 
extern lIo1atile unsigned short 10 _dl_iebuff; 
extern volatile unsigned short IO_dIJdu; 
unsigned short 13_relay_baton; 

LAYER: 3 
STATE: send_buffer_up 

CONDITIONS: DL_DATA IND 
ACTIONS: 
{ 
pdu...ptr = (void ")((Iong)lo_dlydu_seg« 16); 
_set_maill t_bufLb/t (lo_dl_il_buff. &:.l3Jelay_baton); 
selld_nJ"·mtll_abolle(lo_dl_il_buff. 13Jelay_baton, lo_dl_sdu + 3. 

pdu"'ptr->data_length - 3, Ox6S. lo_dl"'prmtv"'path); 

Syn0j2sis 

extern tJoid send_m_nyTmtll_abolle(il_buffer_number, 13Jelay_baton, 13_data_start_offset. 
size. l1_code. path); 

unsigned short it_buffer _number; 
unsigned short 13 _relay_baton; 
unsigned short 13_datajtart_offset; 
unsigned short size; 
unsigned char 13_code; 
unsigned char path; 

Desctiption 

The send_m_nJrmtv _above monitor routine passes a specified interlayer 
message buffer from Layer 3 to Layer 4 in an OSI monitor primitive. 

See send_nJrmtv_above. Use the monitor variables m_lo_dl_il_buff, 
m_Io_dl_sdu_offset, and m_Io_dl_sdujize as input. Refer to variable 
m_lo_nJrmtv_code in Table 63-5 for the appropriate primitive code. 

Example 

Make the appropriate variable declarations. For a condition monitoring RD data 
primitives. the Layer 3 programming block should look like this: 

LAYER: 3 
STATE: send_buffer_up 

CONDITIONS: DL_RD_DATA IND 
ACTIONS: 
{ 
_set_maintj)ufLbit(m_lo_dl_il_buff. 4t13Jelay_baton); 
send_m_n.J'rmtv_Qbo\Je(m_lo_dl_il_buJl. 13JelaY_baton. mjo_dl_sdu_offset + 3, 

m_lo_dl_sdu_size - 3, Ox65 , m_lo_dl"'prmtv"'poth); 

63-52 



.<'~~ 
" 1 

63 OSI 

send dl prmtv below - - -
Synopsis 

extern void send_dlJ1rmtv_below(it_huffer_lIumblr, 13Jelay_baton, 13_data_start_offset, size, 
13_code, path); 

unsigned ShOTt ii_buffer -'lumber; 
unsigned ShOTt 13JelaY_baton; 
unsigned short 13_data_srart_oJJset; 
unsigned short size; 
unsigned char I3_code; 
unsigned char path; 

Description 

The send_dl"yrmtv_below emulate routine passes a specified interlayer message 
buffer from Layer 3 to Layer 2 in an OSI primitive. 

The first parameter is the interlayer buffer number to be sent. For a buffer 
which has been received at Layer :3 from Layer 4, the variable up_n_il_buff may 
be used to identify the buffer number. If the buffer originated at Layer 3, use 
the buffer-number variable named in the J€t_il_ms8_buff routine. (See 
_insert_il_buff_Iist_cnt routine example at Layer 5.) 

The second parameter is the returned maintain .bit from a call to 
_set_maint_buff_bit. It is used only to pass a received buffer from Layer 3 to 
Layer 2. As soon as Layer 2 processing on the buffer.is completed. the bit is 
automatically freed. If the buffer originated at Layer 3, use the maintain bit 
variable named in the Jet_iCmscbu!! routine. (See _insert_il_buff_list_cnt 
routine example at Layer 5.) 

The third parameter is the offset to the Layer 3 list header node in the buffer. 
For a buffer which has been received at Layer 3 from Layer 4, the variable 
up_"_sdu may be used to indicate the offset. 

The fourth parameter is the size of the data in the buffer. It will always be set 
to zero since the data length is unknown in a primitive being passed down the 
layers. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable up_d(prmtv_code in Table 63-3 for the 
appropriate primitive code. 

The sixth parameter is the path number along which the buffer will be sent. For 
a bJ.lffer which has been received at Layer 3 from Layer 4, the variable 
up ... "yrmtv"yath may be used to specify the path number. 

63-53 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Example 

A buffer is received at Layer 3 from Layer 4. No text will be inserted at Layer 
3. (For information on inserting text, see _insert_il_buff_list_cnt routine.) The 
buffer will be passed to Layer 2, requiring a new maintain bit to be set. If 
values are entered for the code and path, these variables need not be declare_d. 

} 

extern volatile unsigned shoTt up_n_il_bujj; 
exterll volatile unsigned short up_lI_sdu; 
unsigned short 13Jelay_baton; 

LAYER: 3 
STATE: pass_buffer _down 

CONDITIONS: N_DATA REQ 
ACTIONS: 
{ 
_set_main t_bujLbit (up_n_il_bujj. &.13Jelay_baton); 
send_dlyrmlv_be/ow(up_lI_il_buff. f3Jelayj)aton. up_n_sdu, 0, Ox44 , 0); 

} 

(E) Layer 4 OSI Routines 

The following routines pass OSI primitives from Layer 4 to either Layer 5 or 
Layer 3. 

Synqpsis 

extern void send_tyrmtv _a bOlJe(il_bujjer _number, 14Jelay_batoll. 14 _data _start_offset. size, 
14_code, path); 

unsigned short il_bujfer_number; 
unsigned short 14Jelay_baton; 
ullsigned short 14_data_start_ojjset; 
unsigned short sise; 
unsigned char 14 _code; 
unsigned char path; 

DeSCription 

The send_tyrmtv _above emulate routine passes a specified interlayer message 
buffer from Layer 4 to Layer 5 in an OS1 primitive. 

The first parameter is the interlayer buffer number to be sent. For a buffer 
which has been received at Layer 4 from Layer 3, the variable lo_n_il_buff may 
be used to identify the buffer number. 

63-54 



ti" 
I 

fT\ 
I 
j 

63 OSI 

The second parameter is the returned maintain bit from a call to 
_set_maint_buff_bit. It is used only to pass a received buffer from Layer 4 to 
Layer 5. As soon as Layer 5 processing on the buffer is completed, the bit is 
automatically freed. 

The third parameter is the offset to the Layer 4 service data unit in a received 
buffer. The variable lo_n_sdu contains the offset to the service data unit when 
the buffer reached Layer 4. The offset must be incremented by the length of 
the Layer 4 header. if any. 

NOTE: In general, do not modify extern variables, such as 
lo_n_sdu, which may be updated by other processes. Name 
another variable. assign it the same value, and then increment 
that variable. Or. after lo_n_sdu has been named in the 
argument of the send routine. add the length of the Layer 4 
header. if any. 

The fourth parameter is the length of the data in the buffer. Use the length 
indicated in the pdu structure-pdu.data_length. Then subtract the length of the 
Layer 4 header, if any. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable lo_tyrmtv_code in Table 63-6 for the 
appropriate primitive code. 

The sixth parameter is the path number along which the buffer will be .sent. For 
a buffer which has been received at Layer 4 from Layer 3, the variable 
lo_nyrmtvyath may be used to specify the path number. 

Exanmle 

A buffer is received at Layer 4 from Layer 3. The offset to and size of the 
service data unit will be adjusted if needed. a new maintain bit will be set, and 
the buffer will be passed up to Layer 5. 

struct pdu 
{ 
unsigned char primitive_code; 
unsigned char path; 
unsigned long parameter; 
unsigned short relay_baton; 
unsigned short it_buffer_number; 
unsigned char buffer_contents; 
unsigned short data_stan_offset; 
unsigned short data_length; 

}; 
struct pd.u * pdu-ptr; 
extern volatile unSigned short lo_nJldu_seg; 
extern lIolatile const unsigned char lo_n-prmtll-Pl1rh; 

63-55 



iNTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

} 

extern volatile unsigned short lo_n_il_buff; 
extern volatile unsigned short lo_n_sdu; 
unsigned short 14_relay_baton; 

LAYER: 4 
STATE: send_butter_up 

CONDITIONS: N_DATA IND 
ACTIONS: 
{ 
pduJtr = (void -)((long)lo_nJdu_seg« 16); 
_set_maint_bufLbit(lo_n_il_bu/f. &:14Jelay_baton): 
send_tJrm tv_above (lo_n_il_buff, 14Jelay_baton, lo_n_sdu,pduJtr->data_length, 

Ox85,Io_nJrmtvJath); 
} 

Synopsis 

extern void stmd_m_IJrmtv _above(iCbu/ferJlumber, 14 Jelay_baton, 14_data_start_o/fset. 
size, 14_code, path); 

unsigned short i13)uffer _number; 
unsigned short 14 _relay_baton; 
unsigned short 14 _data_start_offset; 
unsigned short size; 
unsigned char 14_code; 
unsigned char path; 

Description 

The send_m_t"'prmtv_above monitor routine passes a specified interlayer message 
buffer from Layer 4 to Layer 5 in an OSI monitor primitive. 

See sel1d_t"'prmtv_above. Use the monitor variables m_lo_n_iCbuff. 
m_lo_"_sdu_offset. and m_lo_njdu_size as input. Refer to variable 
m_lo_t"'prmtv_code in Table 63-6 for the appropriate primitive code. 

Example 

Make the appropriate variable declarations. For a condition monitoring RD data 
primitives. the Layer 4 programming block should look like this: 

LAYER: 4 
STATE: send_bufter_up 

CONDITIONS: N_RD_DATA tND 
ACTIONS: 
{ 
_set_maint_bufLbit(m_lo_n_il_buff, &:14Jelay_baton); 
send_m_tJrmtv_abQve(m_1Q_n_il_bu/f, 14_relay_batQn,m_lo_n_sdu_offset , 

m_lo_n_sdu_size, Ox85, m_l0J'Jrmt\lJath); 

63-56 



t'r, 
! 

63 OSI 

send n prmtv below 
- -h.-. -

SynO,psis 

extern void send_lIyrmtv_below(il_bufJe'Jlumber, 14_relay_baton, 14_data_start_offset, size, 
till_code, path}; 

unsigned short ii_buffer _number; 
unsigned short 14Jelay_baton; 
unsigned short 14_data_start_offset; 
unsigned short size; 
unsigned char 14_code; 
unsigned char path; 

Description 

The send_n"'prmtv_below emulate routine passes a specified interlayer message 
buffer from Layer 4 to Layer 3 in an OS1 primitive. 

The first parameter is the interlayer buffer number to be sem. For a buffer 
which has been received at Layer 4 from Layer 5, the variable up_t_il_buff may 
be used to identify the buffer number. If the buffer originated at Layer 4, use 
the buffer-number variable named in the ...set_il_msLbuff routine. (See 
_insert_il_buff_lisl_cnt routine example at Layer 5.) 

The second parameter is the returned. maintain bit from a call to 
Jet_maint_buff_bit. It is used only to pass a received buffer from Layer 4 to 
Layer 3. As soon as Layer 3 processing on the buffer is completed. the bit is 
automatically freed. If the buffer originated at Layer 4, use the maintain bit 
variable named in the Jet_il_mss_buff routine. (See _insert_il_bufLlist_cnt 
routine example at Layer 5.) 

The third parameter is the offset to the Layer 4 list header node in the buffer. 
For a buffer which has been received at Layer 4 from Layer 5, the variable 
up_t_sdu may be used to indicate the offset. 

The fourth parameter is the size of the data in the buffer. It will always be set 
to zero since the data length is unknown in a primitive being passed down the 
layers. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable up _n"'prmtv _code in Table 63-4 for the 
appropriate primitive code. 

The sixth parameter is the path number along which the buffer will be sent. For 
a buffer which has been received at Layer 4 from Layer 5. the variable 
up_t"'prmtv"'path may be used to specify the path number. 

63-57 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Example 

A buffer is received at Layer 4 from Layer 5. No text will be insened at Layer 
4. (For information on insening text, see _insert_iCbuf'-list_cnt routine.) The 
buffer will be passed to Layer 3. requiring a new maintain bit to be set. If 
values are entered for the code and path, variables for code and path need not 
be declared. 

{ 

} 

extern voilltile unsigned short up_t_il_buff: 
extern voilltile unsigned short up_t_sdu: 
unsigned short 14Jellly_bllton: 

LAYER: 4 
STATE: pass_buffer_down 

CONDITIONS: T_DATA REQ 
ACTIONS: 
{ 
_set_maint_bufLbU(up_t_ll_bujj. tlI4Jellly_bllton): 
send_n...JIrmtv_below(up_t_i1_bujj, 14_relay_bllton. up_t_sdu. 0, Ox64. 0): 

} 

(F) Layer 5 OSI Routines 

The following routines pass OSI primitives from Layer 5 to either Layer 6 or 
Layer 4. 

Synopsis 

extern void send _s Jrmtv _Ilbov, (ii_buffer _number, 15 Jllay _baton. 15_ dlltll_stllrt _ offs't. size. 
IS_cod" pllth): 

unsigned short iI_buffer_number: 
unsigned short lS_rellly_bllton: 
unsigned short lS_datll_stllrt_ojjset: 
unsign,d short siz,; 
unsign,d chllr IS_cod,; 
unsigned char pllth: 

Descrjptjon 

The send_sJrmtv_obove emulate routine passes a specified inter-layer message 
buffer from Layer 5 to Layer 6 in an OSI primitive. 

The first parameter is the inter-layer buffer number to be sent. For a buffer 
which has been received at Layer S from Layer 4. the variable lo_t_iCbuff may 
be used to identify the buffer number. 

63-58 



. \~ 
". I 

t 

63 OSl 

The second parameter is the returned maintain bit from a call to 
_set_maint_buff_bit. It is used only to pass a received buffer from Layer 5 to 
Layer 6. As soon as Layer 6 processing on the buffer is completed, the bit is 
automatically freed. 

The third parameter is the offset to the Layer 5 service data unit in a received 
buffer. The variable lOj_sdu contains the offset to the service data unit when 
the buffer reached Layer S. The offset must be incremented by the length of 
the Layer 5 header, if any. 

NOTE: In general, do not modify extern variables. such as 
lo_t_sdu, which may be updated by other processes. Name 
another variable. assign it the same value. and then increment 
that variable. Or, after Jo_t_sdu has been named in the argument 
of the send routine. add the length of the Layer 5 header. if any. 

The fourth parameter is the length of the data in the buffer. Use the length 
indicated in the pdu structure..;.;.pdu.data.....length. Then subtract the length of the 
Layer 5 header. if any. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable I03.J'rmtv_code in Table 63-7 for the 
appropriate primitive code . 

The sixth parameter is the path number along which the buffer will be sent. For 
a buffer which has been received at Layer 5 from Layer 4, the variable 
JQ_tJrmtv.JIath may be used to specify the path number. 

EXi\m;ple 

A buffer is received -at Layer 5 from Layer 4. The offset to and size of the 
service data unit will be adjusted if needed, a new maintain bit will be set, and 
the buffer will be passed up to Layer 6. 

{ 
struct pdu 

} 

{ 
unsigned char primitive_code; 
unsigned char path; 
unsigned long parameter; 
unsig!led short relay_baton; 
unsigned short ii_buffer _number; 
unsigned char buffer_contents; 
unsigned short datajtart_offset; 
unsigned short data_length; 

}; 
struct pdu • pduytr; 
extern lIolatile unsi8ned short la_tydu_seg; 
extern volatile canst unsigned char lo_t"prmt" "path; 
extern volatile unsigned short lo_t_il_b.uff; 
extern volatile unsigned short lo_t_sdu; 
unsigned short l5Jelay_baton; 

63-59 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

LAYER: 5 
STATE: send_buffer_up 

CONDITIONS: T_DATA IND 
ACTIONS: 
{ 
pduytr = (\loid *)((long)lo_tydu_seg« 16); 
_set_main t_bufLbit (lo_t_il_bu/f, &15Jelay_baton); 
send_syrmt\l_above(lo_t_il_buff. 15 Jelay_baton, 10 _t_sdu, pduytr->data_length, 

Oxa5, lo_tyrm.tvyath); 

send m s prmtv above - - - -
Syna,psis 

extern void send _m _$ ..rrm tv_above (il_buffer _number. 15 Jelay _baton, 15_ data _start_offset, 
size, IS_code, path): 

unsigned short ii_buffer _number; 
unsigned short ISJelay_baton; 
unSigned short 15_data_start_offset; 
unsigned short size; 
unSigned char IS_code; 
unsigned char path; 

Description 

The send_mJyrmtv_above monitor routine passes a specified inter-layer 
message buffer from Layer 5 to Layer 6 in an 051 monitor primitive. 

See send_syrmtv_above. Use the monitor m_lo_t_il_bujj. m..Jo_tjdu_ojjs€t, 
and m_lo_t_sdu_size variables as input. Refer to variable m_lo_syrmtv_code in 
Table 63-7 for the appropriate primitive code. 

Exarn,ple 

Make the appropriate variable declarations. For a condition monitoring RD data 
primitives. the Layer 5 programming block should look like this: 

LAYER: 5 
STATE: send_buffer_up 

CONDITIONS: T_RD_DATA IND 
ACTIONS; 
{ 

} 

_set_maint_bufLbU(m_lo _I_iE_buff, &15 Jelay_balon); 
send_m_syrmtv_iZbove(m_lo_t_il_bu/f, 15_relayj;aton,m_lo_t_sdu_offset, 

m_lo_t_sdu_size, OxaS, m_lo_tyrmtvyath); 

63-60 



~I" { 

I 

r'i'" 
I 
I 

63 OSI 

send t prmtv below -- -
Synopsjs 

extern void send_t...Jlrmtv_below(il_buffe'_lIumber, lS-,elay_baton, 15_data_start_offset, size, 
IS_code, path}; 

unsigned short iCbuf!er_lIumberj 
unsigned short IS -,elay _baton; 
unsigned short 15_datajtart_offset: 
unsig!1ed short size; 
unsigned char IS_code; 
unsigned char path; 

Description 

The send_tyrmtv_below emulate routine passes a specified inter-layer message 
buffer from Layer 5 to Layer 4 in an OSI primitive. 

The first parameter is the inter-layer buffer number to be sent. For a buffer 
which has been received at Layer 5 from Layer 6. the variable up_s_il_buff may 
be used to identify the buffer number. If the buffer originated at Layer 5, use 
the buffer-number variable named in the ,Jet_iCmsg-"uff routine. (See 
_insert_il_bufLlist_cnt routine example at Layer 5.) 

The second parameter is the returned maintain. bit from a call to 
_set_maint_buff_bit. It is used only to pass a received buffer from Layer 5 to 
Layer 4. As soon as Layer 4 processing on the buffer is completed, the bit is 
automatically freed. If the buffer originated at Layer 5, use the maintain bit 
variable named in the ..,8et_il_msg_buff routine. (See _insert_il_bufLlist_cnt 
routine example at Layer 5.) 

The third parameter is the offset to the Layer 5 list header node in the buffer. 
For a buffer which has been received at Layer 5 from Layer 6, the variable 
upj_sdu may be used to indicate the offset. 

The fourth parameter is the size of the data in the buffer. It win always be set 
to zero since the data length is unknown in a primitive being passed down the 
layers. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable up_tyrmtv_code in Table 63-5 for the 
appropriate primitive code. 

The sixth parameter is the path number along which the buffer will be sent. For 
a buffer which has been received at Layer 5 from Layer 6, the variable 
upjyrmtvyath may be used to specify the path number. 

63-61 



INTERVIEW 7000 Series Advanced Proarammlna: ATLC-107-951-10B 

Example 

A buffer is received at Layer 5 from Layer 6. No text will be inserted at Layer 
5. (For information on inserting text. see _insert_il_buD_list_cnt routine.) The 
buffer will be passed to Layer 4. requiring a new maintain bit to be set. If 
values are entered for the code and path. variables for code and path need not 
be declared. 

{ 

} 

extern Yolatile unsigned short up_s_iCbuf/: 
extern Yolatile unsigned short up_s_sdu: 
unsigned short IS_relay_baton; 

LAVER: 5 
STATE: pass_buffer_down 

CONDITIONS: S DATA REQ 
ACTIONS: -
{ 
_set_maint_buff_bit(up_s_il_buf/. d:lSJelay_baton); 
send_t"'prmtv_below(up_s_iCbuf/. ISJelay_baton. up_s_sdu, 0, Ox84. 0): 

} 

(G) Layer 6 OSI Routines 

The following routines pass OS! primitives from Layer 6 to either Layer 7 or 
Layer 5. 

SynOJ?sis 

extern yoid send..,p..,prmfY_aboye(il_buf/,r_number, 16_,,'ay_baton. 16_data_start_of/set, size, 
16_code, path): 

unsigned short il_buf/er_number; 
unsigned short 16_,elay_baton; 
unsigned short 16_data_start_of/set; 
unsigned short size; 
unsigned char 16_code; 
unsigned char path; 

Description 

The send"p"prmt,,_above emulate routine passes a specified interlayer message 
buffer from Layer 6 to Layer 7 in an OSlprimitive; 

The first parameter· is the interlayer buffet' number to be sent. For a buffer 
which has been r~celved at Layer 6 from :Layer 5. the variable lo_s_iCbul! may 
be used to identify the -buffer number. 

63-62 



~ { I ' 
I 

63 OSI 

The second parameter is the returned maintain bit from a call to 
_set_maint_bufLbit. It is used only to pass a received buffer from Layer 6 to 
Layer 7. As soon as Layer 7 processing on the buffer is completed, the bit is 
automatically freed. 

The third parameter is the offset to the Layer 6 service data unit in a received 
buffer. The variable lo_sjdu contains the offset to the service data unit when 
the buffer reached Layer 6. The offset must be incremented by the length of 
the Layer 6 header. if any. 

NOTE: In general, do not modify extern variables. such as 
lo_sjdu, which may be updated by other processes. Name 
another variable, assign it the same value, and then increment 
that variable. Or, after Jo_s_sdu has been named in the 
argument of the send routine, add the length of the Layer 6 
header, if any. 

The fourth parameter is the length of the data in the buffer. Use the length 
indicated in the pdu structure-pdu.data_Jength. Then subtract the length of the 
Layer 6 header, if any. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable loyyrmtv_code in Table 63-8 for the 
appropriate primitive code. 

The sixth parameter is the path number along which the buffer will be sent. For 
a buffer which has been received at Layer 6 from Layer 5, the variable 
lo_syrmtvyath may be used to specify the path number. 

Example 

A buffer is received at Layer 6 from Layer 5. The offset to and size of the 
service data unit will be adjusted if needed, a new maintain bit will be set, and 
the buffer will be passed up to Layer 7. 

{ 
struct pdu 

{ 
unsigned char primitive_code; 
unsigned char path; 
unsigned long parameter; 
unsigned short relay_baton; 
unsigned short il_buffer_number: 
unsigned char buffer_contents; 
unsigned short data_start_offset; 
unsigned short data_length: 

}; 
strlilct,pdu • pdu...J>tr; 
extern Yoil#ile unsigned short lo_s-pdu_seg; 
extern volatile const unsigned char 10 _s-prmtv -path; 

63-63 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

} 

extern volatile unsigned short lo_s_il_buff; 
extern volatile unsigned short lo_s_sdu; 
unsigned short 16_relay_baton; 

LAYER: 6 
STATE: send_buffer_up 

CONDITIONS; S_DATA IND 
ACTIONS: 
{ 
PdUJtr = (void *)((long)lo_sJdu_seg« 16); 
_set_maint_bufLbit(lo_s_il_buff, &16Jelay_baton); 
sendJJrmtv_above(lo_s_il_buff, 16Jelay_baton, lo_s_sdu, pduJtr->data_length, 

Oxc5. io_sJrmtvJath); 

Synopsis 

extern void send_mJJrmtv_above(il_buffer.:..number, 16Jelay_baton. 16_data_start_offset. 
size, 16_code. path); 

unsigned short it_buffer_number; 
unsigned short l6_relay_baton: 
unsigned short l6_data_start_offset; 
unsigned short size; 
unsigned char 16_code; 
unsigned char path; 

DescrjJ2tion 

The send_myyrmtv_above monitor routine passes a specified interlayer 
message buffer from Layer 6 to Layer 7 in an OS! monitor primitive. 

See sendyyrmtv_above. Use the monitor variables m_lo_s_il_buf/, 
m_lo_sjdu_o//set, and m_lo_s_sdujize as input. Refer to variable 
m_ioyyrmtv_code in Table 63·8 for the appropriate primitive code. 

r;xample 

Make the appropriate variable declarations. For a condition monitoring RD data 
primitives. the Layer 6 programming block should look like this: 

LAYER: 6 
STATE: send_buffer_up 

CONDITIONS: S_RD_DATA IND 
ACTIONS: 
{ 
_set_maint_bufLb/t(m_lo_s_il_buff, &16Jelay_baton); 
send_mJJrmtv_abMe(m_lo_s_il_buff. 16_relay_baton,m_ lo_s_sdu_offset. 

m_lo_s_sdu_size, Oxt;5, m_lo_s""prmtvJtlth}; 

63-64 



.~ . I 
I 

63 OSI 

send s prmtv below - - -
Syngpsis 

extern void send_sJrmtv_below(il_buff"Jlumber. 16_relaY_baton, 16_data_start_offset. size. 
16_code. p11th); 

unsigned short iI_buffer_number; 
unsigned short 16 J,lay _baton; 
unsigned short 16_data_start_offset; 
unsigned short size; 
unsigned char 16_code; 
unsigned char path; 

Description 

The send_syrmtv _below emulate routine passes a specified interlayer message 
buffer from Layer 6 to Layer 5 in an OSI primitive. 

The first parameter is the interlayer buffer number to be sent. For a buffer 
which has been received at Layer 6 from Layer 7, the variable upy_il_buff may 
be used to identify the buffer number. If the buffer originated at Layer 6, use 
the buffer-number variable named in the Jet_iCmsg_buff routine. (See 
_insert_il_bufLlist_cnt routine example at Layer S.) 

The second parameter is the returned maintain bit from a call to 
_set_maint_buff_bit. It is used only to pass a received buffer from Layer 6 to 
Layer 5. As soon as~ayer 5 processing on the buffer is completed ... the bit is 
automatically freed. If the buffer originated at Layer 6, use the maintain bit 
variable named in the Jet_U_msgyuff routine. (See .Jnsert_il_bufLlist_cru 
routine example at Layer 5.) 

The third parameter is the offset to the Layer 6 list header node in the buffer. 
For a buffer which has been received at Layer 6 from Layer 7, the variable 
up Y jdu may be used to indicate the offset. 

The fourth parameter is the size of the data in the buffer. It will always be set 
to zero since the data length is unknown in a primitive being passed down the 
layers. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable up_syrmtv30de in Table 63-6 for the 
appropriate primitive code. 

The sixth parameter is the path number along which the buffer will be sent. For 
a buffer whi~ has been received at Layer 6 from Layer 7, the variable 
upyyrmtvyath may be used to specify the path number. 

63-65 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Example 

A buffer is received at Layer 6 from Layer 7. No text will be insened at Layer 
6. (For information on insening text. see _insert_il_buff_list_cnt routine.) The 
buffer win be passed to Layer 5, requiring a new maintain bit to be set. If 
values are entered for the code and path. variables for code and path need not 
be declared. 

} 

extem lIolatile unsigned short up"'p_il_buff; 
extern lIolatile unsigned short up"'p_sdu; 
unsigned short 16JetaY_baton; 

LAYER: 6 
ST ATE: pass_buffer _down 

CONDITIONS: P_DATA REO 
ACTIONS: 
{ 
_set_maint_bufLbit(up"'p_il_buff, &16Jelay_baton); 
sendjJrmtll_below(up"'p_il_buff, 16JelayjJaton, uPJ_sdu, 0, Oxa4, 0); 

} 

(H) Layer 7 OSI Routines 

Syno.psis 

extern lIoid sendJJrmtll_below(il_buffer_number. relay_baton, data_start_offsel, size, code, 
path); 

unsigned short iCbuff,,_numbtr; 
unsigned short relay_baton; 
unsigned short data_start_offset; 
unsigned short size; 
unsigned char code; 
unsigned char path; 

Description 

The sendy""prmtv_below emulate routine passes a specified interlayer message 
buffer from Layer 7 to Layer 6 in an OSI primitive. 

The first parameter is the interlayer buffer number to be sent. Use the 
buffer-number variable named in the Jet_i(;.msLbuff routine. (See 
_insert_iCbufLUst_cnt routine example at Layer 5.) 

The second parameter is the returned maintain bit from the call to 
Jet _il_ mS8_buff· 

63-66 



~, ... ! 
1 

63 OS! 

The third parameter is the returned offset (from a call to jtart jCbu/LUst) to 
the Layer 7 list header node in the buffer. 

The fourth parameter is the size of the data in the buffer. It will always be set 
to zero since the data length is unknown in a primitive being passed down the 
layers. 

The fifth parameter is the code specifying the type of primitive in which the 
buffer will be sent. Refer to variable upyyrmtv_code in Table 63-7 for the 
appropriate code. 

The sixth parameter is the path number along which the buffer will be sent. 

Example 

A buffer is obtained at Layer 7. The buffer will be passed to Layer 6, without 
any data inserted. (For information on inserting text, see _insert_iCbuff_list_cnt 
routine.) If values are entered for the code and path, variables for code and 
path need not be declared. 

} 

unsigned short ii_buffer _number; 
unsigned short data_start_offset; 
unsigned short relay_baton; 

LAYER: 7 
STATE: pass_butfer_down 

CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 
Jet _il_ mS1Lbuff( &il_buffer _number, &relay _baton); 
_start _iI_buff_list (ii_buffer -,lUmber, &data_start _offset); 
send"'p"'prmtv_betow{il_buffer_number, relay_baton, data_s.tart_offset, 0, Oxc4, 0); 

} 

63-67 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

63-68 



64 Print 

64 Print 

The PRINTER pan is a serial interface through which the programmer may direct output from 
the INTERVIEW to a printer. The printer port is located at the rear of the INTERVIEW 
between the REMOTE RS-232 and AUXILIARY ports. 

NOTE: Before directing output to the printer port, configure the 
Printer Setup menu as explained in Section 14.2. 

Each spreadsheet PRINT action or call to one of the C print routines causes output to be 
added to a queue of unprinted text in the print buffer. If not doing so already. the print 
server also begins to poll the print buffer for text to print. As long> as there is unprinted text 
in the buffer. the print server polls the buffer, removes text. and sends it to the printer port 
of the Ir..'TERVIEW. Use the "print_buffer structure to monitor the flow of text in and out 
of the print buffer. 

Use any of the four C print routines explained in this section to add text to the print buffer. 
Three. of them-printc, printf. and prints-are similar to the displayc, displayf. and displays 
routines which direct output to the Display Window. See Section 61.3(C). With the 
set"print_header routine. you determine the heading which will appear at the top of each 
printed page. One other routine. sprintf. writes output to a string. The string can then be 
referenced in subsequent cans to printf. (You may also use the string named in sprintf in 
calls to displayf, tracef, or fprintj.) 

64.1 Structures 

Refer to Table 64-1 for the structure of the print buffer. Compare -print_buffer.in 
with "print_buffer.out to determine whether or not the print buffer has emptied. 
When the values of these two variables are equal, the buffer is empty. 

NOTE: Consider the variables in the "print_buffer structure 
read-only variables. In general, do not modify extern structures 
or variables which may be updated by other processes. 

At time$, processes may add transactions to the print buffer more quickly than the 
print server takes them out. If a process cannot add to the buffer without overwriting 
unprinted text, a buffer overrun occurs. When your INTERVIEW is configured for 

64-1 

.. - ~- _. - ._-- -~----- ----- -- - -- - .. ------~-~~---~---.------~---"-------~~--"-.... --'~ .... -----.~~---.---"----.-,------------~-.----.. ---- -.-------~-.---,.~".---



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Type 

data playback. you can minimize print-buffer overruns by periodically suspending 
playback and allowing the print server to empty the buffer. In judging how often to 
suspend playback, keep in mind the following points: 1) In general, the more 
conditions a program has that trigger print actions, the more frequently playback 
should be suspended. 2) When planning to print Run-mode buffers. remember that 
the faster the playback speed, the quicker the print buffer fills. 

Variable 

Table 64-1 
Print Structures 

Value (hex/decimal) Meaning 

Structure Name: print_buffer Struoture of the print buffer. Declared as type 
struot. 

unsigned short In 

unsigned short out 

unsigned short buffer_end 

unsigned short look 

char polling 

ohar overrun 

ohar buffer [8192J 

Structure Name: _print_buffer 

8-207110-8199 

8-207110-8199 

209/8201 

o 
non-zero 

o 
non-zero 

64-2 

offset into the print buffer (from the physical 
beginning of the buffer) to the location where 
next transaction text will be added. Advances 
with each spreadsheet PRINT action or call to a 
C print routine. When in equals out, the print 
buffer is empty. 

offset Into the print buffer (from the physloal 
beginning of the buffer) to the last transaction 
text printed from the buffer. Advances eaoh 
time text Is actually sent out the printer port of 
the INTERVIEW. When out equals in, the print 
buffer is empty. 

offset to the physioal end of the print 
buffer-I.e., to the end of the array named 
buffer (see below) 

when process is printing, locks out ether 
processes from accessing the print buffer 

print server is not polling 
print server Is polling print buffer for text to print 

print buffer Is not in overrun state 
print buffer Is In overrun state-I. e .• a process 
attempting to add text to the print buffer can't 
because unprinted text In the buffer would be 
overwritten. Following message will appear on 
printout: ·prlnt buffer overrun has occurred.' 

array of text transactions 

An Instance of the prlnCbuffer structure, 
declared as type extern struot print_buffer. Use 
the variables contained In this structure to 
monitor flow of text In and out of the print buffer. 
Reference struoture variables as follows: 
yrinCbuffer.in. 



;~~ 
i 

64 Print 

The following example shows how you might use a TIMEOUT condition to check the 
print buffer periodically. Each time the timeout expires, the program determines 
whether or not the buffer is half full. If so, playback is suspended. If the buffer is 
only one-quarter full, playback is resumed. (Other conditions in the program, not 
illustrated here, would cause print actions to send output to the print buffer.) 

{ 
#define PRINT_BUFFER_SZ 8192 

} 

#define STOP_POINT (PRINT_BUFFER_SZI2) 
#define START_POINT (PRINT_BUFFER_SZI4) 

LAYER: 1 
{ 
struct print_buffer 

} 

{ 
unsigned short in; 
unsigned short out; 
unsigned short buffer_end; 
unsigned short lock; 
char polling; 
char overrun; 

}; 
extern struct print_buffer Jrint_buffer; 
int crnt_buffer _sz; 

STATE: check_print_buffer 
CONDITIONS: ENTER_STATE 
ACTIONS: TIMEOUT RESTART ok_buffer 0.01 
CONDITIONS: TIMEOUT ok_buffer 
ACTIONS: 
{ 

} 

crnt_buffer_sz = «(Jrint_buffer.in + PRINT_BUFFER_SZ) - Jrint_huffer.out) % 
PRINT_BUFFER_5Z; 

if(crnt_buffer_sz> STOP_POINT) 
suspend Jcrd Jlay () ; 

else if(crnt_huffer_sz < START_POINT) 
start Jcrd Jlay (); 

TIMEOUT RESTART ok_buffer 0.01 

64.2 Variables 

There are no variables associated exclusively with print functions. 

64-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

64.3 Routines 

printc 

Synopsis 

extern void printc(character); 
const char character; 

Description 

The prime routine outputs a single ASCII character to the print buffer for printing. 
converting the value provided as the argument into its ASCII equivalent. Decimal 
and octal values are converted to hexadecimal format before the ASCII equivalent is 
sought. 

The only parameter is a numerical value. The value may be given as a hexadecimal, 
octal, or decimal constant; as an alphanumeric constant inside of single quotes; or as 
a variable. A hexadecimal value must be preceded by the prefix Ox or OX; an octal 
value must be preceded by the prefix O. If no prefix appears before the input, the 
number is assumed to be decimal. Valid numeric entries are 00 to 127. decimal. An 
alphanumeric character placed between single quotes will be output as is to the 
printer. 

Example 

The printc entries on the left output the printed character given on the right: 

printc('a') ; a 
printc(65) ; A 

printc(Ox65); e 

printc(065) ; 5 

printf 

Synonsis 

extern int printfiformatytr, ... ); 
const char'" format...ptr; 

Description 

The print! routine writes output to the print buffer for printing. under control of the 
string pointed to by format ytr that specifies how subsequent arguments are converted 
for output. If there are insufficient arguments for the format, the behavior is 

64-4 



64 Print 

undefined. If the format is exhausted while arguments remain. the excess arguments 
are evaluated but otherwise ignored. The printf routine returns when the end of the 
format string is encountered. 

The format is composed of zero or more directives: ordinary characters (not %). 
which are copied unchanged to the output stream; and conversion specifications, each 
of which results in fetching zero or more subsequent arguments. Each conversion 
specification is introduced by the character %. After the %. the following appear in 
sequence: 

• Zero or more flags that modify the meaning of the conversion specification. 

• 

• 

The flag characters and their meanings are: 

The result of the conversion will be left-justified within the field. 

+ The result of a signed conversion will always begin with a plus or minus 
sign. 

space If the first character of a signed conversion is not a sign, a space will be 
prepended to the result. If the space and + flags both appear, the space 
flag will be ignored. 

# The result is to be converted to an "alternate form." For d, i, u. c, and 
s conversions, the flag has no effect. For 0 conversion, it increases the 
precision to force the first digit of the result to be a zero. For x (or X) 
conversion. a nonzero result will have Ox (or OX) prepended to it. 

An optional decimal integer specifying a minimum field width. If the converted 
value has fewer characters than the fi~ld width~ it will be padded on the left (or 
right. if the left adjustment flag. described above. has been given) to the field 
width. The padding is with spaces unless the field width integer starts with a 
zero, in which case the padding is with zeros. 

An optional precision that gives the minimum number of digits to appear for the 
d. i, 0, u, x. and X conversions. or the maximum number of characters to be 
written from an array in an s conversion. The precision takes the form of a 
perjod (.) followed by an optional decimal integer; if the integer is omitted, it is 
treated as zero. The amount of padding specified by the precision overrides that 
specified by the field width. 

• An optional h specifying that a following d. i, 0, u, x. or X conversion specifier 
applies to a short int or unsigned short int argument (the argument will have 
been promoted according to the integral promotions. and its value shall be 
converted to short int or unsigned short int before printing); or an optional 1 
specifying that a follOwing d, i. 0, u, x, or X conversion specifier applies to a 
long int or unsigned long int argument. If an h or 1 appears with any other 
conversion specifier. it is ignored. 

64-5 

,-----,_._._--, .... _,-_._. ---



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

• A character that specifies the type of conversion to be applied. (Special AR 
extensions have been added.) The conversion specifiers and their meanings are: 

d, i, 0, u, x. X 

The int argument is converted to signed decimal (d or i), unsigned octal 
(0), unsigned decimal (u). or unsigned hexadecimal notation (x or X); the 
letters abcdef are used for x conversion and the letters ABCDEF for X 
conversion. The precision specifies the minimum number of digits to 
appear; if the value being converted can be represented in fewer digits. it 
will be expanded with leading zeros. The default precision is 1. The 
result of converting a zero value with a precision of zero is no characters. 

c The int argument is converted to an unsigned char, and the resulting 
character is written. 

s The argument shall be a pointer to a null-terminated array of 8-bit chars. 
Characters from the string are printed up to (but not including) the 
terminating null character: if the precision is specified, no more than that 
many characters are printed. The string may be an array into which 
output was written via the sprint! routine. 

p The argument shall be a pointer to void. The value of the pointer is 
converted to a sequence of printable characters, in this format: 
0000:0000. There are always exactly 4 digits to the right of the colon. 
The number of digits to the left of the colon is determined by the 
pointer's value and the precision specified. Use this conversion to print 
80286 memory addresses. The segment number will appear to the left of 
the colon and the offset to the right. 

% A % is written. No argument is converted. 

\n Writes hexadecimal OD OAt the ASCII carriage-return and linefeed 
characters. No argument is converted. 

If a conversion specification is invalid, the behavior is undefined. 

If any argument is or points to an aggregate (except for an array of characters using 
%s conversion or any pointer using %p conversion), the behavior is undefined. 

In no case does a nonexistent or small field width cause truncation of a field; if the 
result of a conversion is wider than the field width, the field is expanded to contain 
the conversion result. 

Returns 

The prim! routine returns the number of characters output. 

Example 

To print a date and time in the form "Sunday! July 3, 10:02," where weekday and 
month are pointers to strings: 

64-6 



~. 
~ 

LAYER: 1 
{ 

} 

unsigned char date_time flOOJ; 
unsigned char weekday [10}; 
unsigned char month {1O]; 
unsigned short day; 
unsigned char hour; 
unsigned char min; 

STATE: output_to_PI"lnter 
CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 
print/( "%$, %$ %d, %.2d:%.2d\n", weekdlIY. month, day, hour, min); 

} 

sprintf 

SynQPsis 

extern int sprint!(strinK..J1tr. !ormat"ptr); 
unsigned char string fl28]; 
const char" !ormat..ptr; 

Desctiption 

64 Print 

The sprint! routine is similar to the print! routine, except that sprint! writes output to 

a string. while print! writes output directly to the print buffer for printing. The sprint! 
routine is useful for writing formatted output to a display. printer, or file. 

The output is under control of the string pointed to by!ormat"ptr that specifies how 
subsequent arguments are converted for output. If there are insufficient arguments 
for the format, the behavior is undefined. If the format is exhausted while arguments 
remain. the excess arguments are evaluated but otherwise ignored. The sprint! 
routine returns when the end of the format string is encountered. 

The first parameter is a pointer to the array to which output will be written. 

For the second parameter. see print! routine. 

Returns 

This routine returns the number of characters written into the array, not counting the 
added nuB terminating character. 

Example 

Refer again to the sample program for the dispJay! routine in Section 61.3(C). This 
time you also want to send the outpUt toa printer. By using the sprint! routine, you 
only have to enter the format string once. 

64-7 

-- ~ --- ----~~--~------ --- -- - ----~------ --_. -~-~.------------~.--~---~--~~--~~.......,"-.~------- -~-~-------------- ----



INTERVIEW 7000 Series Advanced Programming: ATLG-107-951-10B 

LAYER: 1 
{ 

} 

unsigned char date_time {100); 
unsigned char weekday flO); 
unsigned char month flO); 
unsigned short day; 
unsigned char hour; 
unsigned char min; 

STATE: output_to _display_window _and_printer 
CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 

} 

sprint!(date_time, "%£, %s %d, %.2d: %.2d\n", weekday, month, day, hour, 
min); 

displayf("%s". date_time); 
printf("%s", date_time); 

set print header - -
Synopsis 

extern int setyrint_header(formatytr); 
canst char"' formatytr; 

DescriPtion 

This routine writes output to the print buffer. to be printed after each form feed. 
under control of the string pointed to by formatytr. Paging is done automatically by 
the INTERVIEW. The setyrint_header routine returns when the end of the format 
string is encountered. 

The format is composed of zero or more ordinary characters. Octal or hexadecimal 
values also may be input. with octal preceded by \ and hex by \x. Pad each value 
to three integers with leading zeroes. 

The status information shown above the prompt line on the display screens of the 
INTERVIEW can be sent to a printer with the following inputs: 

#d 

#t 
#p 

#b 

## 

Rewms 

date (mmfdd/yy) 

time (hh:mm) 

page (not shown on the display screens) 

block number 

# 

The setyrint_header routine returns the length of the header (0-255), or a -1 if the 
header exceeds the buffer size. 

64-8 



64 Print 

Example 

If you want the date, time. and page number to appear in the heading on each page 
sent to a printer. enter the following: 

LAYER: 2 
ST ATE: header 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
setJrint_header("#### #d #t 

} 

The printer output will look like this: 

#11 09/01/89 09:80 

III! 09/01/89 09:81 

prints 

SynOl'sis 

extern \loid prints (stringJtr) ; 
const char * stringJtr; 

Description 

#p ####\n"); 

Page 1 III 

Page 

The prints routine is similar to the displays routines, except that prints writes output 
to the print buffer for printing while displays writes output to the Display Window. 
The output is under control of the string pointed to by the argument. The prints 
routine returns when the end of the string is encountered. The softkey equivalent of 
this routine is the PRINT PROMPT action on the Protocol Spreadsheet. A PRINT 

PROMPT action automatically time-stamps the output. Although prints does not, you 
can create your own time or date stamp with setyrint_header. 

The input is a pointer to a string composed of zero or more ordinary characters. 
The newline nonliteral sequence "\n" writes hex OD OA (ASCII CR"t) to the output 
String. Octal or hexadecimal values also may be included in the string, with octal 
preceded by \ and hex by \x. Pad each value to three integers with leading zeroes. 



INTERViEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

Example 

The following entry 

prints("End of test. "); 

produces the following output to a printer: 

End of test. 

64-10 



"" . I 

. IT' 
, I 

65 Disk 110 

65 Disk 1/0 

The disk 1/0 routines explained in this section allow disk files to be read from and written to 
during Run mode. ., Streams" describes how most of the routines operate on a data stream 
rather than the actual file. Under "Routines," all the disk 1/0 routines are explained. These 
routines perform read and write functions as well as other ftle maintenance tasks in Run 
mode, such as creating directories, renaming files,· and deleting files. 

65.1 Streams 

Most disk I/O routines are not executed on the actual disk file. but on a stream 
which includes a copy of the file's data. Opening a disk file for reading or writing 
associates a stream with the file. A stream may be input or output. Input streams 
are read-only. Output streams are write-only. In either case, the stream remains 
associated with a disk file until the file is closed. 

You may have more than one stream associated with a given file. (A maximum of 
ten streams may be open at one time.) For example, to read from and write to an 
existing file, you must open the file twice. once to create an input stream and once 
to create an output stream. 

(A) Stream Components 

A stream contains everything needed to perform disk I/O functions on a file. 

1. Buffer. A buffer containing a copy of the data in a disk file is part of the 
stream. When a disk file is opened for reading, sectors of the disk 
containing the file are. copied.to this buffer. 

Sometimes a file's size may exceed the maximum size (512 bytes) of the 
buffer. In this instance, as much data from the file as will fit in the buffer is 
copied. As each character is read.from the inputStr~am, it is removed. 
{The ungetc routine may temporarily return a removed. character to an input 
stream.) Each call to !read~ fgcte, or fgets further empties the buffer, while 
leaving the contents of the disk file unchanged. When the buffer is empty, 
the next sector (or sectors) of the disk file is (are) automatically copied into 
the buffer. 

Similarly. when a file is opened for writing. the empty buffer is filled as 
/Write or other outpUt. routines are invok.ed. Characters written to the output 
$tream are not transferred to the diskflle until there is a call to fflush . 
Fflush is automatic in fdose or when the stream buffer is full. 

65--1 



INTERV/€W 7000 Series Advanced Programming: ATLC-107-9S1-10B 

2. File-position indicator. The file-position indicator keeps track of 
progression through the disk file. For files opened in read mode, the 
indicator is initially located at the first character (character zero) in the file. 
As characters are read from the input stream, the indicator advances through 
the file. 

For existing files opened in append mode, the indicator is positioned after 
the last character in the file. For newly created files or files opened in 
overwrite mode, it is located at the beginning of the file. Every time an 
output routine is executed, the file-position indicator is advanced by the 
number of characters successfully written to the stream. 

3. Buffer pointer. The stream also contains a pointer into the associated buffer 
of a file. In input streams, it points to the next character to be read. In 
output streams, it points to the next empty byte. 

4. EOF indicator. If the end-of-rue (EOF) indicator is set in a input stream, 
it means that a read operation encountered the end of the file. The EOF 
indicator is cleared via calls to Jopen. fseek, rewind. clearerr, or ungetc. 

5. Error indicator. In input streams. this indicator gets set when an Jread, 
fsetc, or Jsets routine does not successfully execute. Attempting to execute 
these input routines (or unsetc) on an output stream sets the error indicator. 
In output streams. the error indicator gets set when the !flush, Jwrite. Jputc, 
Jputs, or JprintJ routine does not successfully execute. or when output 
routines try to execute on an input stream. A call to Jopen, clearerr. or 
Jseek. clears the error indicator in either input or output streams. A rewind 
operation on an input stream also clears the indicator. 

(8) Stream Pointer 

The fopen routine returns a pointer to the stream. Disk I/O routines which 
perform operations on a stream require the stream pointer as an argument. It 
has been named stream-ptr in the routines discussed below. 

(C) Locking Streams 

Each file stream is locked internally during operations on it. If the user program 
is executing different conditions on multiple processors and both actions require 
writing to the sczme Jile stream. internally the stdio library will allow the first task 
that requests to write to execute until completion and the second task will be 
locked out. All processes that are locked out are temporarily put to sleep and 
removed from the tasking queues for that CPU. When the first process 
completes its operations on the stream, the locked-out processes are woken up 

,and may· try to claim the lock. Deadlock or deadly embrace situations can 
never arise internally to the stdio library. 

65-2 



65 Disk I/O 

If two or more file streams are associated with a single file, processes on each 
stream may try to operate on the file concurrently. Internal locking does not 
apply in this situation, so use the locking routines. 

65.2 Routines 
Disk 110 routines fall into four categories. The first category includes routines valid 
for both input and output streams. including the two locking routines (not exclusive 
to disk I/O). The remaining groups are routines valid for input streams only. routines 
applicable to output streams only. and routines which handle other file maintenance 
functions. 

The routines and their descriptions closely conform to the ANSI specification for the 
Programming Language C, as defined in the draft document published July 9, 1986. 
Discrepancies with the ANSI standard are noted. The document number is 
X3J11-86-098. Refer to pages 107-129. 

Use the #include <stdio.h> pre-processor directive with all disk I/O routines. The 
stdio. h file contains type definitions and function prototypes. making declarations of 
the routines unnecessary. 

When a filename is required as an argument. give the absolute pathname of the file. 
prefixed by the device name. Valid device names are FDI, FD2, or HRD. See 
Section 13.2(B) for a discussion of absolute pathnames. The disk filename is 
required as an argument for the fopen routine. which opens a file for reading or 
writing. From that point on, disk 1/0 routines relating to that file use the stream 
pointer. explained above. as input. File maintenance routines, such as rename or 
remove, use the filename as input. 

NOTE: A single program can perform disk 1/0 functions as well 
as data playback or recording. Disk 1/0. however, must be 
suspended while disk recording (or play1;>ack) proceeds, and vice 
versa. RAM recording, on the other hand, may occur 
simultaneously with disk I/O operatjons. Refer to the 
startJcrdylay and suspendJcrdylay routines in Section 69 for 
more information on the interaction between disk I/O and 
recording/playback. 

(A) Input/Output-Stream Routines 
Several disk I/O routines may be executed on either input or output streams. 
fopen opens an existing disk file for reading or writing. or creates a new file. In 
each case, a stream is associated with the file until there is a call to jclose. 
fclose or a specific caU to !flush delivers any output written to a stream to the 
host environment where it will be written to the disk file. 

NOTE.: Always include a call to fclose in your program to make 
sure output is written to the file. 

65-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Test the end-of-file and error indicators with the feof and ferror routines, 
respectively. These same indicators may be cleared via the clearerr routine. 

The fseek and rewind routines manipulate the file-position indicator and erase 
any memory of a character put into the stream via ungetc. 

The lock and unlock routines prevent deadlock from occurring when processes 
on multiple streams try to operate concurrently on a single file. 

fopen 

Syno.psis 

#include <.stdio.h> 
extern FILE - lopen (/ilenameytr, madeytr); 
canst char" lilenameytr; 
const char" mOdeytr; 

Description 

The fopen routine opens a file for access. Depending on the open mode, a file 
can be opened for reading (via an input stream) or for Writing (via an output 
stream). For existing files. this routine also clears the end-of-file and error 
indicators. 

The first parameter is a pointer to the file to be opened, represented as the 
name of the file. placed inside double quotation marks. The filename must be 
the absolute pathname. prefixed by the device name (HRD, FD1, or FD2). 

The second parameter is a pointer to a string (represented as. a character inside 
double quotation marks) which identifies the type of open to be performed. Of 
the ANSI standard open modes. the following are supported: 

r Open an existing file for reading only. The file-position indicator is 
located at the start (character zero) of the file. 

w Create a file. or open an existing file. for writing only. For an existing 
file, truncate its length to zero and discard the contents. 

a Create a file. or open an existing file, for writing only. For an existing 
file, retain the contents and locate the file-position indicator at the 
end of the file. Append new data to the end of existing data, unless 
a call to fseek or rewind has repositioned the file-position indicator. 
In this instance, overwrite existing data. (This implementation is 
different frorn the ANSI specification which appends new data to the 
end of existing data regardless of any previous calls to fseek.) 

65-4 



~.' '. 
w: I 

I 

65 Disk /f0 

rb Currently implemented the same as "r." Use "rb" for the Iseek 
routine. 

wb Currently implemented the same as "w." Use "wb" for the Iseek 
routine. 

ab Currently implemented the same as "a." Use "ab" for the Iseek 
routine. 

Returns 

This routine returns a pointer to the stream. with a type definition FILE 
(defined in the stdio.h file). 

If the open fails (for example, the £He does not exist). zero is returned. 

Example 

Open a file called "butIOJ" in the lusT' directory on a disk in floppy drive 2. 
Store the pointer to the stream in streamytr. Indicate whether or not the open 
is successful on the prompt line. 

{ 

} 

#include <.stdio.h> 
FILE .. streamJ'tr; 

LAYER: 1 
STATE: open_a_file 

CONDITIONS: ENTER_STATE 

fclose 

ACTIONS: PROMPT "Press 0 to open file. 
CONDITIONS: KEYBOARD "00· 
ACTIONS: 
{ 
if«(streamJ'tr = fopen("FD2IusrfbuffOI", "r")) == 0) 

displaYJ'rompt("Cannot open file. 
else 

displayyrompt("File opened. 

Synopsis 

#include <.stdio. h> 
extern int /close(streamJ'tr); 
FILE" streamJ'tr; 

DeScription 

"); 

") ; 

All opened files must be closed. If the disk file to be closed is an input file, 
then any data remaining in the stream buffer is discarded. If the file is an 
output file. any data written to the stream is written to the file. (In other words, 
Iclose automatically calls Iflush.) The stream is freed from its association with 
the disk file. and the disk file is closed. 

65-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951 108 

The only parameter is the stream pointer. 

Returns 

If the stream is successfully closed. zero is returned. If errors are detected. or if 
the stream is already closed, a non-zero value is returned. 

Example 

Close the file that was opened in the !open example. Indicate whether or not 
the close is successful on the prompt line. 

} 

#include <stdio. 1'1> 
FILE • stream"'ptr; 

LAYER: 1 
STATE: open_and_close_a_flle 

CONDITIONS : ENTER_STATE 
ACTIONS: PROMPT 'Press 0 to open file. 
CONDITIONS: KEYBOARD ·00' 
ACTIONS: 
{ 

} 

ij«slream...ptr = jopen("FD2Iusrlbujj01", "r")) == 0) 
display...prompt("Connot open file. 

else 
display"'prompt("File opened. 

CONDITIONS: KEYBOARD 'cC' 
ACTIONS: 
{ 
if(fetose(stream...ptr) /: 0) 

"); 

display...prompt("Either file is already closed, or etose cannot be executed. "); 
else 

display"'prompt(UFile closed. "); 

fflush 

Synopsis 

#include <stdio. h> 
extern int fflush (stream"'ptr) 
FILE" stream"'ptr; 

Description 

If streamytr points to an output stream, the !flush routine causes any unwritten 
data for that stream to be delivered to the host environment where it will be 
written to the file. If streamytr points to an input stream, the !flush routine 
undoes the effect of any preceding ungetc operation on the stream. 

The only parameter is the stream pointer. 

65-6 



~, 
r i 

i 

fl" 
! 

65 Disk 110 

Returns 

If a write error occurs, non-zero is returned and the error indicator is set. 

Example 

Assume the X.25 personality package has been loaded in at Layer 2. Whenever 
you receive a frame type "unknown," write the actual value of the control byte 
to an output file stream and to the disk file. 
{ 
#include <stdio.h> 
FILE" stream-ptr; 
extern lIolatile const unsigned char rClldJrame_cl'ltrl_byte_l; 

} 
LAYER: 2 

STATE: wrlte_thenjflush 
CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
i!«stream-ptr = fopen(UFD2Iusrljrame_unkwn", "a")) == 0) 

display -prompt (" Cannot open file. 
else 

display-prompt("File opened. 
pos_cursor(l,O) ; 

} 
CONDITIONS: RCV UNKNOWN 
ACTIONS: 
{ 
ij(jprintf(stream-ptr, "%02x\n ", rClIdJrame_cntrl_bytej) < 0) 

displayf("Error in printing to strt:am. 
else 

displayf(" Print to stream completed. 
if(fflush (stream...,ptr) 1= OJ 

display -prompt ("Write error. 
else 

\1'1"); 

\1'1"); 

"); 

display-prompt("Write to file completed. Press C to close file. "J; 
} 
CONDITIONS: KEYBOARD ·oC· 
ACTIONS: 
{ 
ij(jclose(stream"'ptr) != 0) 

displaY"'prompt ("Either file is already closed, or close cannot be executed. ..); 
else 

display"'prompt (" File closed. "); 

feaf 

Synopsis 

#include <stdio.h> 
extern int feof(stream...,ptr); 
FILE .. stream...,ptr; 

Description 

This routine tests the end-of-file indicator for an associated stream. 

65-7 



INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-9S1-108 

The only parameter is the stream pointer. 

Returns 

The feof routine returns a non-zero value if the end-of-file indicator is set for 
the stream. 

Exanmle 

Get a character from a file. If it is not at the end of the file. display it; 
otherwise prompt with "End of file." 

} 

#include <.sldlo. h> 
FILE· stream-ptr: 
int character; 

LAYER: 1 
STATE: test_for_8ot 

CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT "Press 0 to open file. 
CONDITIONS: KEYBOARD ·00" 
ACTIONS: 
{ 
ifUstream-ptr = fopen("FD2IusrlbuffOl", "rp"» == 0) 

display-prompt("Cannot open file. 
else 

display-proml't("File opened .. Press G to gel character. 
pos_cursor(J ,0); 

} 
CONDITIONS: KEYBOARD "gaO 
ACTIONS: 
{ 
character = jgetc(streamytr); 
if(feof(stream,JJtr) /= 0) 

display-prompt("End af file. Press C to close flle. 
else 

displayf(" 'roc", character); 
} 
CONDITIONS: KEYBOARD "cC· 
ACTIONS: 
{ 
i!(fclose(stream-plr) 1= 0) 

"); 

H); 

") ; 

display-prompt("Either file is already closed, or close cannot be executed. "); 
else 

displaYJrompt("File closed. "); 

ferror 

Synopsis 

#include <.std/a. h> 
extern int !error(stream-ptr); 
FILE" stream-ptr; 

"" - ---------~-----~ -----------~ 

65-8 



65 Disk I/O 

Description 

This Toutine tests the error indicator for a stream. 

The only parameter is the stream pointer. 

Returns 

The lerror routine returns a non-zero value if the effOf indicatof is set for the 
stream. 

Example 

Read a file called "buIIO]" from the lusr directofY on the disk in drive 2. If 
the number of elements read is less than the number designated to be read. 
determine whether an end-of-file was encountered or a read error occurred. 

{ 
#indude <stdio.h> 
FILE "' strfam...ptr; 
char data [6091 J; 
siu_t n; 

} 
LAYER: 1 

STATE: read_a_file 
CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT "Press 0 to open file. 
CONDITIONS: KEYBOARD "00' 
ACTIONS: 
{ 

} 

if«(stream"'ptr ""/open("FD2IusrlbujjOl", "r"J) == 0) 
displaY"'prompt("Cannot open jile. 

else 
displaY"'prompt(ftFile opened. Press R to read the file. 

CONDITIONS: KEYBOARD orR" 
ACTIONS: 
{ 
n = fread(data, 1, 6091, stream"'ptr); 
if(n 1= 6091) 

{ 

} 

ij(jerror(stream...ptT) 1=0) 
displaY"'prompt(" Rtad effor. 

tlst i/fJeoj(stream"'ptr) t= 0) 
display "'prompt(" End-oJ-Jile encountered. 

else 
displayj("\n%.6091s", data); 

displaY"'prompt("PrtssC to dose the lile. 
} 

"); 

") ; 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

CONDITIONS: KEYBOARD ·cC" 
ACTIONS: 
{ 
ifCfclose(streamJtr) 1= 0) 

displaYJrompt("Either file is already closed, or close cannot be executed. "); 
else 

display Jrompt(" File closed. "); 

clearerr 

Syn0j2sis 

#include <stdio. h> 
extern void clearerr(streamJtr); 
FILE • streamJtr; 

Description 

This routine clears the end-of-file and error indicators for a stream. When an 
error occurs. no further operations are allowed until the error indicators are 
explicitly cleared. (These indicators are also cleared by a jopen or rewind 
operation.) 

The only parameter is the stream pointer. 

Example 

If a write error occurs. clear the indicators. 

{ 

} 

#include <stdlo. h> 
FILE • streamJtr; 
int character; 

LAYER: 1 
STATE: clear Indicators 

CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT "Press 0 to open file. 
CONDITIONS: KEYBOARD '00' 
ACTIONS: 
{ 
if«streamJtr '" fopen ("FD2IusrlbuffOJ ", "wb")) == 0) 

displaYJrompt("Cannot open file. 
else 

") ; 

displaYJrompt(UFile opened: Press P to write character. '1') ; 

65-10 



65 Disk I/O 

CONDITIONS: KEYBOARD "PP' 
ACTIONS: 
{ 

} 

character"" fputc('h', stream"ptr); 
if(cnaracter "':: EOF) 

{ 

} 

displaY"prompl("Write error. All indicators will be cleared. 
clearerr(stream"ptr); 

else 
displaY"prompt("Write complettd. Press C to close the file. 

CONDITIONS: KEYBOARD ·ce· 
ACTIONS: 
{ 
if(fclose(stream"ptr) != 0) 

,.') ; 

displayyrompt("£ither file is already dosed, or close cannot be executed. "); 
else 

displayyrompt("File cloud. "): 

fseek 

Synopsis 

#include <stdlo.h> 
extern int fseek(stream"ptr. bytes, reference); 
FILE" stream"ptr; 
long int bytes; 
int reference; 

De&cription 

This routine manipulates the file-position indicator, according to the ANSI 
specification for binary files. Future read operations will be referenced from that 
point. jseek dears the end-of-file indicator and resets the ungetc variable. 

NOTE: The ANSI specification for text files is not currently 
implemented. To ensure proper execution of jseek if future 
releases include the ANSI specification for text files. open files 
for jseek as binary ("rb," "wb," or ·'ab"). 

The first parameter is the stream pointer. 

The second parameter is the number of characters the file-position indicator 
should be moved from a specified position. A positive number advances the 
file-position indicator forward in the file; a negative number moves it backward. 

65-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

The third parameter specifies the location of the file-position indicator. 
SEEK_SET"will move the file-position indicator from the beginning of the file; 
SEEK_END will move the file-position indicator from the end-of-file; and 
SEEK_CUR will move the file-position indicator from its current position. 

Returns 

This routine returns non-zero for an improper request; otherwise it returns zero. 

Example 

Open a file and move the file-position indicator 4 characters from the beginning 
of the file. Each time the lID key is pressed. move the indicator one character 
backward from its current position. After 4 executions. the indicator will be 
back at the beginning of the file. 

{ 

} 

#include <stdio. h> 
FILE • streamJ'tr; 
int character; 

LAYER: 1 
STATE: move_indicator 

CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT "Press 0 to open file. 
CONDITIONS: KEYBOARD "00' 
ACTIONS: 
{ 
if«streamJ'tr = fopen("FD2IusrlbuffOI". "rb")} :;:= 0) 

displaYJ'7ompt("Cannol open file. 
else 

{ 
displaYJrompt(" File opened. "); 
pos_cursor(O,14) ; 
if(jseek(streamJ'tr. 4, SEEK_SET) != 0) 

displays ("Improper fseek request. 
else 

displays("Fseek completed. Press S to seek new position. 

} 
CONDITIONS: KEYBOARD ·sS· 
ACTIONS: 
{ 
if(jseek(streamJtr. -J. SEEK_CUR) != 0) 

displaYJ'rompt(" Improper fseek request. Press C to close file. 
else 

displaYJromptC"Fseek completed. Press C to close file. 

65-12 

"); 

"); 

H); 

"); 



~ f I ' 
i 

I'i' . ! , 

CONDITIONS; KEYBOARD ·cC· 
ACTIONS: 
{ 
if(Jclose(strtam"ptr) 1= O} 

65 Disk I/O 

displaY"prompt("Either file is already closed, or close cannot be executed. "); 
else 

dlsplaY"prompt("File closed. "); 

rewind 

Synopsis 

#include <stdio.h> 
extern yoid rewind(slream..ptr); 
FILE" streamJ'tr; 

Description 

This routine returns the file-position indicator to the beginning of the file (Le., it 
is equivalent to an fseek with the number of characters to move set as zero and 
the specified position SEEK_SET). The rewind operation also clears the 
end-of-file and error indicators and erases any memory of the character in a 
previous ungetc operation . 

The only parameter is the stream pointer. 

Example 

In this example, the first call to fgetc following the rewind operation will read the 
first character in the file. 

{ 

} 

#inc/ude <stdio.h> 
FILE * streamJ'tr; 
int character; 

LAYER: 1 
ST ATE: move Jndicator 

CONDITIONS; ENTER_STATE 
ACTIONS: PROMPT "Press 0 to open file. 
CONDITIONS: KEYBOARD '00· 
ACTIONS: 
{ 
if«streamJ'tr ': fopen("FD2/usrlbuff01", "rb")) == 0) 

displaYJ'rompt("Cannot open file. 
else 

displaYJ'rompt("File opened. Press S to f.eek. 

65-13 

"); 

"); 



INTERVIEW 7000 Series Advanced Programming: ATLC-107 951 108 

CONDITIONS: KEYBOARD ·ss· 
ACTIONS: 
{ 

} 

iflfseek(stream...ptr, 4, SEEK_SET] (; 0) 
displaY"'prompt(uJmproper fseek request. 

else 
displaYJ'rompt(UFseek completed. Press spacebar to rewind. 

CONDITIONS: KEYBOARD" • 
ACTIONS: 
{ 
rewind(stream...ptr) ; 

") ; 

"); 

displaYJ'rompt(UPress G to get a character. "j; 

lock 

} 
CONDITIONS: KEYBOARD "gG" 
ACTIONS: 
{ 
character =fgete(stream...ptr}; 
displaY"'prompt("Press C to elosefUe. H); 

} 
CONDITIONS: KEYBOARD ·ce· 
ACTIONS: 
{ 
tf(fclose(stream...ptr) /= 0) 

displaY"'prompt(" Either file is already closed, or close cannot be executed. "); 
else 

dispZaY"'prompt("File closed. "); 

Synopsis 

#include <stdlo. h> 
extern void loek(/oelc_variable "'ptr); 
int "' loek_variable"'ptr; 

Description 

The lock routine implements a lock using the integer variable pointed to by the 
routine parameter. If the lock variable is currently locked, the task goes to 
sleep. When an unlock on the same variable occurs (within an independent 
task), the task invoking the lock function will attempt to claim the lock. If 
successful, the task is executed; otherwise, it goes back to sleep until the next 
unlock. 

NOTE: If locking is used at any place in the program, all related 
or possibly concurrent routines must also use the locking 
functions. 

65-14 



!:~ 
! 

65 Dish 110 

NOTE: The lock variable should always be defined as a global 
integer, never as local to a function. The lock variable should 
never be altered by the user program or deadlock can occur. 
Deadlock also results if the lock is invoked twice within the same 
task without an intervening unlock. 

The only parameter is a pointer to the lock variable. 

Example 

Two tasks concurrently write to their own file streams. The file streams are local 
to the routine writeJox. making them independent of each other even though 
both are referenced by streamytr. During the !close operation (which 
automatically calls fflush) , however. both tasks need to write to the same file. 
The locking routines ensure that the writes to the· file occur sequentially. not 
concurrently. 

#include <stdia. h> 

} 

COlm char data [] ::: "((FOX)\'n"; 
int key; 
void writeJox() 
{ 
FILE • streamJtr; 
size_t 'I; 
lock (&I:ey); 
if«stream"ptr::: fopen("FD2IusrlbuffOI", "a"» == 0) 

displaYJrompt("Ca1'l.not open file. 
else 

displaYJfompt("File opened. 
n :: fwrite(data. 1. sizeof(data)-i, stream"ptr); 
pos_cursor(1,O); 

} 

if(n /= (sizeo!(data)-l» 
display!("Write error. 

else 
displayf("Write completed. 

if(felose(streamJtr) !e 0) 
displayf("Either file is already closed. or close cannor be executed. 

else 
displayf(" File closed. 

unloel: ( &I:ey) ; 

LAYER: 1 
TEST: a 

STATE: write and signal 
CONDITIONS: RECEIVE STRING "THE QUICK BROWN FOX" 
ACTIONS: SIGNAL xyz 
{ 
writeJox(); 

} 

65-15 

"); 

") ; 

\n"}; 

\n"); 

n) ; 

"); 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

TEST:b 
STATE: write_only 

CONDITIONS: ON_SIGNAL xy: 
ACTIONS: 
{ 
writeJox(); 

} 

unlock 

SynQl)sis 

#include <stdio. h> 
extern void unlock(lock_1Iarlable"'ptr); 
int .. lock_1Iariable"'ptr; 

Description 

The unlock routine implements the inverse of the Jock routine using the same 
integer variable. Sleeping tasks will be woken up to retry their attempt to claim 
the lock. One will succeed. and the rest will go back to sleep. See also lock 
routine. 

The only parameter is a pointer to the lock variable. 

Example 

See lock routine. 

(8) Input-Stream Routines 
The following routines are valid for input streams only. An attempt to apply 
them to output streams results in a read error. The error indicator for the input 
stream will be set. 

Three routines read characters from the input stream. The fread and fgets 
routines transfer a specified number of characters from the stream buffer into a 
user-defined array. fgetc reads the next character from the input stream. The 
ungetc routine temporarily forces a designated character back into the input 
stream. 

fread 

SynQ,Psjs 

#include <stdio. h> 
extern size_t /read(datIJ...ptr, size, number, stream"'ptr); 
1Ioid .. data"'ptr; 
size _ t size; 
size_t number; 
FILE" stream...ptr; 

65-16 



65 Disk 110 

Description 

This routine reads elements from the input-stream buffer and puts them into a 
user-defined buffer. The file-position indicator is advanced by the number of 
characters successfully read. The !read routine can read a file whose elements 
are more than eight bits each, 16-bit shorts or 32-bit longs, for example. The 
!gets routine is similar to !read. !gets, however, reads only 8-bit characters. 
The primary use of !read is to read the entire contents of a file, whereas the 
primary purpose of !gets is to read from a file one line at a time. 

The first parameter is a pointer to an array in which the incoming data should 
be placed. 

The second parameter is the number of bytes in each element to be read. If 
the value of this parameter is zero, the contents of the array and the stream 
remain unchanged. 

The third parameter is the number of elements to be read. If the value of this 
parameter is zero, the contents of the array and the stream remain unchanged. 

The fourth parameter is the stream pointer. 

Returns 

The !read routine returns the total number of elements read. If the number of 
elements read is less than the number of elements designated to be read, an 
end-of-file has been encountered or a read error has occurred. Use the leo! 
and !error routines to distinguish an end-of-file from a read error. If an error 
occurs, the location of the file-position indicator is indeterminate. 

Example 

Read in a file called "buff 01" from the lusr directory on the disk in drive 2 and 
display it on the Program Trace screen. (See Section 61.4 for information on 
using trace buffers in C.) Determine the size of the array data from the file size 
indicated on the File Maintenance screen. 

{ 
#include <.traee_buf.h> 
#include <stdle. h> 
FI4E .. streamytr; 
eMr data [6091]; 
size_, n; 
extern struct trace_buf pro8_trhuJ; 

} 

65-17 



INTERVIEW 7000 Series Advanced Programming: ATLC-107 951-108 

LAYER: 1 
STATE: read_a_file 

CONDITIONS: ENTER STATE 
ACTIONS: PROMPT "Press 0 to open file. 
CONDITIONS: KEYBOARD '00' 
ACTIONS: 
{ 

} 

if(streamJtr" fopen("FD2/usrlbuff01", "r")) ;; 0) 
displaYJrompt("Cannot open file. 

else 
displaYJrompt("File opened. Press R to read the file. 

CONDITIONS: KEYBOARD OrR" 
ACTIONS: 
{ 

} 

n = fread(data, 1, 6091, streamJtr); 
if(n 1= 6091) 

display"'prompt("Either a read error has occurred, or an EOF has been 
encountered. "); 

else 
{ 

} 

tracef(&proLtrbuf, "%.6091s", data); 
display Jrompt (U Press C to close the file. 

CONDITIONS: KEYBOARD ·cC· 
ACTIONS: 
{ 
iffJclose(stream...ptr) != 0) 

") ; 

'~) ; 

displaYJrompt("Either file is already closed, or close cannot be executed. "); 
else 

displaYJrompt("File closed. ttl; 
} 

fgets 

Synopsis 

#include <ftdio. h> 
extern char" fgets(stringJtr, max_number, stream"'ptr); 
char" string...ptr; 
int max_number; 
FILE to stream "'plr; 

Description 

This routine gets at the most one less than the specified number of characters 
from an input stream and puts them in an array. If an EOF, newline, or null is 
encountered in the stream, no more characters win be read, even if the specified 
number of characters has not yet been read. The newline will be retained. A 
terminating null character is written after the last character read into the array. 
The file-position indicator is advanced by the number of characters successfully 
read. The fgets routine is similar to fread. The fread routine can read a file 

65-18 



65 Disk 110 

whose elements are more than eight bits each. 16-bit shorts or 32-bit longs, for 
example. jgets, however, reads only 8-bit characters. The primary use of fgets 
is to read from a file one line at a time. 

The first parameter is a pointer to the array into which the characters will be 
put. 

The second parameter is the maximum number of characters (minus one) to be 
read. 

The third parameter is the stream pointer. 

~turns 

If the routine is successful, a pOinter to the array is returned. If end-of-file is 
encountered before any characters have been read into the array or if a read 
error occurs, a null pointer is returned. The contents of the array are 
indeterminate when a read error occurs. 

Example 

Five characters. at the most, from a disk file will be put into an array called 
data and displayed on the screen. 

{ 

} 

#include <stdio. h> 
FILE .. streamJ'tr; 
char data (10]; 

LAYER: 1 
STATE: read_characters 

CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT • Press 0 to open file. 
CONDITIONS: KEYBOARD ·00· 
ACTIONS: 
{ 

} 

ij((str~(JmJ'tr -::: jopen (UFD2IusrlbufjOl". "r'J) == 0) 
displaY"'prompt("Cannot open jile. 

else 
displaYJ'rompt(" File opened. Press G to get string. 

CONDITIONS: KEYBOARD "g(3" 
ACTIONS: 
{ 
jgets(data, 6, streamJ'tr); 
displayj("\n%.6s", data}; 
display"'prompt (" Press C to close the file. 

} 

65-19 

H); 

.. ) ; 

"); 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

fgetc 

CONDITIONS: KEYBOARD ·cC· 
ACTIONS: 
{ 
i!Cfclose(stream"'ptr) /= 0) 

displaY"'prompt("Either file is already closed, or close cannot be executed. "); 
else 

displaY"'prompt("File closed. "); 
} 

Synopsis 

#include <stdio.h> 
extern int !g,tc(str,am...ptr); 
FILE • stream...ptr; 

Description 

The jgetc routine gets the next character (if present) from the input stream. 
The character is an unsigned char cast-to an int (stored in the least-significant 
byte of the int). The file-position indicator advances by one character. 

The only parameter is the stream pointer. 

Returns 

This routine returns the next character in the input stream. EOF is returned if 
an end-of-file is encountered or if a read error occurs. The stdio.h file defines 
the macro EOF as -1. Use the feof and jerror routines to determine the reason 
for a returned EOF. 

Example 

In the following example. open an input file for reading. Each time the @ key 
is pressed. display the next character in the file. 
{ 
#include <stdio.h> 
FILE • stream"'ptr; 
int character, ,nd; 

} 
LAYER: 1 

STATE: get next character 
CONDITioNS:-ENTER_STATE 
ACTIONS: PROMPT ·Preaa 0 to open flle. 
OONDITIONS: KEYBOARD ·00· 
ACTIONS: 
{ 
i!((stream"'ptr == !op,n("FD2tusrlbuf!Ol", "r"» ... 0) 

displaY"'prompt("Cannot open fil,. 
,Ise 

display...prompt("Fil,op,n,d. hess G to g,t a character. 
display!("'n"): 

} 

65-20 



~1'4 r" 
! 

65 Disk 110 

CONDITIONS: KEYBOARD "gQ" 
ACTIONS: 
{ 

} 

character:: fgetc(streamytr); 
if(character :; EOF} 

{ 
end:: fecf(streamytr); 
if(end != 0) 

displayyrompt(U EOF encountered. 
else 

displayyrompt(" Read error. 
} 

else 
displayf(" "foe", character); 

CONDITIONS: KEYBOARD ·oC· 
ACTIONS: 
{ 
if(fclose(streamytr) 1= 0) 

") ; 

") ; 

displaY"'prompt("Either file is already closed, or close cannot be executed. "); 
else 

displayyrompt(" File closed. "); 
} 

ungetc 

SynQPsis 

#include <stdio.h> 
extern int ungetc(character, streamytr); 
int character; 
FILE * stream..,ptr; 

Description 

This routine temporarily forces a specified character into a variable associated 
with the input stream, overwriting the previous ungetc variable. The routine 
does not affect the location of the file-position indicator. The next fgete will 
read the ungetc variable. not the stream. An intervening fflush. jseek, or rewind 
erases memory of the character. If the ungttc function is called too many times 
on the same stream without an intervening read. fflush. fseek. or rewind 
operation on that stream, the operation may fail. Ungetc also clears the 
end-of-file indicator. 

The first parameter is the character to be put into the input stream. 

The second parameter is the stream pointer. 

Returns 

This routine returns the spedfied character. If the operation fails, EOF is 
returned and the input stream remains unchanged. It will fail if the values of 
the specified character and the macro EOF are equal. 

65-21 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Example 

Read a character from the stream. Press the !ill key when you want to return 
the last character read to the stream. The next call to fgetc will read the 
returned character. 

} 

#include <.stdio. h> 
FILE" streamytr; 
int character; 

LAYER: 1 
ST ATE: get _ next_ charaoter 

CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT ·Press 0 to open fHe. 
CONDITIONS; KEYBOARD· 00' 

ACTIONS: 
{ 

} 

if((slreamJtr '" fopen("FD2Iusrlbuf!OJ", "r"» == 0) 
displaYJrQmpt("Cannot open file. 

else 
displaYJrompt(UFile opened. Press G to get a character. 

CONDITIONS: KEYBOARD "gG" 
ACTIONS: 
{ 

} 

character = fgetc(streamytr); 
if(character == EOF) 

displaYJrompt("End of file or read error. 
else 

{ 
pos_cursor(O,O); 
displayf("character = %c Press U to return character to stream.", character); 
} 

CONDITIONS: KEYBOARD "uU' 
ACTIONS: 
{ 
I!«ungetc(character, streamJtr)) ='" EOF) 

"): 

displayyrompt(" Character no/returned. "); 
else 

displaYJrompt(" Character returned. "); 
} 
CONDITIONS: KEYBOARD ·cC· 
ACTIONS: 
{ 
if(fclose(streamJtr) /= 0) 

displayyrompt("Either file is already closed, or close cannot be executed. "); 
else 

display Jrompt (" File closed. "); 

65-22 



~ 
f. ! C ... i 

1 

~ff'. \ i 

65 Disk 110 

(C) Output-Stream Routines 

The following routines are valid for output streams only. An attempt to apply 
them to input streams will result in a write error. The error indicator for the 
output stream will be set. 

Four routines write to output streams. The !write and !puts routines transfer a 
specified number of characters from a user-defined array into the stream buffer. 
!putc writes a character to the next empty byte in an output-stream buffer. 
!print! writes formatted output to an output stream similar to the way display! 
writes output to the Display Window. 

fwrite 

SynQPsis 

#include <stdio. II> 
extern size_t !write(outputytr, size, number, streamytr); 
const void" outputJtr; 
size _t size; 
size_t number; 
FILE • streamJtr; 

DescriptiQn 

This routine writes elements from a user-defined array to the output-stream 
buffer. The file-position indicator is advanced by the number of characters 
successfully written. 

The first parameter is a pointer to an array from which the data should be 
taken. Declare it as canst if it is read-only. In cases where the array will be 
written to, as in the example below. do not include const as part of the 
declaration. 

The second parameter is the number of bytes in each element to be written. 

The third parameter is the number of elements to be written. 

The fourth parameter is the stream pointer. 

Returns 

The !write routine returns the total number of elements written. If the number 
of elements written is less than the number of elements designated to be written, 
a write error has occurred. If an error occurs, the location of the file-position 
indicator is indeterminate. 

65-23 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Example 

Read the contents of a file. and write them to a new file. 

{ 

} 

#include <.stdio. h> 
FILE * read_stream; 
FILE" write_stream; 
char output {6091]; 
size_t 11; 

LAYER: 1 
STATE: wrlte_to_a_fl1e 

CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT 'Press 0 to open flies. 
CONDITIONS: KEYBOARD '00· 
ACTIONS: 
{ 

} 

if«read_stream :: jopen("FD2Iusrlbujf01", "rn)) == 0) 
{ 
displaYJrompt("Cannot open buff 01. "}; 
pas_cursor (0, 21); 
} 

else 

displaYJrompt("BujfOlopened. "); 
pas_cursor(O,16); 
} 

ij«write_stream :: jopen("FD2IusrtnewJile", "w"» == 0) 
displays(" Cannot open new Jile. 

else 
displays("NewJile opened, Press R to read buJjOJ. 

CONDITIONS: KEYBOARD OrR" 
ACTIONS: 
{ 
n = fread(output, 1, 6091, read_stream); 
if(n /= 6091) 

displaYJrompt("Either a read error has occurred. or an EOF has been 
encountered. "); 

else 
displayyrompt("Press W to write to newJile. 

} 
CONDITIONS: KEYBOARD ·wW· 
ACTIONS: 
{ 

} 

n = fwrite(output. 1, 6091, write_stream}; 
ij(n J= 6091) 

display yrompt("Write errar. Press C to close files. 
else 

displaYJrompt("Write completed. Press C to clase fites, 

65-24 

"); 



CONDITIONS: KEYBOARD "cC' 
ACTIONS: 
{ 
if(jclose(read_stream) J= 0) 

{ 

65 Disk 110 

displaYYTompt("Either bUffOl is already closed, or close cannot be executed. "); 
pos_cursor(O,O); 
} 

else 

displaYYTompt("BuffOl closed. "): 
pos_cursor(0.16): 
} 

if(jclose(write_stream) != 0) 
displays("Either newJile is already closed, or close cannot be executed. "); 

else 
displays("NewJile closed. "J; 

fputs 

SynQPsis 

#include <stdio.lI> 
extern int fputs(strin8ytr, streamytr); 
const char * stringytr; 
FILE « streamytr; 

Description 

This routine writes a string of characters from an array. excluding the 
terminating nun character. to the output stream. The file-position indicator is 
advanced by the number of characters successfully written. 

The first parameter is a pointer to the string to be written. 

The second parameter is the stream pointer. 

Returns 

This routine returns zero if it is successful; it returns a non-zero value if a write 
error occurs. 

Example 

Write a fox message at the end of existing data in a file. 

} 

#indude <stdio.h> 
FILE • streamytr; 
char data [] = "(!FOXl)'\n"; 

65-25 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951 108 

LAYER: 1 
STATE: wrlte_a_string 

CONDITIONS; ENTER_STATE 

fputc 

ACTIONS: PROMPT 'Press 0 to open file. 
CONDITIONS: KEYBOARD '00' 
ACTIONS: 
{ 

} 

if«streamJtr = fopen("FD2/usr/buffOl", "a")) == 0) 
displaYJrompt("Cannot open file. 

else 
displaYJrompt("File opened. Press P to write string. 

CONDITIONS: KEYBOARD ·pP· 
ACTIONS: 
{ 

} 

if(fputs(data. streamJtr) /= 0) 
displaYJrompt("Write error. Press C to close file. 

else 
displaYJrompt("Write completed. Press C to close file. 

CONDITIONS: KEYBOARD 'cC' 
ACTIONS: 
{ 

} 

if(fclose (strea mJtr) 1= 0) 

displaYJrompt("Either file is already closed, or close cannot be executed. 
else 

display Jrompt (" File closed. 

SynoPSis 

#include <stdio.h> 
extern int fputc(character, streamJtr); 
int character; 
FILE" streamJtr; 

Description 

This routine writes a given character (cast to an unsigned char) to an output 
stream. The file-position indicator advances one character. 

"); 

"); 

"J; 

H); 

The first parameter is the character to be written to the output stream. It may 
be given as a hexadecimal, octal. or decimal constant; as an alphanumeric 
constant inside single quotes; or as a variable. A hexadecimal value must be 
preceded by the prefix Ox or OX; an octal value must be preceded by the prefix 
O. If no prefix appears before the input, the number is assumed to be decimal. 

The second parameter is the stream pointer. 

65-26 



65 Disk 110 

Returns 

If the character is successfully ",,'litten to the output stream. the routine returns 
that character. If a write error occurs. EOF is returned and the error indicator 
is set. 

Example 

Open the named file. If the file does not already exist, create it. If it does 
exist, truncate its length to zero, thereby deleting its contents. Put the character 
read from the input stream pointed to by read_stream into the output stream 
pointed to by writejtream. This example is similar to the one given for fwrite, 
except that in this case, each time the ® key is pressed, only one character is 
copied, rather than the entire file. 

{ 

} 

#include <stdio. h> 
FILE .. read_stream; 
FILE" write_stream; 
int character; 

LAYER: 1 
STATE: eOPY_8_character 

CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT 'Press 0 to open flies. 
CONDITIONS: KEYBOARD '00' 

ACTIONS: 
{ 
if((readjtream =fopen("FD2IusrlbutfOI", "rU)) == 0) 

} 

{ 
displaY"prompt("Cannot open buffOl. "J; 
pos_cursor(O,21 ); 
} 

else 
{ 
displaY"prompt (U BujfO] opened. ..); 
pos_cursor(O, 16}; 
} 

if((write_stream = fopen("FD2IusrlbuffOl_copy", "w")) ;::= 0) 
displays("Cannot open bujfOl_copy. 

else 
displays("BuffOl_cQPY opened. Press P to copy a character. 

CONDITIONS: KEYBOARD ·pP* 
ACTIONS: 
{ 
character -= fgetc(read_stream); 
if(character ::= EOF) 

{ 
if(feof(read_stream) 1= 0) 

displaY"pTompt("EOF encountered. Press C to close files. 
else 

displaY"prompt (" Read error. Press C to close files. 
} 

65-27 

") ; 

") ; 

If} ; 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

else 
/putc(character. write_stream); 

} 
CONDITIONS: KEYBOARD ·cC· 
ACTIONS: 
{ 

} 

fprintf 

SynQl2sis 

i/(fclose(readj;tream) I; 0) 
{ 
displayyrompt("Either bu//01 is already closed, or close cannot be executed. "); 
pos_cursor(O,O) ; 
} 

else 
{ 
displayyrompt("Bu//Ol closed. "); 
pos_cursor(O,16); 
} 

i/(fclose(write_stream) 1= 0) 
display/("Either buffOl_copy is already closed, or close cannot be executed. "): 

else 
display("Bu/fOl_copy closed. "); 

#include <Stdio. h> 
extern int jprint/(stream,JJtr, !ormotytr, ... ): 
FILE" streamytr; 
char" !ormotytr; 

Description 

The jprintf routine is similar to the sprintj routine. except that jprintj writes 
output to an output stream, while sprintj writes output to an array. The output 
is under control of the string pointed to by jormatytr that specifies how 
subsequent arguments are converted for output. If there are insufficient 
arguments for the format, the behavior is undefined. If the format is exhausted 
while arguments remain, the excess arguments are evaluated but otherwise 
ignored. The fprint/ routine returns when the end of the format string is 
encountered. (Sprintj is documented in Section 64.3.) 

The first parameter is the stream pointer. 

The second parameter points to the format string composed of zero or more 
directives: ordinary characters (not %). which are copied unchanged to the 
output stream; and conversion specifications, each of which results in fetching 
zero or mQre subsequent arguments. Each conversion specification is introduced 
by the character %. After the %, the following appear in sequence: 

65-28 



• 

65 Disk 110 

Zero ~: more flags that modify the meaning of the conversion specification . 
The flag characters and their meanings are: 

The result of the conversion will be left-justified within the field. 

+ The result of a signed conversion will always begin with a plus or 
minus sign. 

space If the first character of a signed conversion is not a sign. a space will 
be prepended to the result. If the space and + flags both appear. the 
space flag will be ignored. 

# The result is to be converted to an "alternate form." For d, i, c, and 
s conversions, the flag has no effect. For 0 conversion, it increases 
the precision to force the first digit of the result to be a zero. For x 
(or X) conversion, a nonzero result will have Ox (or OX) prepended to 
it. 

• An optional decimal integer specifying a minimum field width. If the 
converted value has fewer characters than the field width, it will be padded 
on the left (or right. if the left adjustment flag. described above, has been 
given) to the field width. The padding is with spaces unless the field width 
integer starts with a zero, in which case the padding is with zeros. 

• An optional precision that gives the minimum number of digits to appear for 
the d, i, 0, u, x. and X conversions or the maximum number of characters 
to be written from an array in an s conversion. The precision takes the 
form of a period C.) followed by an optional decimal integer; if the integer is 
omitted. it is treated as zero. The amount of padding specified by the 
precision overrides that specified by the field width. . 

• An optional h specifying that a follOwing d, i, 0, U, x, or X conversion 
specifier applies to a short int or unsigned short im argument (the argument 
will have been promoted according to the integral promotions, and its value 
shall be converted to short int or unsigned short int before printing); or an 
optional 1 speCifying that a following d, i. 0, u, x, or X conversion specifier 
applies to a long int or unsigned long int argument. If an h or I appears 
with any other conversion specifier, it is ignored. 

• A character that speCifies the type of conversion to be applied. (Special AR 
extensions have been added.) The conversion specifiers and their meanings 
are: 

65-29 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

d, i, 0, u, x, X 

The int argument is converted to signed decimal (d or i), unsigned 
octal (0), unsigned decimal (u), or unsigned hexadecimal notation (x 
or X); the letters abcdef are used for x conversion and the letters 
ABCDEF for X conversion. The precision specifies the minimum 
number of digits to appear; if the value being converted can be 
represented in fewer digits, it will be expanded with leading zeros. 
The default precision is 1. The result of converting a zero value with 
a precision of zero is no characters. 

c The int argument is converted to an unsigned char, and the resulting 
character is written. 

s The argument shall be a pointer to a null-terminated array of 8-bit 
chars. Characters from the string are written up to (but not including) 
the terminating null character: if the precision is specified, no more 
than that many characters are written. The string may be an array 
into which output was written via the sprintj'routine. 

p The argument shall be a pointer to void. The value of the pointer is 
converted to a sequence of printable characters, in this format: 
0000:0000. There are always exactly 4 digits to the right of the 
colon. The number of digits to the left of the colon is determined by 
the pointer's value and the precision specified. Use this conversion to 
display 80286 memory addresses. The 16-bit segment number will 
appear to the left of the colon and the 16-bit offset to the right. 

% A % is written. No argument is converted. 

\n Writes hexadecimal OA, the ASCII linefeed character. No argument 
is converted. 

If a conversion speCification is invalid. the behavior is undefined. 

If any argument is or points to an aggregate (except for an array of characters 
using %s conversion or any pointer using %p conversion), the behavior is 
undefined. 

In no case does a nonexistent or small field width cause truncation of a field; if 
the result of a conversion is wider than the field width, the field is expanded to 
contain the conversion result. 

Rety.ms 

This routine returns the number of characters written, or a negative value if an 
output error occurred. 

Example 

Assume the X.2S personality package has been loaded in at Layer 2. \\Then an 
unknown frame is received, copy the actual value of the control byte to an 
output stream. 

65-30 



,,~ •.. 
, I 

I 
65 Disk ffO 

} 

#include <stdio. h> 
FILE" stream.J1tr; 
extern volatile canst unsigned char rClIdJrame_cntrl_byte_l; 

LAYER: 2 
STATE : save_unknowns 

CONDITIONS: ENTER STATE 
ACTIONS: PROMPT ·Press 0 to open file. 
CONDITIONS: ENTER STATE 
ACTIONS: -
{ 

} 

if«stream"ptr;. jopen("FD2Iusrljrame_unkwn", "w")} == 0) 
displaY"pr!Jmpt("Cannot open jile. 

else 
displaY"prompt(" File opened. 

CONDITIONS: RCV UNKNOWN 
ACTIONS: 
{ 

} 

ijifprintj(stream..ptr, "%02x\n", revdJrame_clItrl_byte_l} < 0] 
display..prompt(UError in printing to stream. 

else 
displaY"prompt("Print to stream compltted. Press C to close jile. 

CONDITIONS: KEYBOARD "cC' 
ACTIONS: 
{ 

} 

ijifclose(stream..ptr) != 0) 

display..prompt("Either jile is already closed, or close cannot be executed. 
else 

display..prompt (" File closed. 

(D) File Maintenance Routines 

rename 

Synopsis 

#include <stdio.h> 
extern int rename(oldjile..ptr, newjile"ptr); 
const char" aldjile "ptr; 
canst char ,. newfite ..ptr; 

U); 

"); 

"); 

ThiS routine renames a specified file. A file can only be renamed if it resides 
on the active disk, indicated on the Current Directory line of the File 
Maintenance screen. Renaming an open file does not affect subsequent disk If 0 
opentions on the stream. The stream is still associated with the same file. even 
though the filename has changed. 

65-31 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

The first parameter is a pointer to a string. the current name of the file. Give 
the absolute pathname of the file, prefixed by the device name (HRD. FDI. or 
FD2). 

The second parameter is a pointer to a string, the new name to be given to the 
file. Give the absolute pathname of the file, prefixed by the device name. 

Returns 

If the rename operation succeeds, zero is returned. If it fails, a non-zero value 
is returned. If the renaming fails, the file will still be known by its original 
name. 

Example 

Change the name of a file from old to backup. Prompt whether or not the 
rename operation was successful. 
{ 
#include <stdio. h> 

} 
LAYER: 1 

ST ATE: rename 
CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT ·Press spacebar to rename file. 
CONDITIONS: KEYBOARD' • 
ACTIONS: 
{ 
i!(rename("FDIlltsrlold", "FDllusrlbackup") 1= 0) 

displaY"prompt(" Rename jailed. 
else 

displaY"prompt("File has been renamed. 

remove 

Synopsis 

#include <stdio. h> 
extern int remove (jile..Ptr) : 
const char • jile..Ptr: 

Description 

..) ; 

This routine removes the named file from the disk. The file must be closed in 
order for the remove operation to succeed. Subsequent attempts to open the 
file will fail. Empty directories may also be removed with this routine. 

lnl:2lJ1S. 
The only input is a pointer to a string, i.e., the filename. It must be the 
absolute pathname, prefixed by the device name (HRD, FD1, or FD2). 

65-32 



65 Disk I/O 

Returns 

Zero is returned if the file is removed; non-zero if it is not (for example, the 
file does not exist in the specified location). 

Example 

Remove file old/ile from the lUST directory on the disk in floppy drive 1. 
Prompt whether or not the remove operation was successful. 

#include <Stdlo. h> 
} 
LAYER: 1 

STATE: delete_a_file 
CONDITIONS: ENTER_STATE 

mkdir 

ACTIONS: PROMPT "Press D to delete file. 
CONDITIONS: KEYBOARD "dO" 
ACTIONS: 
{ 
if(remove("FDltusrIQldfile") !::: 0) 

displaY"'prompt(UFile has not been deleted. 
else 

displaY"'prompt("File deleted. 

Synopsis 

#include <stdio. h> 
extern int mkdir(directory"'ptr); 
char • directory"'ptr; 

Description 

This routine creates a directory. 

") ; 

The only parameter is a pointer to a string, Le., the name of the directory to be 
created. The absolute pathname must be used, prefixed by the device name 
(FD1. FD2. or HRD). 

Returns 

If the directory is created, zero is returned; otherwise. a non-zero value is 
returned. 

Example 

Create a sub-directory called disk_i_o in the lUST directory on the disk in 
drive 2. 

65-33 

.,------_ .. _-----



INTERVIEW 7000 Series Advanced Programming: ATLC-107...,951-10B 

{ 
#include <staia. h> 

} 
LAYER: 1 

ST ATE: make_directory 
CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT "Press M to make a directory. 
CONDITIONS: KEYBOARD "mM" 
ACTIONS: 
{ 

} 

il(mkdir("FD2Iusrldisk._i_a") != 0) 
display yrDmpt(" Directory not crea ted. 

else 
display yrompt ("Directory created. 

"); 

Synopsis 

#include <Sldia. h> 
extern int _setJile_type(pathnameytr, type_bullytr}; 
char" pathanmeytr; 
char" type_bullytr; 

Description 

This routine determines the type identification of a specified file on the File 
Maintenance screen. If a file is created by a "w" or "a" open mode and a file 
type is not specified with the _setJile_type routine, it win be designated as an 
ASCII file. 

The first parameter is a pointer to a string, the name of the file. The filename 
must be the absolute pathname, prefixed by the device name (HRD. FDl, or 
FD2). 

The second parameter is a pointer to a string, the file type. The type may be 
any of the following (upper or lower case is acceptable): 

SYS System 

DIR Directory 

PRGM Program 

SETUP Setup 

OBJ Object code 

LOBJ Linkable-object 

ASCII ASCII 

BITIM Bit-image data 

CHDAT Character data 

65-34 



65 Disk 110 

Returns 

If the operation succeeds, the routine returns zero; otherwise. it returns a 
non-zero value. 

Example 

The following example is almost the same one used for /write: read the contents 
of a program file and write them to a new file. The difference is that new Jile is 
set to be a program file. In the fwrite example. the type designation in the file 
directory would default to "ASCII." It would still load and run as a program 
file. however. since the file's contents, not its type label, determine which 
operations are valid. 

{ 
#include <stdio. II> 
FILE .. read_stream; 
FILE .. write_stream; 
char output {6091]; 
siZil_t 1'/; 

} 
LAYER: 1 

STATE: wrlte_to_a_flle 
CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT • Press 0 to open flies. 
CONDITIONS: KEYBOARD "00· 
ACTIONS: 
{ 
if((read_stream = fopen(UFD2IusrlbuffOl", "r")} == 0) 

} 

{ 
displaY....Prompt( .. Cannot open buff 01. "}; 
pos_cursor(O, 21) ; 
} 

else 
{ 
displaY""prompt('"BuffOl opened. "); 
pos_cursor(O,16); 
} 

if((write_stream '" fopen("FD21usrlnewJile", "w")) == 0) 
dispiays("Ca1'lnot open new Jile. 

else 
displays(" New Jile opened. Press "sS" to set the file type. 

CONDITIONS: KEYBOARD '$5· 
ACTIONS: 
{ 
ifLsetJile_type(UFD2IusrlnewJile", "PROM"} != 0) 

displaY""prompt(UFile type not set. Press R to read buff 01. 
else 

display....prompt("File type set. Press R to read buffOl. 

65-35 

") ; 

n); 

"); 

---------,------



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

CONDITIONS: KEYBOARD "rR" 
ACTIONS: 
{ 
n =fread(output, 1,6091. read_stream); 
if(n 1= 6091) 

displayyrompt("Either a read error has occurred, or an EOF has been 
encoun tered. "); 

else 
displayyrompt(" Press W to write to new Jile. 

} 
CONDITIONS: KEYBOARD ·wW· 
ACTIONS: 
{ 

} 

n :;fwrite(output, 1,6091, write_stream}; 
if(n 1= 6091) 

displayyrompt("Write error. Press C to close files. 
else 

displayyrompt("Write completed. Press C to close files. 

CONDITIONS: KEYBOARD 'cC" 
ACTIONS: 
{ 
if(fclose(read_stream) f= 0) 

{ 
displayyrompt("Either buff 01 is already closed, or close cannot be executed. "); 
pos_cursor(O,O) ; 
} 

else 
{ 
displayyrompt(UBuffOl closed. "i; 
pos_cursor(O,16); 
} 

if(fclose(write--stream) 1= 0) 
displays ("Either newJile is already closed, or close cannot be executed. "); 

else 
displays ("New file closed. "); 

} 

get file type - - -
Synopsis 

#include <stdio. h> 
extern int ...8etJile_type(pathnameytr, type_buffytr); 
char" pathnameytr; 
char" type_buffytr; 

Description 

This routine determines the type of a specified file. 

The first parameter is a pointer to a string. the name of the file. The filename 
must be the absolute pathname, prefixed by the device name (HRD. FDt, or 

FD2). 

65-36 



65 Disk 110 

The second parameter is a pointer to an array in which the file type should be 
written. See _setJile_type for the different file types. 

Returns 

If the operation succeeds. the routine returns zero; otherwise, it returns a 
non-zero value. 

Example 

} 

#include <stdio. h> 
FILE" streamytr; 
char type [8]: 

LAYER: 1 
STATE: find_type 

CONDITIONS: ENTER_STATE 
ACTIONS: PROMPT • Press G to get file type. 
CONDITIONS: KEYBOARD "gG" 
ACTIONS: 
{ 
ifCgetJile_type("FD2IusrlnewJ!le", &type[OJ) f= 0) 

displaYJTompt("File type not found. 
else 

displayf("Flle type=%s. 

65-37 

"); 

", type); 

-- ------ ------------------------------------_._------------_.----_._-----_._---_._. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

65-38 



~ , I ' 

i 

66 Status 

66 Status 

The structures and variables referenced in this section provide information about the current 
status of the programmer's INTERVIEW. This information must be accessed via C coding on 
the Protocol Spreadsheet since these structures and variables have no softkey equivalents. 

66.1 Unit Configuration 

Two strll<;tures presented in Table 66-1 may be accessed by the user to identify 
current features of the INTERVIEW. unit_setup variables reflect current Line Setup 
menu and FEB tick-rate selections. unit_conj'ig variables contain information about 
the user's INTERVIEW hardware and software. 

66.2 Current Display Mode 

The variables display_screen_changed, crnt_display_screen, and prev_display_screen 
track movement via softkey from one display screen to another. These variables also 
indicate transitions between Run mode and Freeze mode. . They are documented in 
Section 61. 1. 

a6-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Type Variable 

Structure Name; unIt_setup 

unsigned long 

unsigned long 

unsigned long 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

blts-per _byte 

clocking_type 

format 

mode 

parity 

Table 66-1 
Status Structures 

Value (hex/decimal) 

a/10 
64/100 
3e8/1000 
2710/10000 
186aO/100000 
14240/1000000 

o 
1 
2 
3 

5-8 

o 
1 
2 

o 
1 

o 
1 
2 
3 

o 
1 
2 
3 

o 
1 
2 
3 
4 

66-2 

Meaning 

Structure containing Une Setup and FEB tick-rate 
salactlons. Daclared as type extern struet. 
Referenoa mamber variables of the structure as 
follows: unit_setup. speed_dee. 

If Clock Source selactlon Is Internal. this variable 
has Speed value entered on Une Setup. If Clock 
Source Is External. this variable has DCE spaed 
Indicated under Clock Source: Internal Split. 

If Clock Source selection Is Internal, this variable 
has Speed value entered on Una Satup. If Clock 
Source Is External, this variable has DTE speed 
Indlcatad under Clock Source: Internal Split. 

tick rate .elected on FEB Satup 
10 usee 
100 usec 
1 msec 
10 msec 
1000 msec 
1 sac 

normal 
normal-Inversa 
reverse-normal 
reverse-Inverse 

Internal 
external 
Internal-spilt 

disk 
line 

sync 
bop 
async 
Isoc 

automonltor 
monitor 
emulate dee 
emulate dte 

none 
even 
odd 
mark 
space 

ASCII. EBCDIC. etc. 



,.~, . I , 

Type Variable 

Structure Name; unit_config 

unsigned char floppy_exists_mask 

unsigned char hard_disk 

unsigned char test_board 

unsigned char mux 

unsigned char modem 

unsigned char num _ mpms 

struct mpm_lnfo mpm [4} 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned long 

cpmJev 

gbm_rev 

pcmJev 

modemJev 

mux_rev 

tim_type 

66 Status 

Table 66-1 (continued) 

Value (hex/decimal) 

1 
2 

o 
1 

o 
1 

o 
1 

o 
1 

0-4 

fO/240 
11/241 
12/242 
f3/243 
f4/244 
15/245 
f6-fbJ246-251 
fo/252 
fdf253 
1e/254 
ff/255 

Meaning 

Structure contalnlng unit configuration. Declared 
as type extern struct. Reference member 
variables of the structure as follows: 
unlt_ con fig . floppy_exists _mask. 

floppy 1 
floppy2t 

not present 
present 

not present 
present 

not present 
present 

not present 
present 

number of MPM boards present 

array of structures. Each element In the array Is 
an instance of the structure mpm Info and 
corresponds to one of four MPM boards which 
may be present. Reference member variables of 
the struoture elements in the array as follows: 
unlt_oonfJg.mpm{Oj.present. 

reserved 

reserved 

reserved 

reserved 

reserved 

AS-232 
X.21 
V.35 
RS-449 
expansion adaptor 
RC-8245 
reserved 
ISDN 
a.703 
T1 
none 

the value of this variable plus one yields the CPM 
memory size (In bytes) 

(unit_conflg continued on next page) 

t If (unicconfig.floppy_exists_mask & value) .. ",value, the drive Is present. 
For example. If (unlt_oonflg.floPPy-exlsts_mask & 2) = .. 2. floppy drive 2 Is present . 

66-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

Table 66 .. 1 (continued) 

Type Variable Value (hex/decimal) Meaning 

unsigned long salC test_errors (mask) self-test errors encountered during 
power-uptt 

1 CPM DRAM error 
2 CPM 32-blt counter 
4 CPM System Timing Controller (9513a) 
8 CPM DMAC 
10/16 MPMO DRAM (tested from CPM-g!obal bus) 
20/32 MPMO DRAM (tested from MPMO) 
40/64 MPMO Interrupt latch 
80/128 unused 
1001256 MPM1 DRAM (tested from CPM-global bus) 
200/512 MPMl DRAM (tested from MPM1) 
400/1024 MPM1 Interrupt latch 
800/2048 unused 
1000/4096 MPM3 DRAM (tested from CPM-global bus) 
2000/8192 MPM3 DRAM (tested from MPM3) 
4000/16384 MPM3 Interrupt latch 
8000/32768 unused 
10000/65536 unused 
20000/131072 unused 
40000/262144 unused 
80000/524288 unused 
100000/1048576 unused 
20000012097152 unused 
400000/4194304 unused 
800000/8388608 unused 
1000000/16777216 unused 
2000000/33554432 unused 
4000000/67108864 unused 
8000000/134217728 unused 
10000000/268435456 unused 

- 20000000/536870912 unused 
40000000/1073741824 unused 
80000000/2147483648 unused 

unsigned long version 6 current value for this version of unlC config 
structure 

unsigned long model_number 19c8/6600 INTERVIEW 6600 
la90/6800 INTERVIEW 6800 TURBO 
lb5817000 INTERVIEW 7000 
1020/7200 INTERVIEW 7200 TURBO 
1d4c/7500 INTERVIEW 7500 
1e14/7700 INTERVIEW 7700 TURBO 

(unlt_contlg contInued on next page) 

tt If (unit contig.setf test errors & mask) == mask, the error is present. 
If (Unlt=config.sett=tes(errors & Oxfffftfff) .. '" 0, no errors enoountered during power-up. 

66-4 



rr' ."~' 

(t 

66 Status 

Table 88-1 (continued) 

Type Variable Value (hex/decimal) Meaning 

unsigned char feb_type 0 original V8r8Ion 
1 version WIth Increased speed of software and 

faster ac0811 to tIckI from FEB 
2 version which supports high-speed RAM 

recordInQ, tp8CIftcaIIy aggregate T1 or G.703 
data capture 

3 version which allo IUPportS INTERVIEW 7200 and 
7700 TURBOs 

unsigned char Is_turbo 0 unit II not TURBO 
1 unit It TURBO 

unsigned char xdramJev_num XDRAM revision number 

unsigned char xdram§esent 0 XDRAM board II not present 
1 XDRAM board II present 

unsigned long xdram_lo_addr low end Of memory range 

unsigned long xdram_~_addr high end of memory range 

unsigned long spare 1 reserved/undefined 

unsigned long spare2 relerved/undefined 

unsigned long spare3 reserved/undefined 

unsigned long spare4 reserved/undefined 

unsigned long spareS reserved/undefined 

unsigned long sparee reserved/undefined 

unsigned long spare7 r .. erved/undeflned 

unsigned long spareS reserved/undefined 

unsigned long spare9 reserved/undefined 

unsigned long sw_verslon software verslont1'1' 

unsigned long fw_verslon firmware verslon1'1'1' 

SI[YG1Y[1 t41mii mpm_info Structure containing information on specific MPM 
board. Instance Of this structure for each MPM 
board Is contained In array named 
unlcconflg.mpm. Declared as type extern 
struef. 

unsigned char rev_num MPM revllion number 

unsigned char present 0 speclflc MPM board (of four) not present 
1 speclflc MPM board (Of four) present 

unsigned long lo_addr low end of memory range 

unsigned long hLaddr high end Of memory range 

1'1'1' To dllplay the software v.,-sIon In the lame format presented on the main menu screen. S. 00 for example. use the 
following format In a calf to dl8pllllyf (or trace!) : 

dlsplsyf("%lu.%02/u%o·. ((unlcconflg.sw_veralon» 8)1100), ((unlcconflg.sw_veralon» 8}%1oo) , 
(ohar) (un/f_conflg.~_verslon & 0Xff)): 

The same format may be used for p;-.sentatton of the firmware version. 



INTERVIEW 7000 Series Advanced Proaramming: ATLC-107-951-108 

66-6 



57 Remote Port I/O 

67 Remote Port I/O 

The REMOTE RS-232 pon is a "spare" serial interface through which the programmer may 
communicate with other equipment. The remote pan is located at the rear of the 
1l\1TERVIEW next to the printer pan. (The REMOTE LED on the front panel of the 
INTERVIEW is related to remote control of the unit. unimplemented at this time.) 

Remote-port functions must be coded in C regions on the Protocol Spreadsheet. There are 
no spreadsheet-token equivalents of the C variables and routines described in this section. 
Use these variables and routines in either emulate or monitor mode to transmit and receive 
data through the remote pan. 

The remote-communications process on the CPM controls the flow of data between the user's 
program and the remote port. When data is received through the remote pont this process 
temporarily buffers it in a 2048-byte input queue. The user's program makes requests for 
data from the input queue via the rmt-Eetc. rmt-Eetl. and rmt-Ects input routines discussed 
below. When the remote-communications process receives a request, it removes data from 
the queue and passes it to the task. If there are no outstanding requests at the time data is 
received. it is discarded from the input queue-Le., data received between requests cannot be 
retrieved. This is the default condition of the input queue. 

To "lock" all received characters in the input queue, call rmt_Iock. When the input queue is 
locked, the remote-communications process removes data only when 1) a user task has 
requested data via the rmt-Eetc, rmt-Eetl, or rmt-Eets routine, 2) the input queue is full and 
some data must be discarded in order for incoming data to be buffered. or 3) rmt Jlushi is 
executed. "Unlock" the input queue with rmt_unlock. rmt_unlock. rmtJlushi, and 
rmtJlusho are automatically executed whenever the INTERVIEW returns to Program mode. 

NOTE: Although requests to receive (or transmit) data from more 
than one task will be queued by the remote-communications 
process, a single task can have only one such request outstanding 
at a time. 

Similarly, when the programmer wants to send data out the remote port, he calls rmtyutc, 
rmtyuts, or rmtyutb. The remote-communications process temporarily places these requests 
in an output queue before transmitting them through the remote pon. 

67.1 Structures 

There are no structures associated exclusively with remote functions. 

67-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

67.2 Variables 

Table 67-1 lists the event variables specific to remote port I/O operations. Use most 
of these variables to detect changes in the status of the input and output queues. 

As data is received through the remote port. the remote-communications process 
temporarily stores it in the input queue. Use rmt_input_not_empty, 
rmt_input_almostJull, and rmt_input_over/low to monitor how full the input queue 
is. When the input queue is "almost full," incoming data must be stopped in order 
to prevent the queue from overflowing. 

rmt_input_almost_empty and rmt_input_empty are significant events as the remote. 
communications process takes data out of the input queue. These events indicate 
that that the input queue is ready to accept more data. 

67-2 



Type 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

Table 67-1 
Remote Port 110 Variables 

67 Remote Port flO 

Variable Value (hex/decimal) Meaning 

rmt_ output_empty 

67-3 

True when a break (NULL with a 
framing error) Is received 
through the remote port. Line 
SetUp oOhflgured for emulate or 
monitor mode. 

True when remote Input-queue 
transitions from empty to not 
empty. Beginning to receive 
characters. Une Setup 
configured for emulate or 
monitor mode. 

True when the remote 
'input-queue transitions from 
less than 3/4 full to 3/4 full as 
data Is being put Into the queue. 
Una Setup configured for 
emulate or monitor mode. 

True when remote input-queue 
transitions from not full to full. 
At this pOint. the oldest existing 
data In the queue Is discarded 
to make room for new data 
coming In the remote port. Line 
Setup configured for emulate or 
monitor mode. 

True when the remote 
input-queue transitions from 
more than 1/4 full to 1/4 full as 
data Is being taken out of the 
queue. Une Setup configured 
fot emulate or monitor mode. 

True when remote input-queue 
transitions from not empty to 
empty. All characters have 
been read or disoarded. Line 
Setup configured for emulate or 
monitor mode. 

True when remote output-queue 
transitions from not empty to 
empty. All data output to the 
remote port has been 
transmitted. Una Setup 
configured for emulate or 
monitor mode. 

-------------------,-----.-,----'''-----------,~--------------------



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

67.3 Routines 

Remote routines fall into three categories. Input routines are used to read data 
received from the remote port. Use output routines to transmit data through the 
remote port. The last category of routines reads or sets parameters for the remote 
port. 

(A) Input Routines 

Use rmtJetc, rmtJetl. and rmtJets to read data received through the remote 
port. Use rmt_lock and rmt_unlock to control the flow of data from the input 
queue. 

Syngpsis 

extern int rml~etc(wait); 
Iltt wait; 

Description 

The rmtJetc routine reads the next character (if present) from the remote port. 

If no character is available from the input queue when rmtJetc is called. this 
parameter determines when the routine will return. A non-zero value for this 
parameter means wait for a character to become available before returning. If 
another task has already requested data from the queue. this request will be 
queued. 

When the value is zero, the routine will return without a character if none is 
available. If there is already an outstanding request from another task. a zero 
value also causes the remote-communications process to return from the routine 
without checking the input queue. 

NOTE: More than one test (task) may request data from the 
input queue. The remote-communications processes queues these 
requests as they are made. To ensure that requests are processed 
in turn. use this "wait" parameter consistently across tests. If you 
set the parameter in a caH to rmtJetc (or rmtJets) in one test, 
do the same in all tests. 

67-4 



f~ 
i 

67 Remote Port 110 

Returns 

If a, character is present in the input queue, this routine returns the character (as 
an int) read. If no character is present and the routine's "wait" parameter is 
zero, a -1 will be returned. When the parameter is zero, a -1 also will be 
returned if there is already an outstanding request from another task. 

Example 

In the following example, the routine win not wait for a character to become 
available in the remote port before returning. Each time the § key is pressed. 
the next character. if present, will be displayed. If a -1 is returned instead of a 
character, a message to that effect will be displayed on the prompt line. 

LAYER: 1 
ST ATE: geU"~xU::hllrl!leter 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 

} 

display.,..prompt("Press C to get next character. 
rmt_lock:.(); 

CONDITIONS: KEYBOARD ·eCn 
ACTIONS: 
{ 

SYnopsis 

int character; 
character'" rmtJetc(O}; 
ij(character :: -l} 

display"'prompt("No character available. 
else 

displayj(" %c". character}; 

extern int rmtJetl(string"'ptr. max_length}; 
char * string.,..ptr; 
int max_length; 

Description 

") ; 

"); 

rmt..,8etl reads from the remote pan one line at a time. This routine gets at the 
mOSt the specified number of characters from the remote port and puts them in 
an array. Unless a carriage return or line feed is encountered. the routine will 
not return until the specified number of characters has been read. A carriage 
retl;lrn or linefeed causes the routine to return, even if the specified number of 
ch~racters has not yet been read. The carriage return or line feed will be 
replaced by a terminating NULL character in the array. 

67-5 



INTERVIEW 7000 Series Advanced Programmlna: ATLo-107-951-10B 

The first parameter is a pointer to the array into which the characters will be 
put. 

The second parameter is the .maximum number of characters to be read. 

Returns 

This routine returns the number of characters (preceding the terminating NULL) 
read into the array. 

Example 

Each time the [Q key is pressed. twenty characters. at the most. will be read 
from the remote pont put into an array called data. and displayed on the 
screen. 

LAYER: 1 
STATE: read_Ine 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
display"'prompt("Press L to get next line. 
rmUoclr.(); 

} 
CONDITIONS: KEYBOARD -IL· 
ACTIONS: 
{ 

} 

int number; 
unsigned char data [2SJ; 
number = rmtJetl(data, 20); 
display/("\'fI'l.u characters read:\n'l..20s\n", number, data); 

Syngpsis 

extern int rmtJets(string...ptr, length, wait); 
char • string...ptr; 
int length; 
int wait; 

Df!scdption' 

Similar tonntJetl. this roUtine gets a specified number of characters from the 
remote pOtt and puts them in an array. Unlike rmt Jetl. characters continue to 
be read even if a carriage return or linefeed is encoUntered. The array is not.~ .. 
NULL-terminated. 

67-6 



67 Remote Port 110 

The first parameter is a pointer to the array into which the characters will be 
put. 

The second parameter is the number of characters to be read. 

If the specified number of characters is not available from the input queue when 
rmtJetl is called, the third parameter determines when the routine will return. 
A non-zero value for this parameter means wait for the specified number of 
characters to become available before returning. If another task has already 
requested data from the queue, this request will be queued. 

When the value is zero, the routine will return with less than the specified 
number of characters if all are not available. If there is already an outstanding 
request from another task, a zero value also causes the remote-communications 
process to return from the routine without checking the input queue. 

NOTE: More than one test (task) may request data from the 
input queue. The remote-communications processes queues these 
requests as they are made. To ensure that requests are processed 
in turn, use this "wait" parameter consistently across tests. If you 
set the parameter in a call to nntJets (or rmtJetc) in one test. 
do the same in all tests. 

Returns 

This routine returns the number of characters read from the remote port. 

Example 

When the lID key is pressed. 4000 characters will be read from the remote port. 
put into an array called data. displayed on the screen (until a NULL is 
encountered-see %$ in trace! routine. Section 61). and written to a file named 
echo_time. This is the program that might be run to receive the file transmitted 
in the rmt..putb example. 

{ 
#041ne FILE_LENGTH 4000 
#define FILENAME" FD 11 usrl echo_time" 
#include <stdia.lI> 
#include <trace j>u/. It> 
extl!rn struct trace_but ll_trbu/. 
FlU" streamytr; 
sizl; t II; 
unsigned char data [FILE_LENGTH}; 
int !count; 

67-7 



INTERVIEW 7000 Ser;es Advanced Programming: ATLC-107-951-108 

LAYER: 1 
STATE: get_string 

CONDITIONS: ENTER STATE 
ACTIONS: -
{ 
rmt_lock (); 
ij((streamytr:: jopen(FILENAME, "w"» == 0) 

displaYJlrompt("Cannot open jile. "); 
else 

{ 

} 

displaYJlrompt(" Press S to read string. "); 
pos_cursor(l, OJ; 

} 
CONDITIONS: KEYBOARD "s5' 
ACTIONS: 
{ 

SynQpsis 

count = rmtJets(data, FILE LENGTH, 1); 
i/(count != FILE_LENGTH} -

displayj("Could not read entire string. \n"}; 
tracej(&'ll_trbuj. "%d characters read: \n%s\n\n", count, data); 
n = jwrite (data , 1, FILE_LENGTH. streamJltr); 
lj(n 1= FILE_LENGTH) 

displayj("A write error has occurred. \n"); 
else 

displayj(" File written. \n"); 
ij(fclose(streamJltr) 1= 0) 

displayj(UEither jite is already closed, or close cannot be executed. \n"); 
else 

displayj("File closed. \n"); 

extern int rmtJlushi(); 

Description 

If characters have been received in the input queue, but have not been read yet. 
this routine causes them to be discarded. Whenever the INTERVIEW enters or 
leaves Run mode. rmtJlushi is automatically executed. This ensures that the 
input queue is empty. 

NOTE: A call to any of the routines which set the parameters of 
the remote port also causes rmt Jlushi to be executed 
automatically. The routines which only get the current 
parameters of the remote port have no effect on the input queue. 

When the programmer calls rmtJlushi, requests for data from the input queue 
will be processed before the input queue is flushed. When a call to rmtJlushi is 
made from another test, however. input routines waiting for characters from the 
input queue will be returned. 

67-8 



~ ... 

~ x I .' 
! 

67 Remote Port 110 

Returns 

rmt Jlushi returns a zero when the input queue is flushed successfully. 
Otherwise, it returns a non-zero value. 

Example 

This example is the same as that for rmtJetc. Notice that as the program 
enters the first state. the input queue is flushed. 

LAYER: 1 
ST ATE: get _ next_ chara,cter 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 

} 

displaY'yrompt(" Press C to get next character. 
rmt_lockC); 
rmtJlushi(); 

CONDITIONS: KEYBOARD ·oC· 
ACTIONS: 
{ 
int character; 
character = rm t...,&etc (0) ; 
if(character :=-1) 

displaY'yrompt("No character available. 
else 

displayf(" <foc", character); 

rmtJock 

Synopsis 

DeSCription 

") ; 

Recall that in its default state, the input queue does not retain characters 
,received through the remote port between requests from user tasks. Data in the 
queue must either be passed to a user task or be discarded. The rmt_lock 
routine "locks" all received characters in the input queue until they are 
requested. (Refer again to the beginning of this section.) 

Example 

The following example is the same as the one for the rmtJetl routine. Notice 
that a call to rmt_lock is made as the program begins. The operator makes a 
request for data from the input queue by pressing [I. The next line of data in 
the input queue will be removed and put in the array named data. 

67-9 



JNTERViEW 7000 Series Advanced Programming: ATLC-t07 951-108 

LAYER: 1 
STATE: read_line 

CONDITIONS: ENTER STATE 
ACTIONS: -
{ 

} 

displayyrompl(" Press L to get next line. 
rm t _lack (); 

CONDITIONS: KEYBOARD "IL* 
ACTIONS: 
{ 

} 

int number; 
unsigned char data (25 J; 
number = rmtJetl(data. 20). 
display!C"\n%u characters read:\n%.20s\n", number, data); 

Synopsis 

extern void rmt_unlockO; 

Description 

PI); 

The rmt_unlock routine implements the inverse of the rmt_lock routine. If 
characters are received in the remote port and there are no outstanding requests 
for data, the remote-communications process will discard the characters. (Refer 
also to rmt _lock and to the beginning of this section.) 

rmt_unlock is automatically executed when the INTERVIEW returns to Program 
mode. 

sxample 

In the following example, the input queue is locked as soon as the program 
begins. It will remain locked until the operator press @) (or 8)· 

LAVER: 1 
STATE: read_line 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 

} 

displayyrompt(" Press L to get next line. 
rmt_lack(); 

67-10 



l~\ , 
i 

CONDITIONS: KEYBOARD "IL" 
ACTIONS: 
{ 
illt number; 
unsigned char daid [25J; 
number = rmtJ,Ul(data. 20); 

67 Remote Port 110 

display!("\n%u characters read:\11%.20£\n", number_ data); 
} 
CONDITIONS: KEYBOARD • uU' 
ACTIONS: 
{ 

(8) Output Routines 

Use the following routines to transmit data through the remote port. 

Synqpsis 

extern int rmtJlutc(character. wait); 
unsigned char character; 
int wait; 

Description 

This routine sends a specified character to the output queue of the remote port 
for transmission. 

The first parameter is the character to be transmitted. It may be given as a 
hexadecimal. octal, or decimal constant; as an alphanumeric constant inside 
single quotes; or as a variable. A hexadecimal value must be preceded by the 
prefix Ox or OX; an octal value must be preceded by the prefix O. If no prefix 
appears before the input, the number is assumed to be decimal. 

If space in the output queue is not available for the character when rmtyutc is 
called. the second parameter determines when the routine will return. A 
non-zero value for this parameter means wait for space in the output queue to 

become available and return zero when the character is in the queue. If there is 
already a request from another task, this request will be queued. 

When the value is zero and space in the o~ut queue is not available. the 
routine will return -1. The character will not be in the queue. If another task 
is already waiting for access to the output queue, a zero value also causes the 
remote-communications process to return from the routine without checking for 
available space in the output queue. 

67-11 



INTERViEW 7000 Series Advanced Programming: ATLC-107-951-108 

NOTE: More than one test (task) may request to send data to 
the output queue. The remote-communications processes queues 
these requests as they are made. To ensure that requests to 
output data are processed in turn, use this "wait" parameter 
consistently across tests. If you set the parameter in a call to 
rm(putc (rmtyuts or rmtyutb) in one test. do the same in all 
tests. 

Returns 

If the character is successfully written to the output queue, the routine return~ 
zero. If no space is available in the output queue and the routine's "wait" 
parameter is zero, a -1 will be returned. When the parameter is zero, a -1 also 
will be returned if another task is already waiting for access to the output queue. 

Example 

In the following example, the next character in a fox message win be sent to the 
output queue of the remote port each time the operator presses @. As a 
character is successfully queued, it will be displayed in the Display Window. If 
no space is available in the output queue for the character, -1 will be returned 
and a message to that effect will be displayed on the prompt line. No more 
characters will be sent. 

{ 

} 

unsigned char data [] = "((FOX) 'il"; 
unsigned char character; 
int i, length, error; 

LAYER: 1 
STATE : transmit_characters 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 

} 

displaYJrompt(" Press C to transmit character. 
length" sizeo!(data) - 1; 

CONDITIONS: KEYBOARD ·cC· 
ACTIONS: 
{ 
for(i = 0; i < length; i++) 

{ 
character = data{i}; 
error = rmtJutc(character. 0); 

i!(e"or =: -1) 
displaYJrompt("No space available in output queue. 

else 
displaYf("%c", character); 

67-12 

"); 



rmt puts 
- '0- •• -

SynQPsis 

extern int mltJuts(sfringJtr. wait); 
const char • stringJtr; 
int wait; 

Descrjption 

67 Remote Port 110 

This routine outputs a NULL-terminated string to the output queue of the 
remote port. 

The first parameter is a pointer to the string to be transmitted. 

If space in the output queue is not available for the string when rmt yuts is 
called. the second parameter determines when the routine will return. A 
non-zero value for this parameter means wait for space in the output queue to 
become available and return when the string is in the queue. If there is already 
a request from another task. this request will be queued. 

When the value is zero and space is not available in the output queue, the 
routine returns the number of characters, if any, put into the queue. If another 
task is already waiting for access to the output queue, a zero value also causes 
the remote-communications process to return from the routine without checking 
for available space in the output queue. 

NOTE: More than one test (task) may request to send data to 
the output queue. The remote-communications processes queues 
these requests as they are made. To ensure that requests to 
output data are processed in turn, use this "wait" parameter 
consistently across tests. If you set the parameter in a call to 

rmtyuts (rmtyutc or rmtyutb) in one test, do the same in all 
tests. 

Returns 

This routine returns the number of characters put into the output queue. 

Example 

The following example is similar to the one given for rmtyutc. When the @ 

key, is pressed. the fox message will be sent to the remote port. The difference 
is that the message will be output to the remote port as a string (rather than 

67-13 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

character by character). If the output queue is full, the routine will not wait for 
space to become available before returning. The number of characters 
successfully queued will be displayed in the Display Window. If the number of 
characters queued is less than the length of the string. a message to that effect 
win be displayed on the prompt line. 

} 

unsigned char data 11 = "((FOX)) G.."; 

int count. length; 

LAYER: 1 
ST A TE : transmit_string 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 

} 

displaYJrompt(" Press S to transmit string. 
length = sizeoffdata) - 1; 

CONDITIONS: KEYBOARD ·8S· 
ACTIONS: 
{ 

} 

count = rmtJuts(data, 0); 
if(count {::length) 

displaYJrompt("Could not output entire string. 
pos_cursor( 1,0); 
displayf(" %d characters transmitted. ". count); 

SynQPSis 

extern int rmtJutb(stringJtr, length, wait); 
const char" stringJtr: 
tnt length; 
int wait; 

DescrjptiQn 

"); 

This routine sends a string of specified length to the output queue of the remote 
port. 

The first parameter indicates the string to be output. 

The second parameter is the length of the string to. be output. 

If space in the output queue is not available for the string when rmtyutb is 
called. the third parameter determines when the routine will return. A non-zero 
value for this parameter means wait for space in the output queue to become 

67-14 



67 Remote Port I/O 

avaUable and return when all characters in the string have been queued. If 
another task is already waiting for access to the output queue. this request will 
be queued. 

When the value is zero and space is. not available in the output queue, the 
routine returns the number of characters. if any, put into the queue. If there is 
already an outstanding request from another task. a zero value also causes the 
remote-communications process to return from the routine without checking for 
available space in the output queue. 

NOTE: More than one test (task) may request to send data to 
the output queue. The remote-communications processes queues 
these requests as they are made. To ensure that requests to 
output data are processed in turn, use this "wait" parameter 
consistently across tests. If you set the parameter in a call to 
rmtyutb (rmtyutc or rmtyuts) in one test. do the same in all 
tests. 

Returns 

This routine returns the number of characters put into the output queue. 

Example 

This is the program that might be run to transmit the file received in the 
rmtJets example. The user specifies the filename and its size (shown in the 
directory listing on the File Maintenance screen) in the two #define preprocessor 
directives at the beginning of the program. When the program begins. the 
contents of the file named echo _time will be read into an array called data. 
When the operator presses the m key, the contents of the array will be 
transmitted and displayed. 

#dlfine FILE_LENGTH 4000 
#define FILENAME "FDlIusrlecho_,ime" 
#include <ltd/o. h> 
#include <trace_buj. h> 
extern struct trace_buf l1_trbuf; 
FILE • stream...ptr; 
size t 1'1; 
unsigned char data IFILE_LENG1'H]; 
unsigned char size /FILE_LENGTHtlOOJ; 
int count; 

} 
LAYER: 1 

STATE: transmit string 
CONDITIONS~ ENTER_STATE 
ACTIONS: 
{ 
i/«(stream...ptr z jopen(FILENAME, "r")) : .. , OJ 

displ(l.Y"'prompt (" Cannot open lile. " ); 

67-15 



INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-9S1-10B 

else 

} 

pos_cursor(1 ,0); 
n ;: fread(data, I, FILE_LENGTH, stream"'ptr); 
if(n /= FILE_LENGTH) 

} 

displayf("Either a read error has occurred, or an EOF has been 
encountered. \n",; 

if(fclose(streamytrJ /= 0) 
displayf("Either file is already closed, or close cannot be executed. \n"); 

else 
display!("File closed. \n"); 

if(n == FILE_LENGTH) 
displayyrompt("Press T to transmit characters. "); 

CONDITIONS: KEYBOARD OtT" 
ACTIONS: 
{ 

} 

count = rmt..,putb(data, FILE_LENGTH, 1); 
if(count 1= FILE_LENGTH) 

displayf("Could not output entire string. \11"); 
sprilltf(size, "%d characters transmitted: %%. %dH", COUllt, count); 
tracef( &:l1_trbuf, size. data); 
tracef(&:ll_trbuj, "\n\n"); 

rmt flusho 

Synopsis 

extern tnt rmtJlusho(); 

Description 

If characters are queued to be output from the remote port. but have not been 
transmitted yet. this routine causes them to be discarded. This ensures that 
anything previously in the output queue port will be deleted. 

rmtJlusho is automatically executed when the INTERVIEW returns to Program 
mode. 

NOTE: A call to any of the routines which set the parameters of 
the remote port causes rmt Jlusho to be executed automatically. 
The routines which only get the current parameters of the remote 
port have no effect on the output queue. 

Returns 

rmt Jlusho returns a zero when the output queue is flushed successfully. 
Otherwise, it returns a non-zero value. 

67-16 



l'l' 
i 

,.~\ , I 
i 

67 Remote Port 110 

Example 

This example is the same as that for rmtyutc. Notice that as the program 
enters the first state, the output queue is flushed. 

{ 

} 

unsigned char data fl ::: "«FOX))"; 
unsigned char character' 
int i, length, error; 

LAYER: 1 
STATE: transmlt_a_oharaoter 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 

} 

rmtJlushoO; 
displaYJlrompt("Press C to transmit character. 
length = sizeo!( data); 

CONDITIONS: KEYBOARD ·oC· 
ACTIONS: 
{ 
forO::: 0; i < length; i+t) 

{ 

Syno.psis 

character" data[iJ; 
error = rmtJlutc(character, 0); 
if(error ==-i} 

{ 

} 

displaYJlrompt("No space available in output queue. 
break; 

else 
displayf(U % c", character); 

extern int rmt_suspendo(); 

Description 

..) ; 

"); 

If characters are queued to be output from the remote pan, but have not been 
transmitted yet, this routine causes transmitting to be suspended. The output 
queue will not be flushed. Use this routine only when the remote pon 
handshaking mode is full-duplex without flow control. 

Returns 

rmcsuspendoreturns a zero when transmitting is successfully suspended. 
Otherwise, it returns a non-zero value. 

67-17 



INT£RVI£W 7000 Series Advanced Programming: ATLC-107-951-10B 

Example 

When the INTERVIEW receives an X-OFF as a signal to stop sending data, it 
will suspend transmissions from the remote port. 

extern event rmt_input_not_empty; 
int character; 

} 
LAYER: 1 

STATE: suspend_output 
CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
rmt_loclc(); 

} 
CONDITIONS: 
{ 
rmt_input_not_empty 

} 
ACTIONS: 
{ 
character = rmtJetc(1); 
if(character == Ox13) 

rmt_suspendo(); 
} 
TIMEOUT ckJnput RESTART 0.00' 
CONDITIONS: TIMEOUT ok_Input 
ACTIONS: 
{ 
character = rmtJetc( 1); 
if(character == Ox13) 

rmt_suspendo(); 
} 
TIMEOUT ckJnput RESTART 0.001 

rmt resumeo 

Synopsis 

extern int rmtJesumeo(); 

Description 

This routine resumes transmission of characters from the remote port. Use this 
routine only when the remote port handshaking mode is full-duplex without flow 
control. 

Returns 

rmt_resumeo returns a zero when transmitting is successfully resumed. 
Otherwise, it returns a non-zero value. 

67-18 



'j" 
i 

67 Remote Port 110 

Example 

When the INTERVIEW receives an X-ON as a signal to send data. it will 
resume transmissions from the remote port. 

{ 
int character; 

} 
LAYER: 1 

ST ATE : resume_output 
CONDITIONS: ENTER STATE 
ACTIONS: -
{ 
rmUock(); 

} 
TIMEOUT RESTART ok Input 0.001 
CONDITIONS: TIMEOUT oheek Input 
ACTIONS: -
{ 

} 

character:: rmtJetc(1); 
if(character :::: Oxll) 

rmt_,esumeo 0; 

TIMEOUT ok_Input RESTART 0.001 

Synopsis 

extern int rmt_send_break(wait); 
int wait; 

Description 

This routine causes a break. queued as other transmits, to be transmitted. 

If space in the output queue is not available for the break when rmt_send_break 
is called, the only parameter determines when the routine will return. A 
non-zero value for this parameter means wait for space in the output queue to 
become available and return zero when the break is in the queue. If there is 
already a request from another task. this request will be queued. 

When the value is zero and. space in the output queue is not available, the 
routine will return - L The break will not be in the queue. If another task is 
already waiting for access to the output queue, a zero value also causes the 
renaOle-communications process to return from the routine without checking for 
available space in the output .queue. 

67-19 

,-------,--,--------------------_. __ ._ .•. _----_. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

NOTE: More than one test (task) may request to send data to 
the output queue. The remote-communications processes queues 
these requests as they are made. To ensure that requests to 
output data are processed in turn, use this "wait" parameter 
consistently across tests. If you set the parameter in a call to 
rmt_send_break (rmtyutc, rmtyuts or rmtyutb) in one test, do 
the same in all tests. 

Returns 

If the break is successfully written to the output queue, the routine returns zero. 
If no space is available in the output queue and the routine's "wait" parameter 
is zero, a -1 will be returned. When the parameter is zero, a -1 also will be 
returned if another task is already waiting for access to the output queue. 

Example 

In this example. a break will be transmitted each time the operator presses the 
space bar. 

LAYER: 1 
STATE: transmit_break 

CONDITIONS: KEYBOARD' • 
ACTIONS; 
{ 
rmt_send_break(l) ; 

} 

(C) Configuration Routines 

The default configuration for the remote port at boot-up is the following: 

Baud rate = 1200 
Bitsl character = 8 
Parity = None 
Mode = Full-duplex 

Use the first four routines discussed below to change these settings. The 
programmer's reconfiguration of the remote port is not affected when the 
INTERVIEW exits or re-enters RUn mode. 

A call to any of these set routines causes rmtJlushi and rmtJlusho to be 
executed automatically before the parameter is set. 

Use the remaining four routines to read the current parameter-settings for the 
remote port. These get routines have no effect on the input and output queues. 

67-20 



~. 
~ I 

i , 

Syncmsis 

extern int rmt_set_baudJQte(speed);. 
int speed; 

Description 

67 Remote Port 110 

This routine sets the baud rate for the remote port. The default value at 
boot-up is 1200. 

NOTE: A call to rmt_setyaudJate causes rmtJlushi and 
rmt Jlusho to be executed automatically before the baud rate is 
set. 

The only parameter is the desired baud rate. Values that are multiples of 300 in 
the range 300 through 19200 are valid. 

Returns 

If the specified baud rate is valid and successfully set, zero is returned. If the 
baud rate is valid. but not successfully set. -1 is returned. For an invalid baud 
rate, the routine returns -2. 

ExaPJDle 

In order for two devices to communicate with each other. they must be using the 
same baud rate. When they are not the same. some devices send a break as a 
signal for the other to adjust its baud rate. If the following example. the 
11\1"fERVIEW will change the baud rate for the remote port whenever a break is 
received. 

} 

extern ewmt rmt_break.; 
int error; 
int speed = JOO; 

LAYER: 1 
STATE: adjust_baudJate 

CONDITIONS: 
{ 
rmt_break 

} 

67-21 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

ACTIONS: 
{ 
error = rm t_set_baud_rate (speed) ; 
ij(error !: -l} 

{ 
speed *= 2; 
ij(speed> 19200) 

speed = 300; 

else 
displayj(" Unable to set the baud rate to %d.". speed); 

} 

SynAPsis 

extern int rmt_set_hits(va/ue); 
int value; 

Description 

This routine sets the number of bits per character for the remote port. The 
default setting at boot-up is 8 bits/character. 

NOTE: A call to rmt_set_bits causes rmtJlushi and rmtJlusho 
to be executed automatically before the number of bits/character 
is set. 

The only parameter is the number of bits/character. Valid values are five 
through eight. 

Returns 

If the specified number of bits/character is valid and successfully set, zero is 
returned. If the number is valid, but not successfully set. -1 is returned. For 
an invalid value, the routine returns -2. 

Example 

In this example, the number of bits/character for the remote port is set to 7 and 
displayed on the Display Window screen. 

LAYER: 1 
STATE: set_parameters 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
displayj("Bits'" %d ", rmt_set_hits(7)); 

} 

67-22 



~, r I" 

~. 
I 

Synopsis 

extern int rmt_setyarity(parity); 
int parity; 

Description 

67 Remote Port 110 

This routine sets the parity for the remote port. The default setting at boot-up 
is no parity. 

NOTE: A call to rmt_setJarity causes rmtJlushi and 
rmt Jlusho to be executed· automatically before the parity for the 
remote port is set. 

The only parameter is a value designating the desired parity. Valid values are 
the following: none (0), odd (1). even (2), mark (3), or space (4). 

Returns 

If the specified parity value is valid and successfully set, zero is returned·, If the 
value is valid, but not successfully set, -1 is returned. For an invalid parity 
value, the routine returns -2. 

Example 

In this example, the numberofbits/character for the remote port is set to 7 and 
parity is even. Both settings are displayed on the Display Window screen. 

LAYER: 1 
STATE: setJ)srameters 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
displayf(" Bits = %d Parity = %d ", rmt_stt_bits(7) , rml_setyarity(2)); 

} 

67-23 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

rmt set mode - -"~, 

SynQPsis 

extern int rmt_set_mode(mode); 
int mode; 

Description 

This routine sets the handshaking mode for the remote port. The default setting 
at boot-up is FOX with no flow control. 

NOTE: A call to rmt_set_mode causes rmtJlushi and rmtJlusho 
to be executed automatically before the mode for the remote port 
is set. 

The only parameter is a value designating the mode. Valid values are the 
following: 

o :: Full-duplex with no flow control (FOX) 
1 == Half-duplex (HOX) 
2 = Full-duplex with X-ON/X-OFF characters for flow control 

Returns 

3 = Full-duplex with OTR and CTS EIA leads for flow control. Use a 
special null-modem cable for direct connections. See Figure 67-1. 

Chassis Ground 

TO 

RD 

RTS 

CTS 

Ground 

CO 

OTR 

1 1 

2 .. 3 

3 - 2 --
4 . 8 -,. 
5 - 20 

7 7 

8 - 4 -
20 - 5 ~ 

Figure 67-1 Null-modem cable connections. 

Challllis Ground 

RO 

TO 

CD 

OTR 

Ground 

RTS 

eTS 

If the specified mode value is valid and successfully set, zero is returned. If the 
value is valid, but not successfully set, -1 is returned. For an invalid mode 
value, the routine returns -2. 

67-24 



67 Remote Port 110 

Example 

In this example. the number of bits/character for the remote port is set to 7, 
parity is even, and the mode is set for FDX with X-ON/X-OFF. All three 
settings are displayed on the Display Window screen. 

LAYER: 1 
STATE: set_parameters 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
display!(" Bits = %d Parity '" %d Mode:: % d ". rmtjet_bits(7). 

rmt_setyarity(2) , rmt_set_mode(2)); 

SYnQPsiS 

Description 

This routine gets the current baud-rate setting for the remote port. 

Returns 

The baud rate for the remote port is returned. 

Example 

As the program begins, the current baud-rate setting for the remote port is 
displayed on the Display Window screen. 

LAYER: 1 
STATE: baud Jate 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
display!("Baud:: %d ", rmtJet_baud_rate(); 

} 

Synopsis 

Description 

This routine tens how many bits there are per character. Possible values are five 
through eight. 

Returns 

Thei current number of bits per character for the remote port is returned. 

67-25 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Example 

In this example, the current baud-rate setting and the number of bits/character 
for the remote port are displayed on the Display Window screen. 

LAYER: 1 
STATE; current_parameters 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
display!("Baud = 'rod Bits;::: 'rod ", rmtJet_boud_rate(), rmtJet_bits(); 

} 

Syn01'sis 

extern int rmIJet.yarity(); 

Description 

This routine gets the current parity setting for the remote port. 

Returns 

The current number of bits per character for the remote port is returned. 

Example 

In this example. the current baud-rate setting, number of bits/charas:ter, and the 
parity for the remote port are displayed on the Display Window screen. 

LAYER: 1 
ST ATE: current_parameters 

CONDITIONS: ENTER_STATE 
ACTIONS; 
{ 
dtsplay!("Baud:: %d Bits'" %d Parity;::: %d ", rmtJet_baudJateO. 

rmtJet_bitsO, rmtJet.J1arity(); 

SynQl?sis 

extern int rmtJet_mode(); 

Description 

This routine gets the current handshaking mode for the remote port. 

67-26 



67 Remote Port I/O 

Returns 

The current handshaking mode for the remote port is returned: 

o = Fun-duplex with no flow control (FDX) 
1 = Half-duplex (HDX) 
2 = Full-duplex with X-ON/X-OFF characters for flow control 
3 = Full-duplex with DTR and CTS EIA leads for flow control Requires 

a special null-modem cable for INTERVIEW-to-INTERVIEW direct 
connections. Refer to Figure 67-1. 

Example 

In this example, the current baud-rate setting. number of bits/character. parity, 
and handshaking mode for the remote port are displayed on the Display Window 
screen. 

LAVER: 1 
ST ATE: current_parameters 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 

} 

display/("Baud = 'fed Bits'" 'fed Parity:: 'fed Mode. '" 'fed ", rmtJf!t_baudJateO, 
rmtJet_bitsO. rmtJttyarlty()' rmtJet_mode 0 ); 

67-27 



JNTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

67-28 



68 AUX Port 110 

68 AUX Port I/O 

fT~' 
, 

68-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Transmitter's I I I I I I I I lIcl I I I 0 I I I I 0 I AUX Port Lead 0 0 0 0 0 0 0 
Configuration 

Pin Number 16 14 12 10 8 6 4 2 15 13 11 9 7 5 3 

Bit will be 
C U U U U U U C D D D D D D D D used for 

Bit Number 15 14 13 1 2 11 10 9 8 7 6 5 4 3 2 1 0 

~~~;i~~S:~e:d I"C I I I I I I I 0 I I I I I I I I I 
Pin Number 16 14 12 10 8 6 4 2 15 13 11 9 7 

0 Output/Non-control 
I Input/Non-control 
IIC Input/Control 
C Control 
D Data 
U Unassigned 

Figure 68-1 Sample AUX port lead configurations for two INTERVIEWs connected by their AUX 
interfaces. Assume one-way data transmission (Le., one device is controlling the other). 

68-2 

5 3 



~, 
i 

~, .. I 

68 AUX Port I/O 

68 AUX Port I/O 

The Auxiliary (AUX) port is a "spare" interface through which the programmer may 
communicate with other lab equipment. The AUX port is located at the rear of the 
INTERVIEW, between the printer and ROB connectors. It is controlled by a Zilog CIO 
(Counter/Timer, Parallel Input/Output Unit) chip. The AUX port may be used as a serial or 
parallel interface. When it is operated as a parallel port, up to sixteen bits (one bit on each 
of sixteen leads) may be transmitted simultaneously. 

A UX -port control must be coded in C regions on the Protocol Spreadsheet. There are no 
spreadsheet-token equivalents of the C variables and routines described in this section. 

A normal configuration of equipment using the AUX port will involve two INTERVIEWs with 
AUX port setups that mirror each other to some extent, as in Figure 68-1. The transmitting 
INTERVIEW will use one of its output leads as a "strobe" to signal to the receiving 
lI'o.'TERVIEW that an AUX word is available to be read. The receiver will detect this strobe 
as an aux_changt event. 

The receiving INTERVIEW will use one of its output leads to acknowledge each AUX word 
received. The transmitting INTERVIEW will detect this acknowledgment as an aux_change 
event. 

68.1 

NOTE: The AUX port is not controlled by the same CPU that 
handles the user program. The need for interprocessor 
communication without data buffering makes rapid, successive 
transmissions difficult to handle. It is recommended. therefore, 
that control bits be set aside for flow control-a bit set by the 
transmitter as input/control is set by the receiver as 
output/non-control, and vice versa-and that every output word 
be acknowledged before a succeeding word is output. 

Variables 

Table 68-1 lists the variables specific to AUX I/O operations. The fast-event 
variable, aux_change, detects a change in a lead that has been configured as a 
control lead. Any or all of the sixteen leads in the interface may be designated 
control leads. Section 68.2 explains how to configure control leads . 

68-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Type 

aux_change does not establish which control lead(s) has changed. Two associated 
variables, curr_aux_value and prev_aux_value, indicate the status of aU sixteen leads. 
These are two-byte (short) variables. Each lead is represented by a different bit in 
the short. If the bit-value of a given lead is zero, the lead is on. If the bit-value is 
one. the lead is off. 

Whenever a control lead changes, the value in curr _aux_va/ue is written to 
prey _Qux_value. Then curr _aux_value is updated. 

Table 68 .. 1 
AUX Port 110 Variables 

Variable Meaning 

True when the status of a lead 
designated as control (and 
Input) changes. Is automatically 
made to come true by the CIO 
chip as soon as leads have been 
configured via set aux direction 
and set aux cU leads routines. 
Therefore, condition must be 
tested again in a different state. 
Una Setup configured for 
emulate or monitor mode. 

extern volatile const unsigned short Each bit designates a different 
lead. A bit-value of one 
Indicates a given lead Is on. 
When value of curr aux value Is 
exclusive ored n With -

extern volatile const unsigned short 

68-4 

prev aux value, result indicates 
those leads whose status has 
changed. Updated when 
aux change comes true. Une 
Setup configured for emulate or 
monitor mode. 

Value of previous 
curr aux value. Updated when 
control leads change. but only 
after logic has had a chance to 
compare ourrent and previous 
leads. Line Setup configured 
for emulate or monitor mode. 



~\ 68 AUX Port I/O , , 
I 

~. 
Ii I ' 

I 

68.2 Routines 

In the examples for the following routines, assume that two Il\TTERVIEW's are 
connected and that data flows in one direction. 

CAUTION: You may damage the AUX interface if the same lead 
is designated as output on both units. We suggest that you set 
the leads on each unit as input/output and control/non-control 
before you connect the AUX interfaces. See Figure 68-1. 

set aux direction 

Synopsis 

extern void set_aux_direction (input_or _output); 
unsigned short input_or _output; 

DeSCription 

This routine designates leads on the AUX port as input or output. Designated output 
leads for the transmitter are set as input leads by the receiver. 

The only input is a sixteen-bit variable. Each bit in the variable designates one lead 
and may be set to zero (output) or one (input). 

Example 

Both sides of the connection may be transmitter or receiver. But for simplification in 
examples, let's designate only one side as the transmitter and the other as the 
receiver. In this example, the transmitter sets all 8 bits of the low-order byte as 
output bits for data, the low-order bit of the high byte as input (for handshaking), 
the next 6 bits of the high byte as input (unused), and the high-order bit as output 
(the receiver will designate this bit as input for handshaking). 

LAYER: 1 
STATE: set Input leads 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
set_aux_directton (Ox7fOO); 

} 

68-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

The other (receiver) INTERVIEW sets a bit as input (for handshaking). It must be 
one that was designated as output by the transmitter, the highest-order bit of the high 
byte. The data bits set as output by the transmitter must be set as input by the 
receiver. The receiver's set_aux_direction routine would look like this: 

LAYER: 1 
ST A TE: setJnputJeads 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
set_aux_direction (Oxlelf); 

} 

Syno,psis 

extern void set_aux_ctl_leads(ctl_or_not); 
unsigned short ctl_or _not; 

Description 

This routine determines whether or not leads will be control leads. Control leads 
must also be input leads, but input leads do not necessarily have to be control leads. 
Output leads can never be control leads. 

The only input is a sixteen-bit variable. Each bit in the variable designates one lead 
and may be set to zero (non-control) or one (control). 

Example 

Assuming the input/output bits set in the previous example, the transmitter sets all 8 
data bits (output) as non-control, the low-order input bit of the high byte as control 
(for handshaking), the next 6 input bits of the high byte as non-control (unused), 
and the high-order output bit as non-control (the receiver will designate this bit as 
control for handshaking). 

LAYER: 1 
STATE: set_controUeads 

CONQITIONS: ENTER_STATE 
ACTIONS: 
{ 
set _aux_ctl_leads (OxOIOO); 

} 

68-6 



i~" 
I 

68 AUX Port JlO 

The "receiver" INTERVIEW sets one input bit as control for handshaking purposes. 
It must be one that was designated as output by the transmitter, the highest-order bit 
of the high byte. The receiver's set_aux_ctl_Jeads routine would look like this: 

LAYER: 1 
STATE: set_controlJeads 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
set _aux _etl_Ieads (Ox8000); 

} 

write_aux 

Synopsis 

extern void write_aux(output_word); 
unsigned short output_word; 

Description 

This routine sends a combination of data, control, and (perhaps) unused bits as 
output. Input bits are not transmitted by the CIO. 

The only input is a sixteen-bit variable. Each bit designates one lead and may 
represent data or control information. or be unused. If a given lead was designated 
as a control lead. it is an input lead and the CIO will not transmit the status of the 
bit in any case, so its setting of 1 or 0 does not matter, If the lead was designated as 
a non-control lead. it might contain data, be unused. or contain an alternating value 
to indicate acknowledgment (if the other side designated it as a control lead). 

Example 

The transmitting Il'.'TERVIEW is going to send data to the receiving INTERVIEW. 
Before the next transmission can be sent. an aCknowledgment must be received. The 
acknowledgment is detected by the fast-event variable aux_change. 

NOTE: The CIO chip automatically generates a true aux_change 
condition when the set_aux_ctl.Jeads routine has been executed. 
The aux_change condition. therefore. should be placed in a 
separate programming state from the set_aux_ctl_leads routine. 

68-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

The transmitter's program might look like this: 

LAYER: 1 
{ 

} 

extern fast_event aux_change; 
extern volatile const unsigned short curr _aux_value; 
liD/a tile unsigned short curr; 
unsigned short mask; 
unsigned char data; 

STATE: configure Jeads 
CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
set_aux_direction (Ox7fOO): 
set_aux_ctl_leads(OxOJOO) ; 
curr = curr _aux_value; 
data = OxOl; 
mask = curr ~ Ox8000; 
displaY"'prompt("Connect cable. Press spacebar to transmit. 
pos_cursor(J ,0); 

} 
NEXT _ STATE : send_data 

STATE: send_data 
CONDITIONS: KEYBOARD" 
ACTIONS: 
{ 
if(data <= 10) 

{ 
write_aux(mask I data); 
displayf("Transmission %d waiting for ACK. 

} 
} 
NEXT _ STATE: waiting 

STATE: waiting 
CONDITIONS: {aux_change} 
ACTIONS; 
{ 
datat+; 
mask = (mask· OxBOOO); 
displayf("ACK received: %04x Press spacebar to transmit. 

} 
NEXT _ STATE : send_data 
CONDITIONS: {data> IO} 
ACTIONS: 
{ 
display"'prompt("End of test. 

} 

68-8 

") ; 

\n", data); 

\71", curr); 



68 AUX Port 110 

The receiver's program would look like this: 

LAYER: 1 
{ 

} 

extern fast_event aux_change; 
extern volatile const unsigned short curr _oux _value; 
volatile. unsigned short curr; 
unsigned short mask; 
int count; 

STATE: oonflgure_leads 
CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
set _ aux _direction (Ox/e/f); 
set_aux_ctl_Ieads(Ox8000); 

} 
CONDITIONS: {aux_change} 
ACTIONS: 
{ 
curr:: curr _aux_value; 
count = 1; 
mask" curr A OxOJOO; 
displayyrompt("Connect cable. Ready ta receive. 
pas_cursar(l,O); 

} 
NEXT_STATE: reoeive_data 

STATE: receive_data 
CONDITIONS: {aux_change} 
ACTIONS: 
{ 

} 

display/("Transmission %d received: %04x Press spacebar to send ACK. 
caunt, curr); 

NEXT_STATE: send_8ok 
CONDITIONS: {count> 1O} 
ACTIONS: 
{ 
displayyrampt("Elld of test. 

} 
STATE: send_8ck 

CONDITIONS: KEYBOARD H " 

ACTIONS: 
{ 
if(caunt <= 10; 

{ 

} 
} 

write_aux(mask); 
caullt++; 
mask = (mask ~ OxOlOO); 

NEXT _ STATE: reoeive _data 

68-9 

"); 

"): 

\1/", 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

SynQPsis 

NOTE: If you designate more than one lead as control. you 
might need to compare prev _aux_value with curr _aux_value to 
determine if the lead you are interested in is the one that 
changed. Here, since there is only one input-control lead on 
each side. the event aux_change is sufficient to signal and to 
acknowledge transmission. The value of prev_aux_value does not 
have to be checked. 

extern void set_aux_reg(reg_value_word); 
unsigned short reg_value_word; 

Description 

The CIO chip may be reconfigured by the user via the set_auxJeg routine. 

NOTE: At present. the initial configuration of the Master 
Interrupt Control Register is (Ox0082). The initial configuration 
of the Master Configuration Control Register is (Ox0194). 

The only input is a sixteen-bit variable. The high byte is the CIO register number; 
the low byte is the value to store in the register number. For register numbers and 
their values. consult Appendix B in Zilog's Z8036 Z-CIO/Z8536 CIO Counter/Timer 
and Parallel JlO Unit Technical Manual. March 1982. 

ExampJe 

The Master Configuration Control Register allows for selective enabling/disabling of 
the CIO ports. Port A's input/output is reflected in the least-significant byte of 
reg_value_word. Port B's input/output is reflected in the most-significant byte of 
reg_value_word. 

NOTE: Port C of the CIO chip is used internally and is not 
available to the user of the I1\7ERVIEW. 

68-10 



68 AUX Port 110 

Suppose you want to disable port B input, output. and interrupts (ports A and C 
enabled) in one state, and in another state restore the original configuration (ports A, 
B, and C enabled): 

LAYER: 1 
ST A TE : reconfigure_chip 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
set_auxJeg(Ox0114}; 

} 
STATE: restore_orIginaL config 

CONDITIONS: ENTER_STATE 
ACTIONS: 
{ 
set_auxJ€g(Ox0194) ; 

} 

68-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

68-12 



~, 
Y I 

i 

69 Other Library Toots 

69 Other Li,brary Tools 

The C structures. variables. and routines in this section provide additional programming tools 
not specific to any particular protocol. Most of these tools approximate layer-independent 
conditions or actions. Refer to Section 27 for more detailed explanations of the purposes of 
specific conditions and actions. Sometimes the name of the variable or routine is sufficient 
for identifying its related spreadsheet token. When this is not the case, the information is 
provided below. 

69.1 Structures 

Use the structures tm, cmt_tm, and preY_1m listed in Table 69-1 to monitor the 
current and previous date and time. Each minute the values in emt_tm are copied 
to prev_tm. Then cmt_tm is updated. These structures are used to produce the 
date/time displays at the top of Run-mode screens and the DateJTime Setup screen. 

The variables jlag_struct.prev, jlaLstruct.current, and flagjtruct.old (in the 
jlag_stn~ct structure) are used each time a flag is incremented, decremented, or set 
to a pamcular value. The current. previous, and old values these variables represent 
work the same way as their counterparts in the counter structure, discussed fully in 
Section 62.1(A). 

NOTE: The purpose of flags is to make it easy for the user to 
isolate selected bits in a variable. The translator does most of the 
work of flags by taking the user's flag masks and coding them in 
C. Flags constructed entirely in C bypass the translator and 
require the programmer to create the flag-mask code normally 
generated by the translator. 

Before using the timeout routines included in this section, declare an instance of the 
timeout structure shown in Table 69-1. Refer to the timeout_restart_action and 
timeout...,.stop_actio1'l routines for examples of how to use this structure. 

The keyboard structure stores the value of the most recent ASCII key used. The 
structur~ variable keyboard. value is updated only by the fast-event variable 
keyboara_new_key. 

69-1 

--.... --.. - ...... ---.. ----.. ---- .. --.-----.------.------.---.-----.--------.---- ----



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Type Variable 

Structure Name: keyboard 

char value 

Structure Name; tm 

int tm_sec 

Int tm_mln 

Int tm_hour 

Int tm_mday 

Int tm_mon 

int tm_year 

Int tm_wday 

Int tm_yday 

Int tmJsdst 

Structure Name: crnt_tm 

Structure Name: prev_tm 

Structure Name: flag_struct 

unsigned short prey 

unsigned short current 

unsigned short old 

Table 69·1 
Structure Fields-Other Library Tools 

Value (hex/decimal) 

0-3bIO-S9 

0-3bJO-S9 

0-1710-23 

1-1ff1-31 

O-b/O-11 

0-6 

0-16d/O-36S 

69-2 

Meaning 

Deolared as type extern struct. Declared 
automatically If program KEYBOARD condition Is 
used. Updated by keyboard new key event 
variable. Reference the structure-variable as 
follows: keyboard. value. 

ASCII value of key just executed. 

Structure of time of day. Declared as type 
extern struct. Reference a structure variable as 
follows: em. tm _sec. 

Seconds after the minute. Not currently 
updated; always set to -1. 

Minutes after the hour. 

Hours since midnight. 

Day of month. 

Months since January. 

Years since 1900. 

Days since Sunday. Not currently updated; 
always set to -1 . 

Days since January 1. Not currently updated; 
always set to -1 . 

Daylight Savings Time flag. Not currently 
updated; always set to -1. 

Structure of current time of day. Updated every 
minute. Declared as type extern struct tm. 

Structure of previous time of day, one minute 
ago. Declared as type extern struct tm. 

Structure of a flag. Declared as type struct. 
Declared automatically If a program flag is used. 
Program flags assigned to structure as follows: 
struct flag struct flag name. Reference a 
structure variable as follows; flag_name. current. 

When converting a flag action to C, the translator 
compares prey with current to determine 
Whether flag has changed, Then prey is updated 
to current and flag_name_ohange is signaled, 

This value of flag Is acted on directly by program 
actions. 

When converting a flag condition to C, the 
translator compares old with current to 
determine whether true condition Is new 
(transitional,. After program logic has examined 
flag. old is updated to prevo 



69 Other Ubrary Toofs 

Table 69-1 (continued) 

Type Variable Value (hex/decimal) Meaning 

Structure Name: timeout Structure of a timeout. Declared as type struct. 
Declared automatically If a program timeout Is 
used. Program tlmeouts assigned to structure 
as follows: struot timeout name. Reference a 
structure variable as follows: 
tlmeout_name.event_ld. 

unsigned long eventJd 

unsigned short 

Four bytes of a S-byte timeout. containing the 
segment number and offset. 
Timeout_nama_stop routines set this event id to 
zero. 

Two bytes of a 6-byte timeout which uniquely 
Identify (uld) the timeout. 00 not try to assign a 
valtle to this varIable. 

69.2 Variables 
All of the variables in Table 69-2 are valid in either emulate or monitor mode. 

(A) Monitoring Events 
The event variables in Table 69-2 are fevar_time_of_day, Ila8_name_change. 
timeout_name_expired, signal_name, keyboard_new_key, and 
keyboard_new_any_key. 

Event variable levar _time_ol_day comes true once a minute. An example of 
how to use this variable is provided in Section S4.1. This event variable is pan 
of the spreadsheet TIME condition. 

The event variable keyboard_new _key is used by the translator in a spreadsheet 
KEVBOARD condition. It comes true when any ASCII key is pressed. The event 
keyboard_new_any_key, on the other hand. comes true when an ASCII or other 
keyboard key is pressed. The only keys which will not trigger this event are ~, 
rmfJ. [ITJ-!§J sonkeys. and [§3. 

(8) Status Variables 
Status variables are those in Table 69-2 that do not include event in the Type 
column. Their associated event variables guarantee that they are updated and 
tested. 

Time and date variables are updated by levar _time_ol_day. Variables 
crnLtime_ol_day, prev_time_oLday, crnt_date_ol_day, and prev_date_of_day 
are' older versions of variables that belong to the crnt_tm and prev_tm structures. 
The C translator uses these older versions when it construct time-of-day 
conditions (e.g., CONDITIONS: TIME 1614). 

The status variable keyboard_any_key is updated by the fast-event variable 
keyboard_new _any_key. 

69-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

Type 

extern fa5t_ event 

extern event 

extern event 

extern event 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile const unsigned char 

extern volatile canst unsigned char 

extern fast_event 

Table 69·2 
Other L.ibrary Variables 

Variable 

timeout_ name _expired 

signaL name 

69-4 

Value (hex/decimal) Meaning 

True once per minute. linEr 
Setup configured for emulate or 
monitor mode. 

This event must be signaled by 
the program Itself; It Is not 
~extemal' to the program. The 
translator signals this event as 
part of the FLAG Increment, 
decrement. or set action. Line 
Setup configured for emulate or 
monitor mode. 

This event must be signaled by 
the program Itself. It is not 
"external" to the C program. 
The translator signals this event 
as part of the 
timeout restart action routine. 
Line Setup configured for 
emulate or monitor mode. 

True when the named signal is 
the argument In a signal routine. 
Spreadsheet-token equivalent Is 
ON_SIGNAL name. Line Setup 
configured for emulate or 
monitor mode. 

0-937/0-2359 Current time is stored In this 
variable. Updated as soon as 
time changes. Line Setup 
configured for emulate or 
monitor mode. 

0-93710-2359 Current time is stored in this 
variable. Updated when time 
changes, 'but only after logic 
has had a chance to compare 
current and previous time. Line 
Setup configured for emulate or 
monitor mode. 

1-1fI1-31 Current date Is stored In this 
variable. Updated as soon as 
date changes, Line Setup 
COnfigured for emulate or 
monitor mode. 

1-1fI1-31 Current date Is stored in this 
variable. Updated when date 
ohanges, but only after logic 
has had a chance to compare 
current and previous date. Line 
Setup configured for emulate or 
monitor mode. 

True when any ASCII key is 
pressed. Line Setup configured 
for emulate or monitor mode. 



Type 

extern volatile unsigned short 

69 Other Ubtary Tools 

Table 69-2 (continued) 

Variable Value (hex/decimal) Meaning 

69-5 

0-7f/O-127 
eO-17f1 

128-383 

180/384 
181/385 
182/386 
183/387 
184/388 
185/389 
186/390 
187/391 
18a/394 
18b/395 
18c/396 
18d/397 
18e/398 
18f/399 
190/400 
191/401 
192/402 
193/403 
194/404 
195/405 
196/406 
10d/269 
1aO/416 
1a1l417 

1a2/418 
1a3/419 
1a4/420 
1a5/421 
1a6/422 
1a7/423 
1a8/424 

True when any key is pressed. 
The only exceptions are ~. 
£fill, lfiJ-iHJ softkeys. and ~. 
Une Setup configured for 
emulate or monitor mode. 

Identifies last key or 
key-combination exeouted. Line 
Setup configured for emulate or 
monitor mode. 

ASCII keys 

Editing Keypad Keys: 

mrJ 
till 
~ • 8-~ 
E!!J-f&II 
8-fIfI 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table 69-2 (continued) 

Type Variable Value (hex/decimal) Meaning 

(keyboard_any_key continued) 
1a9/425 
1aa/426 
lab/427 
1ao/428 
1ad/429 

69-6 

1bO/432 
lbl/433 
1b2/434 
lb3/435 
1b4/436 
lb5/437 
1b7/439 
1b8/440 
1ba/442 
lbb/443 
lbo/444 
1bd!445 
lbe/446 
lbf/447 
100/448 
101/449 
102/450 
1c3/451 
1c4/452 
1c5/453 

1c6/454 
107/455 
108/456 

109/457 
1ca/458 
1cb/459 
100/460 
10d/461 
1ce/462 

ldO/464 
ldl/465 

ld2/466 
1d3/467 
1d4/468 
ld5/469 
ld6/470 

Editing Keypad Keys (oont): 

~-~ 
~-~ 
~-a 
~-Etila 
~-mm 
Utility Keys: 

8 
{3 
8 
8 
~ 
8 
IMNTI 
~ 
o 
8-0 
~-o 
8-8 
~-8 
8-8 
S-8 
8-8 
8-8 
8-8 
~-8 
8-~ 
~-8 
8-8 
~-8 
8-~ 
S-~ 
8-1-1 
S-I-I 
8-§] 
~-§J 
Pure Cursor Keys: 

ffl 
8-00 
~-ffl 
8 
8-8 
S-8 
~ 



ff~ , ! 
[ 

i"~iII'\ 

i 

Type 

69 Other Ubrary Tools 

Table 69·2 (continued) 

Variable Value (hex/decimal) Meaning 

(keyboard _any _key continued) Pure Cursor Keys (cont); 
1d7/471 8-8 
1d8/412 ~-~ 
1d9/473 8 
1da/474 8-8 
1db/475 S-f3 
1dc/476 @ 
ldd/477 E!!J-@ 
1de/478 ~-@ 

Cursor Keypad Keys: 
180/480 III 
1el/481 8 
1192/482 8-8 
1193/483 !3 
1194/484 8-~ 
1195/485 {B) 
1196/486 mil 
1197/487 (JIJ 
1198/488 (RJ 
1199/489 §!J-E3 
16a/490 ~ 
1eb/491 8-[B] 
1eo/492 e(E 
1ed/493 8-(Il) 
168/494 ~HID 
1ef/495 ~H.l 
110/496 ~-tmD 
1f1l497 8-fRl 
112/498 I~HIIl 
113/499 E!!H)[J 
1f4/5oo S}-[]I) 

Other Keys: 
1151501 ~-11J 
116/502 ~HID 
1f7/503 I~HID 
1f8/504 §!J-0 
1f9/50S ~H§J 
1fa/506 ~-® 
1fb/507 S-Ill 
1fe/S08 em 
188/392 8-1!J 
189/393 S-OO 
1fd/509 8-8 

69-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

69.3 Routines 

Synopsis 

extern yoid timeout_restart_action (timeout_name ...ptr, value, function); 
struct • timeout_name...ptr 

{ 
unsigned long event_id; 
unsigned short event_id_uid; 

}; 
unsigned short ya[ue; 
yoid function (); 

DeSCription 

This routine starts a named timeout timer running down, starting at a specified value. 
When the timer reaches zero, a named function is called. The 
timeout_restart_action routine. preceded by a call to the timeout_stop_action routine. 
is the equivalent of the softkey TIMEOUT name REST ART action on the Protocol 
Spreadsheet. 

The first parameter is a pointer to the timeout structure. See Table 69-1 for further 
explanation of the timeout structure. 

The second parameter is the starting value of the timeout timer in milliseconds. 

The third parameter is the name of a routine to be called when the timeout expires. 
The routine may include the following statement: timeout_name.event_id = 0;. 
Timeout-stop actions set this event ID to zero. This action is not strictly necessary 
here. since the timeout has already expired; but the action may make the processing 
of subsequent stop actions slightly more efficient. 

The body of the routine to be called may also include this statement: 
signa/(timeout_name_expired);. In a softkey-entered TIMEOUT RESTART action, both 
statements are included in a routine called timeout_name_isp. 

Example 

NOTE: The routine named in the third parameter is an interrupt 
service process (isp) , A long definition for this routine makes the 
processing of timeout_restart_action unpredictable. 

When a frame is sent, start a timeout timer at 2 seconds. When it expires. sound 
the alarm. If another frame is sent before the 2 seconds expires. stop the current 
timer and restart the timeout. 

69-8 



~~. 
I 

'i~' 
I 

strutt timeout 

unsigned long /!vent_id; 
unsigned short event_id_uid; 

}; 
struct timeout timeout_example; 
extern event timeout_example_expired; 
Mid timeout_example_isp () 
{ 

} 
} 

timeout_example. event_id ::: 0; 
signal (timeout_example_expired); 

LAVER: 2 
STATE: example_of _timeout 

CONDITIONS; FRAME_SENT 
ACTIONS: 
{ 
timeout_stop _action (&timeout _example); 

69 Other Library Tools 

timeout Jestart _action (&timeout _example. 2000. timeout_example _isp); 
} 
CONDITIONS: 
{ 
timeout_example_expired 

} 
ACTIONS: ALARM 

Here is a version of the program that accomplishes the same result without an action 
to signal the timeout event: 

{ 

} 

strutt timeout 

unsigned long e'Jent_id; 
unsigned short event_id_uid; 

}; 
struct timeout timeout_example; 
extern void sound_alarmf); 

LAVER: 2 
STATE: example _of_timeout 

CONDITIONS: FRAME_SENT 
ACTIONS: 
{ 

} 

timeout_stop_action (&timeout_examplej; 
timeout_restart_action(&timeout_example. 2000, sound_alarm); 

69-9 



INTERVIEW 7000 S~ri~s Advanced Programming: ATLC-107-951-10B 

timeout stop action - -
Synopsis 

extern void timeout_stop_action(timeoul_nameytr); 
struc! • timeout_nameytr 

{ 
unsigned long event_id; 
unsigned short ellent_id_uid; 

}; 

Description 

This routine stops a named timeout timer, preventing it from expiring. The softkey 
equivalent of this routine is the TIMEOUT name STOP action on the Protocol 
Spreadsheet. timeout_stop_action also precedes the call to the timeout_restarf_action 
in the spreadsheet TIMEOUT name RESTART action, 

The only parameter is a pointer to the timeout structure. See Table 69-1 for further 
explanation of the timeout structure, 

Example 

In this example, if the user presses the [ID key, the timeout timer will not expire and 
the alarm will not sound (until another frame is sent and the timeout is restarted). 

} 

struct timeout 

unsigned long event_id; 
unsigned short ellent_id_uid; 

}; 
struct timeout timeout_example; 
extern void sound_alarm(); 

LAYER; 2 
STATE; stop _ a_timeout 

CONDITIONS: FRAME_SENT 
ACTIONS: 
{ 
timeoutjtop _action (&timeout_example); 
timeout Jestart_ action (&timeout _example, 2000, sound_alarm); 

} 
CONDITIONS: KEYBOARD ·Ss· 
ACTIONS: 
{ 

timeout_stop_action (&:timeout_example); 

69-10 



index 

Synopsis 

extern char * index(string, character); 
char * string; 
char character; 

Description 

69 Other Library Tools 

This routine searches for an instance of a character starting at the beginning of a 
specified list. The routine is used by the C translator to conven CONDITIONS: 

KEYBOARD softkey entries into C. This routine must be declared. 

The first parameter is a list of characters to be searched. 

The second parameter is the character to be searched for in the list. 

Returns 

This routine returns a pointer to the first instance of the specified character, or zero 
if it does not occur. 

Example 

In the example below, the following test is established: when a key is pressed on the 
keyboard, search for a match to the keyboard character in the string " abc ". If it is 
found, sound the alarm. 

} 

extern char * index(); 
extern fast _event keyboard_new _key; 
extern struct keyboard 

{ 
char 1!alue; 

}; 
extern struct keyboard keyboard; 

LAYER: 1 
STATE: Index_example 

CONDITIONS: 
{ 
(keyboard_new _key && index (" abc", keyboard. \lalue)) 

} 
ACTIONS: ALARM 

Let's suppose that the user presses the space bar. In this case, the returned pointer 
will be pointing to the blank preceding the "a." If rindex had been used, the 
returned 'pointer would be pointing to the blank following the "c." As long as any 
non-null character is returned, the condition is true. 

69-11 

._--,,--_._--------------------,.--_.-



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

rindex 

Synopsis 

extern char" rindex(string, character); 
char" string; 
char character; 

Description 

This routine searches for an instance of a character starting at the end of a specified 
list. This routine must be declared. 

See index. 

Returns 

See index. 

ExampJe 

See index. 

load_program 

Synopsis 

extern void /ood"program (filename"ptr) 
canst char" /ilename..ptr; 

Descrtption 

The loadyrogram routines allows you to link programs together while the unit is in 
Run mode. When a call to loadyrogram is encountered in a spreadsheet program. 
the current program is exited. The program named as the argument in the routine is 
loaded and run. When you return to Program mode. the program displayed on the 
Protocol Spreadsheet will be the one just loaded. If loadyrogram fails. you are 
returned to the main menu screen in Program mode. 

The only input is the absolute pathname, prefixed by the device name. of the file to 
be loaded. Valid device names are "HRD." "FDl." and "FD2." 

Example 

In the example below. at the successful conclusion of the last of a series of tests in 
module 18, a program for module 19 will be loaded and run. 

69-12 



LAYER: 3 
STATE: test_26 

lock 

CONDITIONS: ENTER_STATE 
ACTIONS: SEND DIAG 
CONDITIONS: RCV CLEAR_CONF 
ACTIONS: TRACE "Test 26 passed" 
{ -
loadyrogram (" FDllusrlmodule_19"); 

} 

Synopsis 

#include <stdio. h> 
extern ~oid lock(lock_ .... ariableytr); 
int " lock._variableytr; 

Description 

69 Other Library Toofs 

The lock routine implements a lock using the integer variable pointed to by the 
routine parameter. If the lock variable is currently locked, the task goes to sleep. 
When an unlock on the same variable occurs (within an independent task). the task 
invoking the lock function will attempt to claim the lock. If successful, the task is 
executed; otherwise. it goes back to sleep until the next unlock. 

NOTE: If locking is used at any place in the program, all related 
or possibly concurrent routines must also use the locking 
functions. 

NOTE: The lock variable should always be defined as a global 
integer, never as local to a function. The lock variable should 
never be altered by the user program or deadlock can occur. 
Deadlock also results if the lock is invoked twice within the same 
task without an intervening unlock. 

The only parameter is a pointer to the lock variable. 

Example 

Two tasks concurrently write to their own file streams. (The file streams are local to 

the routine writeJox, making them independent of each other even though they have 
the same name.) However, during the fe/ose operation (which automatically calls 
fflush), both tasks need to write to the same file. The locking routines ensure that 
the writes to the file occur sequentially, not concurrently. 

69-13 



INTERVIEW 7000 Series Advanced Programming: ATLC-107 951-108 

{ 
#include <Sldia. h> 

} 

canst char data lJ = "((FOX))\n"; 
int key; 
void writeJox() 

{ 
FILE * streamJtr; 
size_t n; 
lock (&key); 
if((streamJtr '" jopen("FD21usrlbujfOl", "a"» == 0) 

displaYJrompt("Cannot open jile. 
else 

display Jrompt (" File opened. 
n = jwrite(data, 1, sizeoj(data)-l, streamJtr); 
pos_cursor( 1,0); 
if(n f= (sizeoj(dala)-l)} 

displayj("Write error. 
else 

displayj("Write completed. 
ij(fclose(streamJtr) 1= 0) 

} 

displayj("Either jile is already closed, or close cannot be executed. 
elJe 

displayj(" File closed. 
unlock(&key); 

LAYER: 1 
TEST: a 

STATE: write_and_signal 
CONDITIONS: RECEIVE STRING "THE QUICK BROWN FOX" 
ACTIONS: SIGNAL xyz 
{ 
write Jox () ; 

} 
TEST: b 

STATE: write_only 
CONDITIONS: ON_SIGNAL xyz 
ACTIONS: 
{ 
writeJoxO; 

} 

unlock 

Synapsis 

#include <stdiD.h> 
extern '\Ioid unlock (lock_variableJtr) ; 
int * lock_variableJtr; 

pescri:ption 

"); 

"); 

\n"); 

\n"); 

"); 

"); 

The unlock routine implements the inverse of the lock routine using the same integer 
variable. Sleeping tasks will be woken up to retry their attempt to claim the lock. 
One will succeed, and the rest will go back to sleep. See also lock routine. 

69-14 



~ .. 
't I 

i 

69 Other Library Tools 

The only parameter is a pointer to the lock variable. 

Example 

See lock routine. 

signal 

Symmsis 

extern void signaJ(signal_name); 

Description 

This routine conveys instructions to other tests and layers where conditions are 
monitoring the signal by name. The softkey equivalent of this routine is the SIGNAL 

action on the Protocol Spreadsheet. 

The only parameter is a name descriptive of the event being signaled. 

Example 

LAYER: 2 
STATE: signalJoutlne 

CONDITIONS: RCV FRMR 
ACTIONS: 
{ 
signal (Signal_link _down); 

} 
CONDITIONS: ON_SIGNAL link_down 
ACTIONS: ALARM 

Here is a related example, this time with the signal detection also given in C. Note 
that a signal automatically generates an .. event" that can be detected alone in a 
waitfor clause. 

{ 
extern el>ent link_down; 

} 
LAYER: 2 

ST ATE: signaL event 
CONDITIONS: RCV FRMR 
ACTIONS: 
{ 
signa/(link_down) ; 

} 
CONDITIONS: 
{ 

} 
ACTIONS: ALARM 

69-15 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

sound_alarm 

SynO,psis 

extern void sound_alarm(); 

Descrjption 

This routine will sound the alarm. The softkey equivalent of this routine is the 
ALARM action on the Protocol Spreadsheet. 

Example 

When a bad Bee is detected on the DTE side of the link. sound the alarm. 

LAYER: 1 
ST A TE: example 

CONDITIONS: DTE BAD_Bce 
ACTIONS: 
{ 
sound_alarm(): 

} 

SynO,psis 

extern void start Jcrd "'play (); 

Description 

Depending on the Line Setup configuration. this routine activates data recording or 
playback. If the Line Setup menu shows Mode:~itmM9.Nft#'i~?m:t. Source: @?@~, the 
routine controls playback. In all other cases, it initiates recording. 

Unless your recording source is RAM. make a call to Idose in programs containing 
disk I/O routines (Section 65) before you start to record (or resume playback). If 
you don't. the file will be closed automatically as soon as recording (or playback) 
begins, even if processes on the file have not been completed. (Using the 8 key to 
activate recording or resume playback will have the same effect.) 

Example 

LAYER: 1 
STATE: example 

CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 
startJcrd"'playO; 

} 

69-16 



69 Other LIbrary Tools 

SxnQPsis 

extern void suspend_rcrd"'playO; 

Description 

Depending on the Line Setup configuration. this routine suspends data recording or 
playback. If the Line Setup menu shows MOde:f:lm:M~lf1l. Souroe: ~@ifL the 
routine controls playback. In all other cases, it suspends recording. Once recording 
or playback is suspended, resume it with a call to startJcrdylay. 

Unless your recording source is RAM. do not call disk I/O routines (Section 65) until 
you suspend recording (or playback). If you do, the disk ItO operation will fail. 

Example 

LAYER: 2 

NOTE: Although playback is immediately suspended when 
suspendJcrdylay is executed. the screen display continues until 
the character buffer's contents are fully displayed. (For 
bit-image data. the FIFO must empty.) At slower playback 
speeds, you may notice a slight delay before the display actually 
freezes. 

STATE: example 
CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 
suspendJcrdylayO; 

} 

send_key 

Synopsis 

extern !loid send_key(number _of_keys, keysyU); 
unsigned char number _Of_k.eys; 
unsigned short • k.eysytr; 

Description 

This routine sends a specific keystroke (or sequence of keys) during Run mode, as 
though the operator pressed the key. It also may be used to change the Run-mode 
display. 

The first parameter specifies the number of keys to be sent. 

69-17 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

The second parameter is a pointer to an array of shorts. This array lists the keys to 
be sent. To send keyboard keys, use the values listed in Table 69-2 for the 
keyboard_any_key variable. To change the Run-mode display, send two keys. The 
first "key" always has a value of Oxff75. The second "key" identifies the desired 
display-screen. Use the values listed in Table 61-1 for the crnt_display_screen 
variable. 

Example 

For this example, assume you are playing back data from a disk and that the initial 
Run-mode screen is the dual-line data display. After a five-second pause, playback 
is slowed as though you pressed 0. As soon as a bad Bee is detected on the DTE 
side, the data display will change to the Layer 2 Protocol Trace screen. 

{ 

} 

unsigned short keys II = {Ox/f'J5. Ox42}; 
unsigned short slow_down [] = {Oxldc}; 

LAVER: 2 
ST ATE : change_displays 

CONDITIONS: ENTER_STATE 
ACTIONS: TIMEOUT pause RESTART 5 
CONDITIONS: TIMEOUT pause 
{ 
send_key ( 1. slow_down); 

} 
CONDITIONS: DTE BDBCe 
ACTIONS: 
{ 
send_key(2, keys); 

} 

69-18 



70 X.21 Library 

70 X.21 Library 

'The Test Interface Module (TIM) located in the rear of the INTERVIEW determines the 
leads available for monitoring and control (Section 10). The variables and routines in this 
section apply to the X.21 interface module. RS-232. V.35, and RS-449 modules are treated 
in Section 60. 

To use the C variables and routines explained in this section,you must select Suffer Control 

Leads:;ii"? on the FEB Setup menu. See Section 7.1(B). If no other source for clock is 
provided. use internal clock (Line Setup menu). Finally, load in the X.21 package via the 
Layer Setup screen. 

The variables and routines approximate X.21 Layer 1 spreadsheet-generated conditions and 
actions. Their use on the Protocol Spreadsheet is not limited to any particular layer. though 
normally they belong at Layer 1. Refer to Section 32 for more detailed explanations of the 
purposes of specific conditions and actions. Sometimes the· name of the variable or routine is 
sufficient for identifying its related spreadsheet token. When this is not the case, the 
information is provided below. 

70.1 Structures 

Type 

Use the . structure xmit-,ist, shown in Table 70-1. when transmitting line data via the 
x21_transmit_caU routine. Refer to x2i_transmit_call in Section 70.3(A) for an 
example of how to use this structure. 

Variable 

Table 70-1 
X.21 Structures 

Value (hex/decimal) Meaning 

Structure Name: xmit_llst Structure of a transmit list for x21 transmit call 
routine. Oeclared as type struct. -Declared 
automatically If Iltroftkey-entered 

unsigned char * string 

unsigned short strlngJength 

CAU. seTUP SENOaetion Is taken. Reference 
member variables of the structure as follows: 
xmIUlst.string_tength 

pointer to the location of the transmit string-the 
transmit string Is declared separately 

O-ffffl0-65535 length of the transmit string 

70-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

70.2 Variables 

With an X.21 TIM installed. you may monitor the T and R data leads, the C and I 
control leads. and VA. See Table 70-2. 

The fast-event variable levar 3ia_changed detects a change in leads. It does not 
establish which lead(s) has changed. nor the validity of the lead's status. Two 
associated status variables, current_eia_leads and previous_eia_leads, indicate the 
condition of the leads. These are two-byte (short) variables. Each lead is 
represented by a different bit in the short. Table 70-2 provides the mask that can be 
used to isolate each lead. 

Other bits in these variables monitor the validity Of lead status. For the status of a 
lead to be considered valid in X.21 t the lead must be stable for a minimum of 16 
bit-times. Each lead's valid status is indicated by a separate bit in current_eia_Ieads 
and prevlous3ia_leads. Again. refer to Table 70-2. 

Whenever a lead changes, the value in current_tia_Ieads is written to 
previous_eiaJeads. Then current_eia_Ieads is updated. 

(A) Masking To Detect a Change in a Given Lead 

To test whether or not a given lead changed. I for example, while disregarding 
its status. enter the following condition on the Protocol Spreadsheet: 

CONDITIONS: 
{ 
/nar_eia_challged etet (..((currertt_eia_,eads A prnious_eia_'.ads) et Ox40) == Ox40) 

} 

Select a mask value from the list in Table 70-2 to indicate which lead you care 
about. Specify multiple leads with a mask derived via hexadecimal addition. 

The mask for I is Ox40. In the example, the event levar _eia_changed updated 
current_eia_leads. The new current_eia_leads was bitwise-exclusive-ORed with 
previous_eia_leads to identify all the leads that changed. Then the result was 
bitwlU ANDed with the .. I mask to determine if I was among the leads that 
changed. If this result was equal to the mask, the lead changed. 

following the evaluation of the condition. previous_eta_leads was updated to 
match· eN"e," _eia~leads. 

70-2 



Type 

extern fast_event 

extern const volatile unsigned short 

extern const volatile unsigned short 

li'<' 
i 

Table 70-2 
X.21 Variables 

70 X.21 Ubrary 

Variable Value (hex/decimal) Meaning 

previous ela leads 

70-3 

1 
2 
4 
8 
10J16 
40/64 
80/128 
100/256 
2001512 
40011024 

True when the status changes 
for an EIA lead. Line Setup 
configured for emulate or 
monitor mode. 

C-valkt 
B (RS-232 equivalent is SQ) 
I-valid (AI) 
R-valid (OSR) 
T -valid (OTA) 
I (CTS) 
C (ATS) 
A (AD) 
UA 
T (TO) 

A value In this list Indicates 
whlch lead (s) you care about. 
When Bnded (&) with 
current eis leads. the result 
equals zero1t the lead Is on (or 
the mask if the lead Is off). For 
validity checks. the result of 
ending with current_eJa_leads 
equals the mask for valid (or 
zero for Invalid). 

Examples: 

STATE: c on and valid 
{ if ((current-eia leads & Ox81) 
.... 1} sound_alarm(); } 

ST ATE: c off and valid 
{ if ((current aia leads & Ox81) 
= .. Ox8l) sound_alarmO; } 

Note: This variable will store EtA 
status if (1) Internal or external 
otoek is supplied, (2) EIA leads 
are enabled on FEB Setup. and 
(3) fevar_eia_changed has 
updated the leads. Une Setup 
configured for emulate or 
monitor mode. 

Same values as 
current eta leads. Updated 
when leads Ohange. but only 
after \o9IC has had a ohance to 
compare current and previous 
leads. Line Setup oonflgured 
for emulate or monitor mode. 

- - - ------~-------------.--- -.---~---.-,-----,-.--".~--------. 



INTERVIEW 7000 Series Advanced Programmlna: ATLC-107-951-108 

(8) Masking For the Status or Validity of a Lead 

You may also test the current status or validity of a lead, independent of any 
change. If a mask testing for status is anded with current_eia_leads, zero will 
mean that the lead in. on. If the result equals the mask, the lead is off. If a 
mask testing for validity is anded with current_eia_leads, the lead status is valid 
when the result equals the mask. If the result is zero, the status is invalid. 

To test for both status and validity, derive a mask via hexadecimal addition. 
And the mask with current_eia_leads. as in this if statement testing for I "on" 
and valid: 

STATE: test_forJ_on_and_valid 
{ 
i/((current_eia_'eads cI: Ox44) == 4) sound_alarm (): 

} 

(C) Detect Change and Current Status 

The two examples shown above could be combined to test for I changing from 
off to valid on: 

CONDITIONS: 
{ 

(fnar_eia_changed cI:cI: (((current_eill_Ieads A previous_eill_'ellds) cI: Ox40) == Ox40) cI:cI: 
«current_eia_'ellds & Ox44) == 4)) 

} 

This example approximates the translator's version of the spreadsheet-token 
condition LEADS I V-ON when it appears alone in a conditions block. When a 
LEADS condition is combined with another condition, in most cases the other· 
condition will supply the event variable and only the lead status test will be used. 

70.3 Routines 

(A) Control and Transmit 
Use the following routines in emulate mode only. If you try to call one of these 
routines in monitor mode, you may be returned to the main program menu. 
When you go to the Protocol Spreadsheet and search for errors, a message like 
the following may be displayed: "Error 140: Unresolved reference ctCeia." 

Synopsis 

extern void ctl_eia(on_mllsk. off_mask); 
unsilned short on_mask; 
unsilned short off_mask; 

70-4 



70 X.21 Library 

Description 

The ctCeia routine allows you to control the status of the two X.21 contro}­
leads. Which lead you control depends on your emulation mode. When the 
Line Setup menu shows Mode: ::~mf@i~::[j. you control 1. AnNi~*lWNp~t 
selection gives you control over C. The softkey equivalent of this routine is the 
LEADS action on the Protocol Spreadsheet. 

The first parameter indicates which lead you want to tum on. One bit in the 
parameter controls a given lead: I (01) and C (04). Wherever there is a zero 
in the first parameter, the corresponding lead will be turned on. A one in this 
parameter will not cause any lead to be turned off. A value of Oxff will mean 
don't care (no action). 

The second parameter indicates which lead you want in the "off" condition. 
One bit in the parameter controls a given lead: I (01) and C (04). Wherever 
there is a one in the second parameter. the corresponding lead will be turned 
off. Zeroes in this parameter do not turn leads on. A value of 0 will mean 
don't care (no action). 

NOTE: If both bytes are attempting to control the same lead. the 
off parameter will override the on parameter. 

Example 

Suppose your emulate mode is ~~!ji§~~. As a DCE. you control the I lead. 
(An attempt to control the status of C will fail, since the DTE controls this 
lead.) When C is raised, you want to turn Ion; when C drops. turn I off. 

LAYER: 1 
STATE: controlJ 

CONDITIONS: LEADS C ON 
ACTIONS: 
{ 
ctl_eia(Oxje,OxOO); 

} 
CONDITIONS: LEADS C OFF 
ACTIONS: 
{ 
ctl_eia (OxIj, OxO 1); 

} 

70-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

x21Jdle_actlon 

SYDQ,Psis 

extern void x21_idle_action(character); 
unsigned char character: 

Descrjption 

Only for format SYNC, the x2I_idle_action routine allows you to change the 
idle-line condition applied by the INTERVIEW. A LEADS R BELLS action, for 
example. requires the x2I_transmit_call routine in addition to x2I_idle_action. 

The only parameter is a character or numeric value representing the idle 
character. 

Example 

To signal an incoming call, you would use the x21_transmit_call routine to send 
the sync pattern. Then you would use the x2i _idle_action routine to send an 
idle string of bells: 

LAYER: 1 
{ 
unsigned char syncs fl = {OxI6,OxI6}; 
struct xmit_list 
{ 
unsigned char" string; 
unsigned short string_length; 

}; 
struct xmit_list send_string {] = {&syncs{OJ. 2}; 

} 
STATE: signaUncomlng_ call 

CONDITIONS: KEYBOARD • • 
ACTIONS: 
{ 

} 

x21_transmit_call(1, &send_string[O}, 0); 
x2I_idle_action('s,- '); 

70-6 



x21_ transmit_cali 

Synopsis 

extern void x2] _transmit_call (count. struct_send _strin8..JJtr. xmil_tag); 
unsigned short count; 
struct xmit _list 

char • stl'ing..,ptr; 
unsigned. short string_length; 

}; 
struct xmit_lisl .. struct_send_string..,ptr; 
unsigned short xmit_tag; 

De&cription 

70 X.21 Library 

The x21_transmit_call routine. sends a specmed data string in call-setup mode. 
The softk.ey equivalent of this routine is the CALL_SETUP _SEND action. 

The first parameter is the number of s~rings to be sent. 

The second parameter is a pointer to a structure which in turn identifies the 
location and leng$ of each string. 

The third parameter is a transmit tag, In other contexts it identifies the type of 
BCe to be sent. In X.21. however, no Bee is sent from Layer 1. The value of 
this parameter should be zero. 

Example 

Assume you are emulating a DTE. To send a call request in call-setup mode, 
enter the following spreadsheet program: 

LAYER: 1 
{ 
unsigned char syncs fJ '" {0x16.0x16}; 
unsigned char number [] :: .. n34567"; 
unsigned char end [] :: "+"; 

} 

struct xmit_list 
{ 
unsigned char"' string; 
unsigned short string_length; 

}; 
struc! xmiUist send_string [J = {&Syncs{O). 2. &number[Oj. sizeo!(number) - 1. &end[OJ. l}; 

70-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

STATE: send 
CONDITIONS: RECEIVE STRING 1!l++" 
ACTIONS: 
{ 
x21_transmit_call(3, &:se"d_stri"g[Oj, 0); 

} 

Notice in the preceding example that sync characters were sent in the same call 
to x21_transmit_call that sent the called number. The equivalent 
softkey-generated action is LEADS T DATA CALL_SETUP_SEND ·~~1234567+·. 

Syno,psis 

at."" void s,t_tcr_b (tcrJ'8ist",:,mtlsl, tcrJ,glster_value); 
unsip,d char tcr _register _malJr.; 
unsigned char tcr _register_value; 

Description 

This routine clamps the transmit line to 0 (space) or 1 (mark), or unclamps it so 
that transmit routines may be executed. In X.21, steady zero will signal a clear 
request/indication or a clear confirm, while steady 1 will indicate one of the 
call-ready or call-setup states. 

The X.21 softkey actions that are built on this routihe are LEADS R (T) ONE. 

LEADS' A (T) ZERO. and LEADS R (T) DAtA. In other contexts, the routine simply 
initiates and terminates a break. 

The first parameter is the mask that is anded with the current TCR register to 
tum the current values of bits 3 and 4 (counting 1-8 from the right) to zero. 
This mask is always Oxf3. 

The second parameter contains the new values of bits 3 and 4 that will be 
written to the register. The three available parameters are Ox08 to clamp the line 
to zero, OxOc to clamp the line to 1. and Ox04 to unclamp the line and permit 
data transmissions. 

Example 

Assume you are emulating a. PTE. To indicate a clear confirmation, enter the 
following spreadsheet program: 

70-8 



rt 
! 

~c 
, I 

I 

LAYER: 1 
STATE: 

CONDITIONS: KEYBOARD • • 
ACTIONS: 
{ 

} 

set_Icr_b (Oxf3. Ox08); 
ctl_eia(Oxff, Ox04}; 

The equivalent softkey-generated action is LEADS T ZERO C OFF. 

(B) Phase 

70 X.21 Library 

The following routines are valid in either emulate or monitor mode. 

enter_call_phase 

SXUQpsis 

extern "aid enter_callyhaseO; 

Description 

During the call-establishment phase, this routine overrides existing selections on 
the Line Setup menu with ASCII code, 7-bit odd parity, .and SYNC format. 

Example 

When a lead changes. look for these conditions: T and R on (space), C and I 
off, and all leads valid. If conditions are true. enter call phase. 

extern fast_e1!ent fe1!tlr _eia_changed; 
extern canst "ala tile unsigned short current_e.ia_leads; 

} 
LAYER: 1 

STATE: look_for _change_to _ oallJ>hase 
CONDITIONS: 
{ 
fe1!ar_eia_changed && ((current_fia_leads & Ox5dd) == Oxdd) 

} 
ACTIONS; 
{ 
enter _ callyhase () ; 

} 

enter data phase - -
SynQPsis 

extern "oid enter _datayhaseO: 

Description 

During the data-transfer phase, this routine implements existing selections on the 
Line Setup menu. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Example 

When a lead changes, look for these conditions: T and R off (mark), C and I 
on, and all leads valid. If conditions are true, enter data phase. 

{ 
extern fast_event !ellar _eia_changed; 
extern const lJolatile unsigned short current_eio_leads; 

} 
LAYER: 1 

STATE: look_for _change_to_data_phase 
CONDITIONS: 
{ 
jellar_eio_changed && «(current_eia_leads & Ox5dd) =: Ox51d) 

} 
ACTIONS: 
{ 
enter _dataJhase(); 

} 

70-10 



'1 .. 

71 

71 X.25 Layer 2 Ubrary 

X.25 Layer 2 Library 

When the X.25 Layer 2 package is loaded in via the Layer Setup screen, the following 
external routines and variables become available for use by the programmer. Their use on 
the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at 
Layer 2. 

The variables and routines approximate X.2S Layer 2 spreadsheet-generated conditions and 
actions. Refer to Section 33 for more detailed explanations of the purposes of specific 
conditions and actions. Sometimes the name of the variable or routine is sufficient for 
identifying its related spreadsheet token. When this is not the case, the information is 
provided below. 

71.1 Structures 

The structure sendJrame_structure defines the format of transmitted X.2S frames. 
See Table 71-1. Use this structure to send frames via the sendJrame routine in 
emulate mode. See Section 71.3(B). Each variable in the structure relates to some 
softkey selection or user entry in the SEND action. 

71.2 Variables 

(A) Monitoring Events 

1. Emulate or monitor mode. X.2S Layer 2 events include frames detected, 
good or bad BCe's, and aborts. All event variables in Table 71-2 containing 
a dte_ or dce_ prefix are valid in either emulate or monitor mode. These 
event variables are dteJrame, deeJrame, dteJood_bee, deeJood_bee, 
dte_bad_bee, dee_bad_bee, dte_abort, dee_abort. The variable 
dce,...aood_bcc. for example, equates to DCE GDBCC. 

You can use both dte and dee variables relating to the same event in one 
conditions block, Suppose you want to count all bad BeC's from either side 
of the line. Enter the following CONDITIONS/ACTIONS block: 

CONDITIONS: 
{ 

dte_bad_oee II dee_bad_bee 
} 
ACTIONS: COUNTER bad_bee INC 

71-1 

____ " _____ ~i!'i_iA_W;\l_!III ~_. _~J_IiJIIl_ia ... ul .... J!IIIII .................. _ 



INTERVIE~ 7000 Series Advanced Programming: ATLC-107-951-10B 

Table 71-1 
X.2S Layer 2 Structures 

Type Variable Value (hex/decimal) Meaning 

Structure Name; send_frame_structure Structure of a frame In X.2S. Declared as type 
struct. Declared automatically If a 
softkey-entered SEND action Is taken. Program 
frames assigned to structure as foUows: struct 
send frame structure name. Reference a 
structure variable as· follows: name. bcc type. If 
values In the frame structure are not initialized by 
the user, they default to O. You may initialize the 
values when the structure Is declared: 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

ontrLbyte 

nr_value 

na_value 

o 
1 
2 

struct send frame structure name = {1. 1. 1. O. 
1.1.3, Oxf'l. 3, OJ; 

eommand 
response 
other 

(The codes for frame type are the same as for the X.25-varlab/e 
rcvdjrame_type.) -

o 
1 
2 
3 

o 
1 
2 
3 

o 
1 
2 

o 
1 
2 
3 

1 
3 

auto 
value 
reeeived ns plus 1 
last nr sent 

auto 
skip 
laat nr received 
value 

o 
1 
Ioopback 

default (bad bee) 
good bee 
bad boe 
abort 

to DeE 
to DTE 

(aotual value of the control byte) 

0-1 (MOD 8) 

0-7 (MOD 8) 

71-2 

H nr_type = 1 

H na_type = 3 



Type 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

71 X.25 Layer 2 Ubrary 

Table 71-2 
X.25 Layer 2 Variables 

Variable Value (hex/decimal} Meaning 

71-3 

True when a DTE frame is 
detected. Une Setup 
configured for emulate or 
monitor mode. 
True when a DeE frame Is 
detected. Line Setup 
configured for emulate or 
monitor mode. 
True when a good Bee Is 
calculated tor a DTE frame. 
Line Setup conflgured for 
emulate or monitor mode. 
True when a good BCe Is 
calculated for a DeE frame. 
Line Setup configured for 
emulate or monitor mode. 
True when a bad BeC Is 
caloulated for a DTE frame. 
Une Setup configured for 
emulate or monitor mode. 
True when a bad Bee Is 
calculated for a Dee frame. 
Line Setup configured for 
emulate or monitor mode. 
True when an abort Is detected 
for a DTE frame. Une Setup 
oonfigured for emulate or 
monitor mode. 
True when an abort Is detected 
for a DeE frame. Line Setup 
configured for emulate or 
monitor mode. 
True when a frame Is received. 
Une Setup configured for 
emulate mode only. 
True when an invalid frame Is 
detected. Line Setup 
configured for emulate mode 
only. 
True when the T1 timeout-timer 
has expired. Une Setup 
configured for emulate mode 
on1y. 

True when a Bee error Is 
detected. Une Setup 
oonfigured for emulate mode 
only. 
True when an N(R} error Is 
detected In a receiv.ed INFO or 
supervisory frame. Une Setup 
configured for emulate mode 
only. 
True when an N{S) error Is 
detected In a received INFO 
frame. LIne Setup oonf\gl.lred 
for emulate mode only. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Type 

extern· event 

extern volatile oonst unsigned char 

extern volatile oonst unsigned ohar 

extern volatile const unsigned char 

extern volatile const unSigned char 

extern volatile oonst unsigned char 

extern volatne oonst unsigned ohar 

extern volatile oonst unsigned char 

extern volatile oonst unsigned char 

extern volatlle oonst unsigned char 

extern volatile opnst unsigned ohar 

extern Yolatile canst un$lgned ohar 

Table 71·2 (continued) 

Variable 

frame_sent 

rcvd_frame_addr 

71-4 

Value (hex/decimal) Meaning 

1 
3 

True when frame Is passed 
down to Layer 1. Une SetuP 
configured for emulate mode 
only. 

to DCE 
to DTE 
Une Setup oonflgured for 
emulate or monitor mode. 

(same as rcvd frame type-Line Setup 
configured lor-emulate or monitor mode) 

(actual value of control byte-Line Setup 
configured for emu/ate or monitor mode) 

o pf=O 
10/16 pf",,1 

1 
2 
3 

1 
3 

o 
1 
5 
9 
d/13 
2f/47 
6f!111 
43/67 
f/15 
f/15 
63/99 
87/135 
ffl255 
ff1255 

Line Setup configured for 
emulate or monitor mode. 
good 
bad 
abort 

Line Setup oonflgured for 
emulate or monitor mode. 
to DCE 
to DTE 

Line Setup configured for 
emulate mode only. 
Info 
rr 
rnr 
rej 
srej 
sabm 
sabme 
disc 
dm 
sarm 
ua 
frmr 
other 
unknown 

Line Setup oonflgured for 
emulate mode only. 

(actual value of control byte-Line Setup 
configured for emulate mode only) 

o pf=O 
10/16 pf=1 

1 
2 
3 

0-7 (MOD 8) 

Line Setup oonfigured for 
emulate mode only. 
good 
bad 
abort 

Une Setup oonflgured tor 
emulate mode only. 
Une Setup configured for 
emulate mode only. 



Type 

extern volatile eonst unsigned char 

extern volatile unsigned short 

extern volatiie unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern unsigned char 

extern unsigned char 

71 X.25 Layer 2 Library 

Table 71-2 (continued) 

Variable 

12Jower _window_edge 

12_ upper _ window_edge 

12Jesend_ edge 

12_enhance 

71-5 

Value (hex/decimal) Meaning 

0-7 (MOD B) Une Setup configured for 
emulate mode only. 

o 
1 
4 
5 
8 
9 
12118 

o 
1 

Inter-layer message buffer 
number (actually, an IAPX-286 
segment number) In a received 
frame. This segment number 
can be converted to a pointer 
by shlttlng It left 16 bits. line 
Setup configured for emulate 
mode only. 

Offset to where the service data 
unit begins in an Inter-layer 
message buffer in a received 
frame. Add to buffer segment 
number (converted to pointer) 
to point to first byte In frame. 
Una Setup configured for 
emulate mode only. 

Size of service data unit in a 
received frame. Line Setup 
configured for emulate mode 
only. 

When equal to upper edge, 
window Is full; when equal to 
lower edge, window Is empty: 
when not equal to upper edge. 
window Is not full; and when not 
equal to lower edge, window Is 
not empty. Una Setup 
configured for emulate mode 
only. 

see 12_current_window _edge 

see 12_current_window_edge 

When resend edge Is not equal 
to lower window edge. there Is 
more to resend; when resend 
edge is equal to loWer window 
edge. there Is no more to 
resend. Line Setup configured 
for emulate mode only. 

normal 
reverse 
low 
reverse low 
blink 
reverse blink 
blink low 
Line Setup conflgured for 
emulate or monitor mode. 

off 
on 
Line Setup configured for 
emulate or monitor mode. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

Using spreadsheet tokens. the same test needs two CONDITIONS/ACTIONS 
blocks:-

CONDITIONS: OTe BDBCC 
ACTIONS: COUNTER bad_bee INC 
CONDITIONS: DCE BDBCC 
ACTIONS: COUNTER bad_bee INC 

When the user selects DTE or DCE on the first rack of softkeys for Layer 2 
conditions. a second rack appears from which he must select a particular 
frame type. A OTE INFO condition, for example, when translated. includes 
two C variables, one event variable and one status variable: 

dteJrame && (mJrame_type == 0) 
} 

As a C programmer, you do not need to specify a frame type. To include 
all frames in a condition. use the event variable only: 

CONDITIONS: 
{ 
dteJrame 

} 

2. Emulate mode only. Some events may be detected in emulate mode only. 
The event variables are rcvdJrame. invalidJrame. 12_Tl, bcc_error, 
nr_error, ns_error, and frame_sent. 

If you try to use one of these variables in monitor mode, you may be 
returned to the main program menu. When you go to the Protocol 
Spreadsheet and search for errors. a message like the following may be 
displayed: "Error 140: Unresolved reference rcvdJrame." 

When the user selects RCV on the first rack of softkeys for Layer 2 
conditions. a second rack appears from which he must select a particular 
frame type. When the translator converts a RCV INFO condition into C, it 
will include two C variables. one event variable and one status variable: 

rC'JdJrame && (rcvdJrame_type == 0) 
} 

The C programmer does not have to specify a frame type. To include aU 
received frames in a condition. use the event variable only: 

CONDITIONS: 
{ 
rClldJrame 

} 

Error detecting may be accomplished via bcc_error, nr _error. ns_error, and 
invaUdJrame. These variables equate to the softkey tokens bearing similar 
names. 

71-6 



~ 
F .. ·... I'" \' 

I 
71 X.25 Layer 2 Library 

One of the emulate-mode variables monitors an emulate action. The event 
variable frame _sent will come true as soon as the frame has been passed to 
the layer below. Note that if Layer 1 is an x: 21 protocol in call-setup 
phase. a frame that is "sent" at Layer 2 will stop at Layer 1 and will not be 
transmitted out onto the line. 

(8) Status Variables 

Status variables are those in Table 71-2 that do not include event in the Type 
column. Their associated event variables guarantee that they are updated and 
tested. 

The softkey-generated condition for received Info frames is RCV INFO. The C 
version of the same condition should look like this: 

CONDITIONS: 
{ 
rcvdJramt && (rcvdJrameJJpe "': 0) 

} 

1. Frame characteristics. All status variables in Table 71·2 containing an m_ 
prefix are valid in either emulate or monitor mode: mJrame_addr, 
mJrame_type. mJrame_cntrCbyte_l, mJrameJJf. and mJrame_bcc_type. 
Use these variables to monitor a particular address, frame type, control byte, 
PlF value. or BCC. 

All status variables in Table 71-2 containing a rcvd _ prefix are valid in 
emulate mode only: rcvdJrame_addr, rcvdJrame_type. 
rcvdJrame_cntrl_byte_l, rcvdJrame_bcc_type, rcvdJrameJJf, 
rcvdJrame_nr, and rcvdJrame_ns. Use thes~ variables to monitor a 
particular address. frame type, control byte, BCC, or P/F, N(R), or N(S) 
value. 

If you try to use an emulate-mode variable in monitor mode, you may be 
returned to the main program menu. When you go to the Protocol 
~preadsheet and search for errors. a message like the following may be 
displayed: "Error 140: Unresolved reference rcvdJramejype." 

2. Frame buffers. As BOP frames are received. they are automatically placed 
in IL message buffers to be passed up the layers. Three emulate-mode 
variables provide the user with access to the information in the frame that is 
located beyond the control byte. These variables are rcvdJrame_bufLseg, 
rcvdJrame_sdu_offset• and rcvdJrame_sdujize. See Section 63.1 for a 
more detailed discussion of the buffer components to which these variables 
refer. 

71-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Make a pointer to an IL buffer by casting rcvdJrame_buff_seg as a long, 
shifting it left sixteen bits. adding rcvdJrame_sdu_offset. and casting the 
result to a pointer. Increment the pointer twice (thereby adding two to the 
offset). 

unsigned char • ptr; 
ptr = (lIoid *)(((/ong)rcvdJrame_buff_,eg« 16) + rcvdJrame_sdu_offset); 
ptr+=2: 

} 

It is now pointing at the first byte in the X.2S Layer 3 header. You may 
continue to move through the frame for its entire length. indicated in 
rcvd Jrame _sdu_size. 

3. Transmit window. Four related variables test the status of the Layer 2 
window. The particular values of these variables at any given time is not 
significant. What is significant is how they compare to each other. The 
softkey status condition on the left makes the variable comparison on the 
right: 

WINDOW FUll 

WINDOW EMPTY 

WINDOW NOT_FULL 

WINDOW NOT_EMPTY 

MORE_TO_RESEND 

NO_MORE_TO_RESEND 

12_current_window_,dg, == 12_upper_window_edg, 

12_current_wlndow _,dg, == 12_'ower _window _,dge 

12_cu",nt_wlndow _edge 1= 12_upper _window_edge 

12_cu",nt_window_,dg, 1= '2_'ower_window_edge 

12Jesend_,dge /= 12_'ower _window_edge 

12JIS,nd_,dg. == 12_1ower_window_edge 

(C) Controlling Protocol Trace Display 

To enhance or suppress particular frames on the Layer 2 Protocol Trace screen 
in emulate or monitor mode, assign a coded value to 12_enhance· or 12_suppress. 
The values are listed in Table 71-2. To assign a value to either of these 
variables, place the statement in an AcnONS block. For example. display RNR 
frames in reverse-video and suppress display of invalid frames: 

CONDITIONS: RCV RNR 
ACTIONS: 
{ 
12_,nhanCl = 1; 

} 
CONDITIONS: RCV INVAUD 
ACTIONS: 
{ 
12_,upprlS' = 1; 

} 

71-8 



71.3 

~. 
~ i , 

71 X.25 Layer 2 Library 

Check the value of these display-control variables in a CONDITIONS block 

CONDITIONS: RCV INFO 
{ 
12_enhance =: 1 

} 
ACTIONS: 
{ 
12_enhance '" 0; 

} 

or an ACTIONS block: 

CONDITIONS: RCV INFO 
ACTIONS: 
{ 
if(12_enhance == 1) 

12_enhance = 0; 

Routines 

Use the following routines in emulate mode only. If you try to call one of these 
routines in monitor mode, you may be returned to the main program menu. When 
you go to the Protocol Spreadsheet and search for errors. a message like the 
following may be displayed: "Error 140: Unresolved reference 12Jive_data." 

(A) Receive 

12 _give_data 

Synopsis 

Description 

The 12Jive_data routine takes an interlayer message buffer associated with a 
received INFO frame, changes the SDU offset to point to higher-level data. and 
sends a DL_DATA IND primitive up to Layer 3 along with a reference to this 
buffer. The softkey equivalent of this routine is the GV _DATA action on the 
Protocol Spreadsheet. 

Example 

Layer 3 wants access to the line in order to receive and send data. Assuming 
X.2S personality packages are loaded at Layers 2 and 3. enter the fan owing 
program: 

71-9 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

LAYER: 2 
ST ATE: datalink 

CONDITIONS: DL_ CONNECT REO 
ACTIONS: DL_CONNECT CONF 
CONDITIONS: DL_DATA REO 
ACTIONS: SEND INFO M(DL_DATA))' 
CONDITIONS: RCV INFO 
ACTIONS: 
{ 
12Jive_data(); 

} 

(8) Transmit 

resend_frame 

SynQPsis 

extern void resendJrame(pf. first_or_next); 
unsigned char pf; 
unsigned char first_or _next; 

Description 

The resendJrame routine will set the P/F bit to a specified value and resend 
either the first or next frame in the window. The softkey equivalent of this 
routine is the (PROTOCL) RESEND action on the Protocol Spreadsheet. 

The first parameter is the value of the P/F bit in the frame. It may be set to 
either 0, 1. or 2 (for loopback). 

The second parameter indicates whether the first frame in the window will be 
sent, or whether the next frame in the window will be sent. The first res end 
action will send the first frame in the window regardless of whether first or next 
has been selected. Legal entries are 0 (first) or 1 (next). 

Example 

Suppose you want to resend the entire transmit window if you receive a REJ 
frame. 

LAYER: 2 
STATE: xfer '* Whatever conditions and actions send data precede the following condition. * l 

CONDITIONS: RCV REJ RESP 
ACTIONS: 
{ 
resendJrame(l,O); 

} 
NEXT _ STATE: recover 

71-10 



i~\ 
I 

r~ 
I 

STATE: recover 
CONDITIONS: FRAME_SENT 

MORE_TO_RESEND 
ACTIONS: 
{ 
resend Jrame (] ,1); 

} 
CONDITIONS: FRAME_SENT 

NO_MORE_TO_RESEND 
NEXT _ STATE: xfer 

Synopsis 

extern ~Qjd reset_nr(); 

71 X.25 Layer 2 Library 

This routine resets the N(R) field in information and supervisory frames to zero. 
The softkey equivalent of this routine is the (PROTOCL) RSET _NR action on the 
Protocol Spreadsheet. 

Example 

When a link is established, reset N (R) . 

LAVER: 2 
ST A TE: reset 

CONDITIONS: ENTER_STATE 
ACTIONS: SEND SABM 
CONDITIONS: RCV UA 
ACTIONS: 
{ 
reset_l'IrO; 

} 

SynQpsis 

extern void reset_nsf}; 

The N(S) field in information and supervisory frames is reset to zero and the 
transmit window is cleared. The sonkey equivalent of this routine is the 
(PROTOCL) RSET _NS action on the Protocol Spreadsheet. 

71-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

Example 

When a link is established, reset N(S). 

LAYER: 2 
STATE: reset 

CONDITIONS: ENTER_STATE 
ACTIONS: SEND SABM 
CONDITIONS: RCV UA 
ACTIONS: 
{ 
reset_ns() ; 

} 

Syno.psis 

extern \loid send Jrame(il_ buffer_number, relay _baton, data _start_offset. transmit Jrame "ptr); 
unsigned short ii_buffer _number; 
unsigned short relay_baton; 
unsigned short data_start_offset; 
struct send Jrame _structure 
{ 
unsigned char addr _type; 
unsigned char frame_type; 
unsigned char nT_type; 
unsigned char ns_type; 
unsigned char pJ_type; 
unsigned char bcc_type; 
unsigned char addr _value; 
unsigned char cntrl_byte; 
unsigned char nT _lIalue; 
unsigned char nS_lIalue; 

}; 
struct sendJrame_structure • transmitJrame"ptr; 

Description 

The sendJrame routine adds a frame-level header to an interlayer message 
buffer and passes the buffer to Layer 1. The softkey equivalent of this routine is 
the SEND action on the Protocol Spreadsheet. 

The first parameter is the interlayer message buffer number. See Section 
63.3(A), Layer-Independent OS1 routines. 

The second parameter is the maintain bit used to hold the buffer while the send 
operation is being performed. See Section 63.3(A). 

The third parameter is the offset from the beginning of the buffer to the start of 
the service data unit. See Section 63.3(A). 

71-12 



11\ 
: 

n\ 
I 

#~ 
I 

71 X.25 Layer 2 Library 

The founh parameter is a pointer to the frame structure to be sent. For a 
description of sendJrame_structure, see Table 71-1. 

Example 

Send an Info frame containing a canned fox message and a good Bee onto the 
line. 

{ 
static unsigned short ii_buffer _number; 
static unsigned short relay_baton; 
static unsigned short data_start_offset; 
struct send Jrame _structure 

} 

{ 
unsigned char addr_type; 
unsigned char frame_type; 
unsigned char nr_type; 
unsigned char ns_type; 
unsigned char pJ_type; 
unsigned char bcc_type; 
unsigned char addr _wIlue .. 
unsigned char cntrl_byte; 
unsigned char nr _value; 
unsigned char ns_value; 

}; 
struct sendJrame_structure transmitJrame; 
static char transmit_srring [] :: "((FOX)) "; 

LAYER: 2 
STATE: send_a_frame 

CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 
Jet_il_msLbuff(&il_buffer_number, &relay_baton); 
_start _il_bufLlist(il_buffer _number. &data_ start_offset); 
transmitJrame. bcc_type = 1; 
_insert _il_bufLlist _cnt (ii_buffer _number, data jtart _offset, &transmit _string/O i. 

(sizeof(transmit_string) - 1)}; 
sendJrame(il_buffer _number, relay_baton, data_start_offset, &transmitJrame); 

} 

71-13 

__ ~ __________ w_, __ ... _,_. __ ._._. _____ ______ 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

71-14 



72 X.25 Layer 3 Library " 

72 X.25 Layer 3 Library 

When the X.25 Layer 3 package is loaded in via the Layer Setup screen, the following 
external routines and variables become available for use by the programmer. Their use on 
the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at 
Layer 3. 

The variables and routines approximate X.25 Layer 3 spreadsheet-generated conditions and 
actions. Refer to Section 34 for more detailed explanations of the purposes of specific 
conditions and actions. Sometimes the name of the variable or routine is sufficient for 
identifying its related spreadsheet token. When this is not the case, the information is 
provided below. 

72.1 Structures 

The sendyacket_structure defines the format of transmitted X.2S packets. See 
Table 72-1. Use this structure to send packets via the sendyacket routine in 
emulate mode. See Section 72.3(B). Each variable in the structure relates to some 
softkey selection or user entry in the SEND action. 

72.2 Variables 

(A) Monitoring Events 

1. Emulate or monitor mode. Two X.2S Layer 3 event variables are valid in 
either emulate or monitor mode. These event variables are dteyacket and 
dee yacket. 

When the user selects DTE or DeE on the first rack of softkeys for Layer 3 
conditions, a second rack appears from which he must select a particular 
packet type. A OTE DATA condition. for example. when translated, includes 

. two C variables, one event variable and one status variable: 

{ 
dteytZcket &:& (mytZcket_type == 0) 

} 

72-1 

.-----~.-----,----~,-, --------



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table 72-1 
X.2S Layer 3 Structures 

Type Variable Value (hex/decimal) Meaning 

Structure Name; send_packet_structure Structure of a packet In X. 25. Declared .. type 
struct. Declared automatically If a 
softkey-entered SEND action Is taken. Program 
packets assigned to structure as follows: struct 
send-packet_structure name. Reference a 
structure variable as follows: name.CLblt. If 
values In the frame structure are not initialized by 
the u88r. they default to O. You may initialize the 
values when the structure Is declared: 

unsigned char path_num 

unsigned char packet_type 

unsigned char packet_type _byte 

unsigned char m_blt 

unsigned char d_blt 

unsigned char CLblt 

unsigned char pr_type 

unsigned char 

unsigned char pr value 

unsigned char ps value 

unsigned char cause 

unsigned char d1ag_flag 

unsigned char dlag 

unsigned char spare 

unsigned char facllltiftJen 

char * faclltles 

unsigned short dataJen 

char • data 

0-8 
le/254 

struct send_packet_structure name = {2. Ox13. 
Ox13. O. O. O. 1. O. O. O. 1. 1. O. O. 2. 
&laclllt/es_strlng[O]. O. OJ; 

path number 
use path number of last received packet 

(The codes for packe,-type are the same as for the X.25-varlab/e 
m..packeUype. ) 

(actual value of the packet type byte) 

o m =0 
1 m = 1 

o d=O 
40/64 d = 1 

o 
80/128 

o 
1 
2 
3 

o 
1 
2 
3 

0-7 (MOD 8) 

0-7 (MOD 8) 

q=O 
q=1 
auto 
value 
received ps plus 1 
last pr sent 

auto 
skip 
received pr 
value 

If pr_type = 1 

If ps_type = 3 . 

(value of cause byte-see Figure 36-15) 

o diagnostic field not present 
1 diagnostic field Is present 

(value of diagnostiC byte-consult CCITT Recommendation X.25, 
pp.237-8) 

o 
O-fflO-255 

72-2 

reserved s~e 

length of the (.olllties field 

pointer to the ~tlon of the facilities field-the 
facilities field Is declared separately 

reserved for future use 

reserved for future use 



Type 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern volatile unsigned shor;t 

extern volatile unsigned char 

extern volatite canst unsigned char 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile const unlilign~d char 

extern volatile canst unsigned char 

72 X .. 25 Layer 3 Ubrary 

Table 72 .. 2 
X.2S Layer 3 Variables 

Variable 

rcvd..packet 

invalid _paoket 

72-3 

Value (hex/decimal) Meaning 

True when a OTE packet Is 
detected. Line Setup 
configured for emulate or 
monitor mode. 

True when a DeE packet Is 
detected. Line setup 
oonfigured for emulate or 
monitor mode. 

True when a packet Is received 
from Layer 2. Line Setup 
configured for emulate mode 
only. 

True when an Invalid packet Is 
detected. Une Setup 
configured for emulate mode 
only. 

True when an PtR) error is 
detected In a data or 
supervisory packet. Line Setup 
configured for emulate mode 
only. 

True when an P(S) error Is 
detected In a data packet. Line 
Setup configured for emulate 
mode only. 

True when a packet has been 
passed down to Layer 2. Line 
Setup configured for emulate 
mode only. 

O-fffI0-4095 LQgicai channel number. Line 
Setup configured for emulate or 
monitor mode. 

0-flO-15 LOgical channel group number. 
LIne Setup configured for 
emulate or monitor mOde. 

o q=O 
80/128 q=1 

Une Setup configured for 
emulate or monitor mode. 

o d;:O 
40/64 d=l 

Une Setup configured for 
emulate or monitor mode. 

o m=O 
10/16 m=1 

Line Setup configured for 
emulate or monitor mode. 

0-7 (MOD 8) line Setup configured for 
emulate or monitor mode. 

0-7 (MOD 8) Line Setup configured for 
emulate or monitor mode. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Type 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatne const unsigned char 

extern volatlte unsigned short 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern vOlatHe const unsigned char 

extern volatile canst unsigned char 

extern volatile const unsigned char 

extern volatile canst unsigned char 

extern volatile const unsigned char 

Table 72 .. 2 (continued) 

Variable 

72-4 

Value (hex/decimal) Meaning 

(same as rovdykt_oause-Llne Setup 
configured for emulate or monitor mode) 

(same as rcvdykt_diagn-Llne Setup 
configured for emulate or monitor mode) 

(actual value of packet type byte-Line Setup 
configured for emulate or monitor mode) 

b/11 call 
f/15 call acc 
13/19 clear 
17/23 olear conf 
o data 
23/35 lnt 
27/39 Int oonf 
1 rr 
5 mr 
9 rej 
1b/27 reset 
H/31 reset oonf 
fb/2S1 restart 
ff!255 restart cont 
f11241 diag 
f3/243 reg 
171247 reg cont 
11/17 other pkt 
11 ! 17 unknown pkt 

O-ffflO-4095 

o 
80/128 

o 
40/64 

o 
10/16 

Line Setup oonfigured for 
emulate or monitor mode. 

Logical channel number In a 
received packet. Line Setup 
configured for emulate mode 
only. 

q=O 
q=1 
Une Setup configured for 
emUlate mode only. 

d=O 
d=1 
Une Setup configured for 
emulate mode only. 

m=O 
m=1 
Line Setup configured for 
emulate mode only. 

0-7 (MOD 8) Une Setup configured for 
emulate mode only. 

0-7 (MOD 8) Line Setup configured for 
emulate mode only. 

(see Figure 36-15-Llne Setup configured for 
emulate mode only) 

(consult CCITT Recommendation X.25, 
pp.237-8-Une Setup configured for emulate 
mode only) 



~. 
f ! 

Type 

extern volatUe oonst unsigned, char 

extern volatile const unsigned char 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern voiatHe unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

72 X.25 Layer 3 Library 

Table 72·2 (continued) 

Variable 

m_packeUnfo _ seg 

m_packet_sdu _offset 

m yacketJnfo _offset 

72-5 

Value (hex/decimal) Meaning 

(actual value of packet type byte-Line Setup 
configured for emulate mode onfy) 

b/11 
fIlS 
13/19 
17123 
o 
23/35 
27/39 
1 
5 
9 
1b/27 
1fI31 
fb/251 
ff/255 
f1/241 
f3/243 
17/247 
11117 
11/17 

call 
call ace 
clear 
olear oonf 
data 
Int 
Int cenf 
rr 
rnr 
reJ 
reset 
reset cont 
restart 
restart cont 
diag 
reg 
reg cont 
other pkt 
unknown pkt 

Une Setup configured for 
emulate mode only. 

Inter-layer message buffer 
number (actually, an IAPX-286 
segment number). This 
segment number can be 
converted to a pointer by 
shifting It left 16 bits. Une 
Setup oonflgured for emulate or 
monitor mode. 

Same as myacket_buff_seg. 

Offset to where the service data 
unit begins In an Inter-layer 
mesHge buffer. Add to 
mykt_buff_s8g (converted to 
pointer) to point to first 
packet-header byte. Line Setup 
configured for emulate or 
monitor mode. 

Offset to where the packet 
Information begins, excluding 
the header. Add to 
mykt_buff_seg (converted to 
pointer) to point to paoket data. 
Une Setup oonflgured for 
emulate or monitor mode. 

Length of the packet, Including 
header. Une Setup configured 
for emulate or mo\'lltor mode. 

Length of the packet 
Information, excluding the 
header. Line Setup configured 
for emulate or monitor mode. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Table 72-2 (continued) 

Type Variable Value (hex/decimal) Meaning 

extern volatile unsigned short 

extern volatile unsigned short 

extern unsigned short 

extern volatile unsigned short 

extern unsigned short 

extern volatile unsigned short 

extern volatile unsigned char .. 

extern volatile unsigned char .. 

extern volatile unsigned char • 

extern volatile unsigned ohar • 

rcvd_pkt-,nfo_seg 

rcvd _pkt_ sdu _offset 

72-6 

Inter-layer message Duffer 
number (aotually. an IAPX-286 
segment number) In a received 
paoket. This segment number 
oan be oonverted to a pointer 
by shifting it left 16 bits. Une 
Setup oonfigured for emulate 
mode only. 

Same as rcvd_pkt_buff_seg. 

Offset to where the servloe data 
unit begins In an Inter-layer 
message buffer in a paoket 
received. Add to 
rcvd ykt _buff _ seg (oonverted to 
pointer) to point to first 
packet-header byte. Une Setup 
configured for emulate mode 
only. 

Offset to where the paoket 
Information begins, exoludlng 
the header. Add to 
rcvdykCbuff_seg (oonverted to 
pointer) to point to paoket data. 
Line Setup oonflgured for 
emulate mode only. 

Length of a reoeived packet, 
including header information. 
Line Setup configured for 
emulate mode only. 

Length of the information In a 
received packet, excluding the 
header. Line Setup configured 
for emulate mode only. 

Pointer to the packet, beginning 
at the first byte in the header. 
Une Setup oonflgured for 
emulate or monitor mode. 

Pointer to the information in a 
packet. Initially points to the 
byte Immediately following the 
packet-type byte. Une Setup 
configured for emulate or 
monitor mode. 

Pointer to the packet, beginning 
at the first byte In the header. 
Une Setup configured for 
emulate mode only. 

Pointer to the packet 
Information, Initially loeated at 
the byte immediately following 
the packet header. Une Setup 
configured tor emulate mode 
only. 



~. 
(' I' 

! 

72 X.25 Layar 3 Library 

Table 72·2 (continued) 

Type Variable Value (hex/decimal) Meaning 

extern volatile const unsigned char Path number oonnecting 
reoeived packet to partioular 
LCN and particular set of oali 
parameters on the X.2S Packet 
Level Setup screen. Line Setup 
configured for emulate mode 
only. 

extern unsigned char 

extern unsigned ohar 13..;suppress 

o 
1 
4 
5 
8 
9 
12/18 

o 
1 

.normal 
reverse 
low 
reverse low 
blink 
reverse blink 
blink low 
Line Setup oonflgured for 
emulate or monitor mode. 

off 
on 
Une Setup configured for 
emulate or monitor mode. 

A C programmer does not have to specify a packet type. To include all 
packets in a condition. use the event variable only: 

CONDITIONS: 
{ 
dttJtZcktt 

} 

2. Emulate mode only. Some events may be detected in emulate mode only. 
These are rcvdyacket, invalldyacket, pr_error, ps_error, and packet_sent. 

If you try to use one of these variables in monitor mode, you may be 
returned to the main program menu. When you go to the Protocol 
Spreadsheet and search for errors, a message like the following may be 
displayed: "Error 140: Unresolved reference rcvd yacket. " 

When the user selectsRCV on the first rack of softkeys for Layer 3 
conditions, a second rack appears from which he must select a particular 
packet type. When the translator converts a ReV DATA condition into C. it 
will include two C variables, one event variable and one status variable: 

{ 
rClIdJocket &&(rcvdJocIceLtype == 0) 

) 

As a C programmer, you do not have to specify a packet type. To include 
all received packets in a condition, use the event variable only: 

CONDITIONS: 
{ 
rcvd Jocket 

} 

72-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Error detecting may be accomplished via pr _error. ps_error, and 
invalid ....Packet. These variables equate to the softkey tokens bearing similar 
names. 

One of the emulate-mode variables monitors an emulate action. "SEND"ing 
a packet means queuing a packet to be passed down to Layer 2. If the 
Layer 2 link is not established. for example, the packet will be held at Layer 
3 pending link establishment. The event variable packet3ent will not come 
true until the packet actually has been passed to the layer below. Use this 
condition to start accurate response-time measurements at the packet level 
rather than at the line level. 

(8) Status Variables 
Status variables are those in Table 72-2 that do not include event in the Type 
column. Their associated event variables guarantee that they are updated and 
tested. 

The softkey-generated condition for received Data packets is RCV DATA. The C 
version of the same condition should look like this: 

CONDITIONS: 
{ 
rC'IIdJQcket && (rClldJQcket_t'Jpe == OJ 

} 

1. Packet characteristics. All status variables in Table 72-2 containing an m_ 
prefix are valid in either emulate or monitor mode: m....packet_lcn, 
m....packet_lcnJrp, myacket_q, m""packet_d, m....packet_m, m....Packetyr. 
m....packetys, myacket3ause, myacket_diag_code, myacket_type, and 
m""packet_type _byte. 

All status variables in Table 72-2 containing a rcvd_ prefix are valid in 
emulate mode only: rcvdykt_Jcn, rcvdykt_q, rcvd""pkt_d, rcvd....Pkt_m. 
rcvd""pktyr, rcvd""pktys, rcvdykt_cause, rcvd""pkt_diagn, rcvdykt_type, 
and rcvd....Pkt_type_byte. 

If you try to use an emulate-mode variable in monitor mode. you may be 
returned to the main program menu. When you go to the Protocol 
Spreadsheet and search for errors, a message like the following may be 
displayed: "Error 140: Unresolved reference rcvd....Packet_type." 

2. Packet buffers. Packets are passed up to Layer 3 from Layer 2 in IL 
message buffers. Several variables provide the user with access to the 
information in the packet that is located beyond the packet-type byte. 
These variables are rcvdykt_bufLseg, m""packet_buff_seg, 
rcvdyktjdu_of!set, m....packet_sdu_of!set, rcvd""pkt_length, and 
myacket_Iength. See Section 63.1 for a more detailed discussion of the 
buffer components to which these variables refer. 

3. Pointers. Two variables. rcvd""pkt_info""ptr and m....packet_inf0....ptr, point to 
the first byte beyond the packet header. You may move these pointers to 

72-8 



~ 
~. I . 

I 

72 X.25 Layer 3 Ubrary 

access data throughout the length of the packet. The length is indicated by 
rcvd"pkt_info _length (or m"packet_info _length). 

4. Path. An IL buffer that is sent down the layers or received up the layers is 
provided with a "path" number that ties it. at X.2S Layer 3, to a particular 
LCN as well as to a particular set of Call Request parameters on the X.2S 
Packet Level Setup screen. 

When a call request is sent or received by the I1",j'TERVIEW, the caU 
parameters are correlated to the Packet Level Setup screen. If the 
INTERVIEW sends a call request that specifies a path number, or if the 
INTERVIEW receives a call request that matches one of the path entries on 
the setup screen, the LCN of the call request is tied to the path number 
(path #3, for example), and any subsequent packets with the same LCN will 
satisfy rcvd_devict"path = S conditions. 

(C) ControlUng Protocol Trace Display 

To enhance or suppress particular packets on the Layer:; Protocol Trace screen 
in emulate or monitor mode, assign a coded value to IS_enhance or 13Juppress. 
The values are listed in Table 72-2. To assign a value to either of these 
variables, place the statement in an ACTIONS block. For example. display RNR 
packets in reverse-video and suppress display of invalid packets: 

CONDITIONS: RCV RNR 
ACTIONS: 
{ 
13 _enhance == J; 

} 
CONDITIONS: RCV INVALID 
ACTIONS: 
{ 
13 _suppress :: 1: 

} 

Check the value of these display-control variables in a CONDITIONS block 

CONDITIONS: RCV DATA 
{ 
13_enhance == 1 

} 
ACTIONS: 
{ 
l3 enhance = 0; 

} -
or an ACTIONS block: 

CONDITIONS: Rev DATA 
ACtiONS: 
{ 

} 

if(13_enhance == 1) 
13 _enhance == 0; 

72-9 



INTERVIEW 7000 Series Advanced Proarammlna: ATLC-107-951-10B 

72.3 Routines 
Use the following routines in emulate mode only. If you try to call one of these 
routines in monitor mode, you may be returned to the main program menu. When 
you go to the Protocol Spreadsheet and search for errors, a message like the 
following may be displayed: "Error 140: Unresolved reference 13.Jive_data." 

(A) Receive 

13 _give_data 

Synopsis 

extern \loid 13Jf\l,_data(): 

Description 

The 13.Jive_data routine takes an interlayer message buffer associated with a 
received data packet, chanaes the SOU offset to point to higher-level data. and 
sends an N_DATA IND primitive up to Layer 4 along with a reference to this 
buffer. The softkey equivalent of this routine is the GV_DATA action on the 
Protocol Spreadsheet. 

Example 

Layer 4 wants access to the line in order to receive and send data. Assuming 
X.2S personality packages are loaded at Layers :2 and 3. enter the following 
program: 

LAVER: 2 
STATE: dataUnk 

CONDITIONS: DL_CONNECT REO 
ACTIONS: DL_CONNECT CONF 
CONDITIONS: DL_DATA REO 
ACTIONS: SEND INFO "CCDL_DATA»· 
CONDITIONS: RCV INFO 
ACTIONS: GIVE_DATA 

LAVER: 3 
STATE: pass data up 

CONDITIONS: N_CONNECT REO 
ACTIONS: SEND CALL 
CONDITIONS: RCV CALL_CONF 
ACTIONS: N_CONNECT IND 
CONDITIONS: N_DATA REO 
ACTIONS: SEND DATA °CCN_DATA»· 
CONDITIONS: Rev DATA 
ACTIONS: 
{ 
13Ji\l,_data(): 

} 
LAVER: 4 

STATE: establish_link 
CONDITIONS: ENTER.-STATE 
ACTIONS: N_CONNECT REO 

72-10 



(8) Transmit 

13 clear path - -
Synopsis 

extern void 13 _clear "'path (path_number); 
unsigned char path_number; 

Description 

72 X .25 Layer 3 Library 

The i3_clear "path routine resets P(R)- and P(S)-related variables. clears the 
transmit window, and resets the LeN and address fields to void (unless 
permanently assigned on the Layer 3 X.2S Packet Level Setup screen) on a 
designated path. 

The only parameter is the path number which is to be cleared. The value may 
be 0 - 8, or Oxfe if you want the path number to be that of the last received 
packet. 

Example 

When a Clear packet is received, clear the path. 

LAYER: 3 
ST ATE: clearing 

CONDITIONS: RCV CLEAR 
ACTIONS: SEND CLEAFLCONF 
{ 
l3_cleor ...poth(Oxje); 

} 

Synopsis 

extern unsigned char 13_more_to_resend(path_number); 
unsigned thar path_number; 

De§Crjptioo 

The 13 more_to Jesend routine determines whether or not there are any more 
packets in the transmit window to resend. It is used in combination with a 
transitional condition such as packecsent as a condition on the Protocol 
Spreadsheet. The softkey equivalent is PACKET_SENT MORE_TO_RESEND or 
PACKET_SENT NO_MORE_TO_RESEND. 

72-11 

_,,_, ____ ~ ___ ~_. __ m_. ___ n_. ________ _ 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

The only parameter is the path number associated with the transmit window. 
The value may be 0 - 8. or Oxfe if you want the path number to be that of the 
last received packet. 

Returns 

If there is more to resend, the returned value is non-zero. If there is no more 
to resend, or if the given path is invalid, the returned value is O. 

Example 

In this example, the entire transmit window will be resent. 

{ 
extern ellent packet_sent: 

} 
LAYER: 3 

STATE: xfer '* Whatever conditions and actions send data precede the following condition. *' 
CONDITIONS: RCV REJ 
ACTIONS: RESEND _FIRST 
NEXT _ STATE: recover 

STATE: recover 
CONDITIONS: ENTER_STATE 
{ 
packet~sent 4ul(13_more_to_resend(Ox/e) /= 0) 

} 
ACTIONS: RESEND_NEXT 
CONDITIONS: 
{ 
packet_sent 4ul(13_more_to_Tesend(Oxfe) == 0) 

} 
NEXT_STATE: xfer 

Synqpsis 

extern unsigned char 13_windowJull(path_number): 
unsigned char path_number; 

DescriPtion 

This routine determines whether the Layer 3 window for a specified path is full 
or not full. . When the window is full. no additional packets will be buffered until 
some acknowledgment is received. It is used in combination with a transitional 
eondition·such as ,eceiveyaclcet as a condition on the ·Firotocol Spreadsheet, 
The softkey equivalent is RCV RR (PROTOCL) WINDOW NOT _FULL or RCV RR 

(PROTOCL) WINDOW FULL. 

72-12 



72 X .25 Layer 3 Ubrary 

The only parameter is the path number whose window is to be checked. The 
value may be 0 - 8, or Oxfe if you want the path number to be that of the last 
received packet. 

Returns 

If the window is full, or if the given path is invalid, the returned value is 
non-zero. If the window is not full. the returned value is O. 

Example 

Transmit data packets until the transmit window is fulL 

{ 
extern event packet_unt; 

} 

LAYER: 3 
STATE: check_~ndow 

CONDITIONS: 
{ 
packet_sent && (IJ_windowJull(Oxje) /= 0) 

} 
ACTIONS: SEND DATA "((FOX))" 

Syn<wsis 

extern unsigned char 13_wil1dow _empty(path_l'Iumberj; 
unsigned char path_number; 

This routine determines whether the Layer 3 window for a specified path is 
empty or not empty. It is used in combination with a transitional condition such 
as receive yacket as a condition on the Protocol Spreadsheet. The softkey 
equivalent is RCV RR (PROTOCL) WINDOW NOT_EMPTY or RCV RR (PROTOCLl 

WINDOW EMPTY • 

. The only parameter is the path number whose window is to be checked. The 
value may be 0 - 8, or Oxfe if you want the path number to be that of the last 
received packet. 

Returns 

If the window is empty, or if the given path is invalid. the returned value is 
non-zero. If the window is not empty, the returned value is O. 

72-13 



INTERVIEW 701)0 Series Advanced Programmina: ATLC-107-9S1-10B 

Example 

If a timeout expires and the transmit window is not empty, resend the first 
packet in the window. 

{ 

} 

extern event timeout_ack_expired; 
extern event rcvd"'packet; 

LAYER: S 
STATE: check_window 

CONDITIONS : PACKET_SENT 
ACTIONS: TIMEOUT ack RESTART 
CONDITIONS: 
{ 
rcvd...pQcket 

} 
ACTIONS: TIMEOUT ack STOP 
CONDITIONS: 
{ 
timeout_Qck_expired && 03_window _empty (Oxfe) /= OJ 

} 
ACTIONS: RESEND FIRST 

resend _packet 

Synopsjs 

extern void resend...pQcket(path_number, first_or_next); 
unsigned char path_number; 
unsigned char first_or_next; 

Description 

The resendyacket routine will resend either the first or next packet in the 
window along a specified path. The softkey equivalent of this routine is the 
RESEND action on the Protocol Spreadsheet. 

The first parameter is the value of the path on which to resend the packet. It 
may be 0 - 8, or Oxfe for the path of the last received packet. 

The second parameter indicates whether the first packet in the window will be 
sent, or whether the next packet in the window will be sent. The first resend 
action will send the first packet in the window regardless of whether first or next 
has been selected. Legal entries are 0 (first) or 1 (next). 

Example 

Suppose you want to resend the entire transmit window if you receive a REJ 
packet. In this example. it's being sent along the path of the last received 
packet. 

72-14 



~, 
, , 

f 

72 X.25 Layer 3 Library 

LAYER: 3 
ST A TE':-<der 

/* Whatever conditions and actions send data precede the following condition. • I 

CONDITIONS: RCV REJ 
ACTIONS: 
{ 
Tesend"'packet(Ox/e, 0); 

} 
NEXT _ ST ATE: recover 

STATE: recover 
CONDITIONS: PACKET_SENT 

MORE_TO_RESEND 
ACTIONS: 
{ 
Tesend "'packet (Ox/e. 1 ); 

} 
CONDITIONS: PACKET SENT 

NO_MORE_TO_R{SEND 
NEXT_STATE: xfer 

Syno.psis 

extern void reset"'pr...ps(path_numbeT); 
unsigned chaT path_number; 

pe&kriptiOD 

The P(R) and P(S) fields in data and supervisory packets are reset to zero. The 
transmit window is also cleared. The softkey equivalent of this routine is -the 
(PROTOCL) RSTPRPS action on the Protocol Spreadsheet. 

The only parameter is the path number on which P(R) and P(S) are to be reset. 
The value may be 0 - 8, or OxIe if you want the path number to be that of the 
last received packet. 

Example 

In this example, P(R) and P(S) are reset on path 2 whenever a Reset packet is 
received. 

LAYER: 3 
STATE: reset 

CONDITIONS: RCV RESET 
ACTIONS: 
{ 
reset Jr JS (2) ; 

} 

72-15 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951 108 

send_packet 

SynQPsis 

extern void send yacket (ii_buffer _ num ber, relay_baton, data _start_offset. 
transmit yacket ytT); 

unsigned short il_buffer _number; 
unsigned short relay_baton; 
unsigned short data_start_offset; 

struct sendyacket_structure 
{ 
unsigned char path_num; 
unsigned char packet_type; 
unsigned char packet_Type_byte; 
unsigned char m_bit; 
unsigned char dj)it; 
unsigned char q_bit; 
unsigned char pr _type; 
unsigned char ps_type; 
unsigned char pr _value; 
unsigned char pS_lIalue; 
unsigned char cause; 
unsigned char diagJlag 
unsigned char diag; 
unsigned char cntrl_byte; 
unsigned char facilities_len; 
char" facilities; 
unsigned short data_len; 
char" data; 

}; 
struct sendyacket_structure .. tra:nsmityacket"ptr; 

DescriptiQn 

The send"packet routine adds a packet-level header to an interlayer message 
buffer and passes the buffer to Layer 2. The softkey equivalent of this routine is 
the SEND action on the Protocol Spreadsheet. 

The first parameter is the interlayer message buffer number. See Section 
63.3(A). Layer-Independent OSI routines. 

The second parameter is the maintain bit used to hold the buffer while the send 
operation is being performed. See See Section 63.3(A). 

The third parameter is the offset from the beginning of the buffer to the start of 
the service data unit. See See Section 63.3(A) . 

. The fourth parameter is a pointer to the packet structure to be sent. For a 
description of send..packetjtructure see Table 72-1. 

72-16 



72 X.25 Layer 3 Ubrary 

Ex"UImle 

To successfully send a packet out to the line. you must include the Layer 2 
section of the program below. In this example, you are sending a Call Request 
packet with a facilities field present. 

{ 

} 

static unsigned short it_buffer_number; 
static unsigned short relay_baton; 
static unsigned short data_slartj1ffset; 

struct send Jacket_structure 
{ 
unsigned char path_num; 
unsigned char packet_type; 
unsigned char paCket_type_byte; 
unsigned char m_bit; 
unSigned char d_bit; 
unsigned char q_bit: 
unsigned char pr_type; 
unsigned char ps_type; 
unsigned char pr_value; 
unsigned char ps_value; 
unsigned char cause; 
unsigned char diagJlag 
unSigned char diag; 
unsigned char cntrl_byte; 
unsigned char facilitiesjen; 
char * facilities; 
unsigned short data_len; 
char" data; 

}; 
static char transmit_string [J = "«FOXYJ "; 
static char fadlitiesJtring [J :: • .0,°1° .. °,"', "S03"':.0 .. 07 ", 

struc/ sendJaCket_structure transmitJacket '" {a, Ox]], Ox13, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 
(sizeof(facilities_string)~1), &;jacillties_stringIOj, 0, O}; 

LAYER: 2 
STATE: datalink 

CONDITIONS: DL_CONNECT REO 
ACTIONS: DL_CONNECT CONF 
CONDITIONS: DL_DATA REO 
ACTIONS: SEND INFO • (DL_DATA» • 
CONDITIONS: RCV INFO 
ACTIONS: GIVE_DATA 

LAVER: 3 
STATE: send_aJ»l0ket 

CONDITIONS: KEYBOARD· • 
ACTIONS: 
{ 

} 

Jet_il_msLbuff(&il_buffer_number, &relay_baton); 
_starUI_ bufLlist (il_ buffer_number, &data _start_offset) ; 
_insen _ii_bufL list _ ent (il...ftuffer _number. data_start _offset, &transmi t _string to ] , 

(si.zeof(transmit_string) - I)}; 
sendJacket(il_buffer_number, relay_baton, data_stan_offset, &transmitJacket); 

72-17 



INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108 

NOTE: A null is appended to the end of an array initialized as a 
string inside quotation marks; it is not appended to the end of an 
array entered inside curly braces. So, if facilities_string was 
initialized as a list of values. like this-

static char facilities_string [J :: {J, 1, 4, 1, Ox41, Ox4S, Ox03, Ox43, 7, 7}; 

-then transmit"packet would look like this-

struct sendJacktt_structure transmit...PQck.et '" {O, Ox13, OxJ3, 0, 0, 0, 0, 0, 0, 0, 1, 
1,0,0, sizeo!(facilities_string). &faciUties_string[O} , 0, O}; 

72-18 



73 SDLe Ubrary 

73 SDLCLibrary 

When the SDLe package is loaded in via the Layer Setup screen, the following external 
routines and variables become available for use by the programmer. Their use on the 
Protocol Spreadsh~t is not limited to any particular layer, though normally they belong at 
Layer 2. 

The variables and routines approximate SDLC Layer 2 spreadsheet-generated conditions and 
actions. Refer to Section 35 for more detailed explanations of the purposes of specific 
conditions and actions. Sometimes the name of the variable or routine is sufficient for 
identifying its related spreadsheet token. When this is not the case, the information is 
provided below. 

73.1 Structures 

The structure sendJrame_strueture defines the format of transmitted SDLC frames. 
See Table 73-1. Use this structure to send frames via the send Jrame routine in 
emulate mode. See Section 73.3(B). Each variable in the structure relates to some 
softkey selection or user entry in the SEND action. 

73.2 Variables 

(A) Monitoring Events 

1. Emulate or monitor mode. SDLC events include frames detected. good or 
bad BCC's, and aborts. All event variables in Table 73-2 containing a dte_ 
or dce_ prefix are valid in either emulate or monitor mode. These event 
variables are dteJrame,dceJrame, dteJood_bcc, dceJood_bcc, 
dte_bad_bee, dce_bad_bee, dte_abort, dce_abort. The variable 
deeJood_bcc. for example, equates to DCE (lOBCC. 

You can use both dte and dee variables relating to the same event in one 
conditions block. Suppose you want to count all bad BCC's from either side 
of the line. Enter the following CONDITIONS/ACTIONS block: 

. CONDITIONS: 
{ 

dte_had_Dee II dee_Dad_Dcc 
} 
ACTIONS; COUNTER bad_boo INC 

73-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

Table 73-1 
SOLe Structures 

Type Variable Value (hex/decimal) Meaning 

Structure Name: send_frame_structure 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

addr_wpe 

frame_type 

addr_value 

entrLbyte 

nr_value 

ns_value 

2 

Structure of a frame in SOLe. Declared as type 
struct. Declared automatically If a 
softkey-entered SEND action Is taken. Program 
frames assigned to structure a8 follows: struct 
send frame structure name. Reference a 
structure variable as follows: name.bcc_type. If 
values In the frame structure are not Initialized by 
the user, they default to O. You may initialize the 
values when the structure is declared: 
struot send_frame_structure name = {2, 1, 1, 0, 
1.1,3, Ox71. 3, O}; 

(The codes for frame_type are the same 8S for the SOLe-variable 
rcvdJrame _type.) 

0 auto 
1 value 
2 received ns plus 1 
3 last nr sent 

0 auto 
1 skip 
2 last nr received 
3 value 

0 0 
1 1 
2 Ioopback 

0 default (bad bee) 
1 good bee 
2 bad bee 
3 abort 

OO-fflO-255 

(actual value of the control byte) 

0-7 (MOD 8) 

0-7 (MOD 8) 

73-2 

If nr_type = 1 

If ns_type = 3 



Type 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

IT' .. Y ! .. , 
" j 

Table 73-2 
SOLe Ve.riabJes 

73 SDLe Library 

Variable Val.ye (hexfde.cimaf) Meaning 

73-3 

True when a OTE frame Is 
detected. Une Setup 
oonflgured for emulate or 
monitor mode. 
True when a oce frame Is 
detected. line SetUP 
o~ed for emulate or 
monitor mode. 
True .whea a good BCC Is 
caJoolated for a OTe frame. 
Line Setup configured for 
emUlatel:Jr monitor mOde. 
True when a good Bee Is 
calculated for a DeE frame. 
LIne Setup configured for 
emulate or monitor mode. 
Tn.te when a bad sec Is 
calculated for a OTE frame. 
LIne Setup oonflgured for 
emulate or monitor mode. 
True when a bad BCe Is 
calculated for a DeE frame. 
Une·$etup oonffgured for 
emUlate or monitor mode. 
Tn.te When an abort fa detected 
for a OrE frame. Une Setup 
configured for emulate or 
monitor mode. 
True When an abort is deteoted 
for a DeE frame. LIne Setup 
oonfigured for emulate or 
monitor mode. 
True when a frame Is reoelved. 
Una Setup oonflgured for 
emulate mode only. 
True when an Invalid frame Is 
detected. line Setup 
oonfigured for emulate mode 
only. 
True when the T1 timeout-timer 
has expired. Line Setup 
configured for emulate mode 
only. 
True When a BCC error is 
deteeted. Une Setup 
oonfigured for emulate mode 
only. 
True when an N (R) error is 
detected In a reoelved INFO or 
supervt$OtY frame. line SetUP 
configured for emulate mode 
only. 
True When an N(S) error Is 
detected In a received INFO 
frame. line Setup configured 
for emulate mode only. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table 73-2 (continued) 

Type Variable Value (hex/decimal) Meaning 

extern event frame_sent True when frame Is passed 
down to Layer 1 . Une Setup 
configured for emulate mode 
only. 

extern volatile canst unsigned char m_frame _addr OO-fflO-255 Une Setup oonflgured for 
emulate or monitor mode. 

extern volatile canst unsigned char m_frame_type (same as rcvdJrame_type-Line Setup 
configured for emulate or monitor mode) 

extern volatile const unsigned char m_frame _ ontr,-byte_1 (actual value of control byte-Line Setup 
configured for emulate or monitor mode) 

extern volatile oonst I4nslgned char m_frame_pf 0 pf=O 
10/16 pf=1 

Une Setup oonflgured for 
emulate or monitor mode. 

extern volatile oonst unsigned char m_frame_bcc_type 1 good 
2 bad 
3 abort 

Line Setup configured for 
emulate or monitor mode. 

extern volatile const unsigned char rovd_frame_addr 00-fflO-255 line Setup configured for 
emulate mode only. 

extern volatile const unsIgned char rovd _frame_type 0 Info 
1 rr 
5 rnr 
9 rej 
dl13 sre) 
3 ul 
7 rim 
7 slm 
fl15 dm 
23/35 up 
43/67 disc 
43/67 rd 
63/99 ua 
83/131 snrm 
87/135 frmr 
aff175 xid 
c7/199 cfgr 
of/207 snrme 
e3/227 test 
ef/239 ben 
bIll Ipda 
ff/240 other 
ff/240 unknown 

Line Setup configured for 
emulate mode only. 

extern volatile const unsigned char rovd_frame _ cntrLbyte_1 (aotual value of control byte-Une Setup 
configured for emulate mode only) 

extern volatile eonst unsigned char rcvd_frame _pf 0 pf=O 
10/16 pf=1 

Une Setup configured for -, 
emulate mode only. 

73-4 



Type 

externvolatileooo.$t unslgryed Char 

extern volatile unslgn.-d short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern;votatlle uneigned· ~ 

extern votetlle un~ikI·shol't 

Tabte7S"2(eQntinued) 

Variable 

12_,ow.r ... Vil!'tdow...;edQa 

l2_upper,..:~ ........ e<;lge 

l2_resend .... edge 

73-5 

1 
2 
3 

good 
bad 
abort 

Meaning 

line Setup configUred for 
emulate mode only. 

0-7 (MOD 8) line Setup configured for 
emblate mode OI'IIV. 

0-7 (MOD 8) line Setup conflgured for 
emulate mode only • 

Inter-layer message buff« 
~ tactually ,anIAPX-286 
QQment number) in a recelved 
frame. This·aegmsnt nUmber 
can be converted to a potnter 
by shifting it left 16 bits, l.1ne 
SetupconflgUred for emulate 
mode only. 

Offset to where the.eNlee data 
.. t.IfIIt begins In an inter-layer 
message buffer In a received 
trame. Add to buffer segment 
number (o~ed to pointer) 
to potnt to first byte. In frame. 
line Setup confIQUred for 
e~ mode only. 

Size of service data unlt In a 
received frame, line Setup 
conttoured for embIate mode 
only. 

When equal to uPPer edg.8. 
window 1$ fuR: when equal. to 
lower", WIndOw Is empty; 
when not equal to upper edge, 
WindoW Is not full; and when not 
equal to lower edge. window Is 
not empty, L.IneSetup 
configured for emulate mode 
only. 

see l2_current_ window_edge 

see 12_ current_window _edge 

When resend •• Is not equal 
to lower window edge. there Is 
more toresend: When resend 
&dge 1$ equal to tower WIndow 
~ge. there Is no more to 
tHend. Une Setup configured 
tor emulate mode only. 

,----_._-_._--



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Type 

extern unsigned char 

extern unsigned char 

Table 73 .. 2 (continued) 

Variable Value (hex/decimal) Meaning 

o 
1 
4 
5 
8 
9 
12/18 

o 
1 

normal 
reverse 
low 
reverse low 
blink 
reverse blink 
blink low 
Line Setup configured for 
emulate ot·monltor mode. 

off 
on 
Line Setup configured for 
emulate or monitor mode. 

Using spreadsheet tokens, the same test needs two CONDITIONS/ACTIONS 

blocks: 

CONDITIONS: OTE BDBCC 
ACTIONS: COUNTER bad_bee INC 
CONDITIONS: DCE BDBCC 
ACTIONS: COUNTER bad_bee INC 

When the user selects DTE or DCE on the first rack of softkeys for Layer 2 
conditions, a second rack appears from which he must select a particular 
frame type. A DTE INFO condition. for example, when translated. includes 
two C variables, one event variable and one status variable: 

dteJrame && (mJramejype :::= 0) 
} 

As a C programmer. you do not have to specify a frame type. To include 
all frames in a condition, use the event variable only: 

CONDITIONS: 
{ 
dteJrame 

} 

2. Emulate mode only. Some events may be detected in emulate mode only. 
The event variables are rcvdJrame. invalidJrame. 12_Tl. bee_error, 
nr_error, ns_error, andframe_sent. 

If you try to use one of these variables in monitor mode. you may be 
returned to the main program :r:ne~lJ. When you go to the Prot.ocol 
Spreadsheet and search for errors, a message like the fonowing may be 
displayed: "Error 140: Unresolved reference revdJrame." 

When the user selects RCV on the first rack of softkeys for Layer 2 
conditions, a second rack appears from which he must select a particular 

73-6 



rr·· 

73 $Vl:;Cl.ibrary 

framet.ype. When the: transiator converts a Rev INFO condition into C, it 
· will include two C variables. one event variabkHmd one status variable: 

{ 
· rcvdJrame «« (rcvdJrame_type == OJ 
} 

In a C condition, a frame type does not have to be specified. To include all 
received frames in a condition. use the event variable only: 

COND1TIONS: 
{ 
rcvdJrame 

} 

· Error detecting maybe accomplished Via bCCjrNJr. nT_error. ns_error, and 
invalidJrame. These vadables equate to the Softkey tokens bearing similar 
names. 

One of the emulate-mode variables monitors an emulate action. The event 
variable frame_sent will come true as soon as the frame has been passed to 
the layer below. 

(B) Status Variables 

S~tus variables are those in ·Table 73-2 that do not include event in the Type 
column. Their associated event variables guarantee.that they are updated and 
tested. 

The softkey-generated condition for received Info frames is RCV INFO. The C 
version of the same condition ~hould look like this: 

CONDITIONS: 
{ 
rcvdJrame 4t& (rclldJrame_type ,."" 0) 

} 

1. Frame characteristics. All status variables in Table 73·2 containing an m_ 
· prefix are valid in either emulate or morutar m'ode: mJrame_addr, 

mJrame_type, mJrrtme_cntrIJrjtej, mJrame..pf, and mJrame_bcc_type. 
Us~ thesevariabies to monitor apaniculaf address. frame type, control byte, 
P/F value, or BCC. 

All status variables in Table 73·2 eontairiing it rCvtC prefix are valid in 
• emulate mode only: fcViiJrame.,;..addr,rc'IdJrame_type, 

rcvdJrame ~ cntrCb'iJe..). rcvd Jrflt1t£ yea .;..type, rcvd Jrame ...pi, 
revdJrame_nr, andtcvdJrame_ns. Use these variables to monitor a 
particular addre$S, frame type, control byte, BCe. orP/F, N(R). or N(S) 

; value. 

73-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

If you try to use an emulate-mode variable in monitor mode, you may be 
returned to the main program menu. When you go to the Protocol 
Spreadsheet and search for errors. a message like the following may be 
displayed: "Error }40: Unresolved reference rcvdJrame_type." 

2. Frame buffers. As BOP frames are received, they are automatically placed 
in IL message buffers to be passed up the layers. Three emulate-mode 
variables provide the user with access to. the information in the frame that is 
located beyond the control byte. These variables are rcvdJrame_bufLseg, 
rcvdJramejdu_offset, and rcvdJrameJdu.:;.size. See Section 63.1 for a 
more detailed discussion of the buffer components to which these variables 
refer. 

Make a pointer to an IL buffer by casting rcvdJrame_buffjeg as a long, 
shifting it left sixteen bits. adding rcvdJrame;....sdu_olfset. and casting the 
res.ult to a pointer. Increment the pointer twice (thereby adding two to the 
offset). 

{ 
unsigntd char" ptr; 
plr = (lloid *)(((long)rclIdJramt_bufLseg« 16) t rcvdJramt_sdu_offset); 
ptrt=2; 

It is now pointing at the first byte in the information field. You may 
continue to move through the frame for its entire length. indicated in 
rcvd Jrame _sdu _size. 

3. Transmit window. Four related variables test the status of the Layer 2 
window. The particular values of these variables at any given time is not 
significant. What is Significant is how they compare to each other. The 
softkey status condition on the left makes the variable comparison on the 
right: 

WINDOW FULL 

WINDOW EMPTY 

WINDOW NOT_FULL 

WINDOW NOT_EMPTY 

MORE_TO _RESEND 

NO_MORE_TO_RESEND 

ll_current_window _edge == ll_upptr _window_edge 

ll_current_window_edge == 12_1ower_window_edge 

12_current_window_tdge.l= 12_upper _window _edge 

12_cuTrent_window -,die t= 12_1ower _window_edge 

Il_,uend;...edge /:t 12_lowtT_window _edge 

12_resend_edge ;:= 12_10wer _window_edge 

(e) Controlling Protocol Trace Display 
To enhance or suppress particular frames on the Layer 2 Protocol Trace screen 
in emulate or Monitor mode. assign Ii coded value to 12_enhance or 12_suppress. 
The values are listed in Table 73-2. To assign a value to either of these 
·variables, place the statement in an .AcnONS block. For example. display RNR 
frames in reverse-video and suppress display of invalid frames: 

73-8 



CONDITIONS: RCV RNR 
AC1tIONS: 
{ . 

12_'1nhance == 1; 
} . 

CONDITIONS: RCV INVALID 
ACTIONS: 
{ 
12_suppress = 1; 

} 

78 SOLO· Ubrsry 

Check the value of these disPlay-control variables in a CONDITIONS block 

CONDITIONS: RCV INFO 
{ 
l2_enhance == 1 

} 
ACTIONS: 
{ 
l2_enhance '" OJ 

} 

or an ACTIONS block: 

CONDITIONS: RCV INFO 
ACTIONS: 
{ 

} 

if(12_enhance == 1) 
12_enhance == 0; 

73.3 Routines 

Use the following rou¢:les i41elnula~ mode. only < If you try to call one of these 
routines in monitor 1l).ode •. youwitl·~ re~ to the majnprogram menu. When 
you go to the Protocol Spreadsheet and search for errors. a message like the 
following will be displayed: "Error 140: Unresolved reference 12Jive_data." 

(A) Recteive 

12_0ive_data 

Sl!ll.PS~ 

l)eWiption 

The;12Jive_data routine takes takes an interlayer message buffer associated with 
a received INFO frame. changes the SDU offset to point to higher-level data. 
and!sends a DL_DATA lND primitive up to Layer 3 along with a reference to 
this buffer. The softkey equivalent of this routine is the GIVE_DATA action on the 
Protocol Spreadsheet. 



INTERVIEW 7()OO Series Advanced Programming: ATLC-107-951-10B 

Example 

Layer 3 wants access to the line in order to receive and send data. Assuming 
the SDLe personality package is loaded at Layer 2. enter the following program: 

LAYER: 2 
ST ATE: datallnk 

CONDITIONS: Dl_CONNECT REQ 
ACTIONS: DL_CONNECT CONF 
CONDITIONS: Dl_DATA REQ 
ACTIONS: SEND INFO *(CDL_DATA))· 
CONDITIONS: RCV INFO 
ACTIONS: 
{ 
12.,.gille_data(); 

} 

(8) Transmit 

Syno.psis 

extern lIoid resendJrame(pf. first_or_next); 
unsigned char pf; 
unsigned char first_or _next; 

Description 

The resend Jrame routine will resend either the first or next frame in the 
window with the P/F bit set to a specified value. The softkey equivalent of this 
routine is the (PROTOCL) RESEND action on the Protocol Spreadsheet. 

The first parameter is the value of the P/F bit in the frame. It may be set to 

either 0, 1, or 2 (for loopback). 

The second parameter indicates whether the first frame in the window will be 
sent, or whether the next frame in the window will be sent. The first resend 
action will send the first frame in the window regardless of whether first or next 
has been selected. Legal entries are 0 (first) or 1 (next). 

73-10 



Suppose you want to resend the entire transmit window if you receive a REI 
frame. 

LAVER: 2 
STATE: xfer '* Whatever C:QndttlQtls ancI aQtions. .send data precede the following condition. "' 

CONDITtONS:RCV ASJ RESP 
ACTIoNs: 
{ 
resendJrame (1 , OJ; 

} 
NEXT _ STATE: re~ver 

STATE: reoover 
CONDITIONS: FRAME SENT 

MORE_ TO_N:SEND 
ACTIONS: 
{ 
resend Jrame (1,1); 

} 
CONDITIONS: FRAME_SENT 

NO_MORE_TO_RESEND 
NEXT_STATE: xfer 

Synopsis 

Inscription 

This routine resets the N (R) field in information. and supervisory frames to zero. 
The softkey equivalent of this· routinei~tl)e. (PftOT~) 8SET _Nfl action on the 
Protocol Spreadsheet. 

;e:xam,ple 

When a link is established. reset N(R). 

LAv,:R: 2 
STATE: reset 

CONDITIONS: ENTefurr ATE 
ACTIONS: SEND SABM 
CONDiTIONS: ReV VA 
ACTIONS: 
{ 
u:stcnrf); 

} 



INTERVIEW 7000 Series Advanced Programming: ATLG-107-951-108 

Synopsis 

Description 

The N (8) field in information and supervisory frames is reset to zero and the 
transmit window is cleared. The softkey equivalent of this routine is the 
(PROTOCL) RSET_NS action on the Protocol Spreadsheet. 

Example 

When a link is established. reset N(S). 

LAYER: 2 
STATE: reset 

CONDITIONS: ENTER_STATE 
ACTIONS: SEND SABM 
CONDITIONS: ReV UA 
ACTIONS: 
{ 
reset _ ns () ; 

} 

send_frame 

Synopsis 

extern void sendJrame(il_buffer _number, relay_baton, data_start_offset, transmitJrame"'ptr); 
unsigned short iI_buffer_number; 
unsigned short relay_baton; 
unsigned short data_start_offset; 
struct sendJrame_strueture 
{ 
unsigned char addr jype; 
unsigned char frame_type; 
unsigned char nr _type; 
unsigned char ns_type; 
unsigned char pJ_type; 
unsigned char bee_type; 
unsigned char addr _ yalue; 
unsigned char cntrl_byte; 
unsigned char nr _value; 
uTlsigned char ns_value; 

}; 
struct sendJrame_structure .. transmitJrame...ptr; 

Dess;ril2tion 

The sendJrame routine adds a frame-level header to an interlayer message 
buffer and passes the buffer to Layer 1. The soItkey equivalent of this routine is 
the SEND action on the Protocol Spreadsheet. 

73-12 



73 SDLe Liprary 

The first parameter is the interlayer message buffer number. See Section 
63.3(A). Layer-Independent OSI routines. 

The second parameter is the maintain bit used to hold the buffer while the send 
operation is being performed. See Section 63.3(A). 

The third parameter is the offset from the beginning of the buffer to the stan of 
the service data unit. See Section 63.3(A). 

The founh parameter is a pointer to the frame structure to be sent. For a 
description of sendJrame_structure see Table 73-1. 

Send an Info frame containing a canned fox message and a good BCe onto the 
line. 

} 

static unsigned short il_bufJ«r _number; 
static unsigned short ,elay_baton; 
stat:ic unsigned short data_star(J;fJset; 
strUct sendJrame_struature 

{ 
unsigned char addr Jype; 
unsignttd char frame_type; 
Unsigned ahar nr_typtt, 
unsigned char ns_type; 
unsigned char pJ_type; 
unsigned char bcc_typtt; 
urtsigntd char addr_valuei 
u~igned char c1Itrlj>yte; 
ullsigned char nr _value; 
u1isig1led char 1IS _Vlllue; 

}; 
strltet sendJrame_structure rransmttJrame; 
statk char transmitjtring lJ ,. "((FOX)"; 

LAyeR: 2 
STATE: send_8_frame 

CONDITIONS: KEYBOARD •• 
ACTIONS: 
{ 
Jet_il_msLbuff(&,UjnJjfer...Jlumber. &relay_baton); 
_start_ll_buf/jist (iI_puffer -"umber. &data_start_of/set); 
transmitJrQme.bcc_type .. 1; 
_insert _iCbUff_list 3tU(Il_ buffer_number. data_stoTt_of/set, &transmit_stringfO J. 

(sizeof(tran$(nit_string) - Ij); 
sendJrame(iCbuffer _number, relay_baton, data_start_of/ser, &,transmitJrame); 

} 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

73-14 



. Whenth.e&NA~ackage is loaded in via the Layer Setup screen. the following external 
variables become; available for use by the: progammer .. ]beiruse on the Protocol Spreadsheet 
i8I1ot~jt~4 tp itny particular layer. thQ~.<n,~nn~Uythey bel~at Layer 2. 

:. 

SDL:Cv~.riables:~d routines. while they are included in the SNA layer-personality package, 
are ru:Jtaocu.rne~ed here. They are documented fully in Section 73. 

Th~ varntl>le$.~t are specific to the SNA· package are documented here. They pertain to 
fi~ .1n>SNAtl"apsmission headers. request/rewonse headers. and request/response units. 
Thesevarlab1es ltave no spreadsheet-token equivalents . 

. 74 .. 1 Structures 
. 

Use the ,SDLC send Jrame _structure shQ!\1min. Table 73-1. 

Variables , 

'I1le variables discussed below apply when the Line Setup menu shows either emulate 
or mQnitor mode. Emulate mode. however. is not supported by emulate-only 
condi~Q~s and actions on the ProtocoLSpreaQsheet. 

,(A)' M~nitoring Events 
uJthe SDLe event variables discussed in Section 73.2(A). 

(e) Stit'usVariabtes ,. 
Alt;SNA variables in Table 74-1 are staws variables. Also refer to the SDLC 

. statUs variables listed in Table 73·2. 
";., 

T1t,.r~ are no st>ftkey tokens on thespteadsbeet tbatare equivalent to the SNA 
~bles listed in Table 74-1. To search for Info frames with a FID2 
ma~sion header. for example. use C variables. The condition should look 
lilt. this: 

. CO~OITIONS: 
{ 
dteJram.e .lei: (mJI'llm,;...ty{Je:a;:< 0).£"'. (m-PtZe]utJid_f1.pe ='" 2) 

} ! 

14-1 



INTERVIEW 7000 Series Advanced Programming: A TLC-1 07-951-1 Q8 

Table 74·1 
SNA Varlablest 

Type Variable Value (hex/decimal) Meaning 

extern volatile unsigned short 

extern volatile canst unsigned char 

extern volatile const unsigned short 

extern volatile const unsigned short 

extern volatile const unsigned long 

extern volatile const unsigned char 

extern volatile const unsigned short 

extern volatile cOl'!st unaigned short 

extern volatile const unsigned long 

mj)8cketJength 

Tr@,nsmlssi90 Header: 
m_packet_ tid_type 

t Refer to Table 73-2 for SDl.e variables. 

74-2 

o 
1 
2 
3 
4 
f/15 

'i "0'" 

L~ngth otth~S:Ulck.tlncluding 
the transmission and 
request/response headers. Una 
Setup configured for emulate or 
monitor· mode. 

Format Idsntlflcatlgn Type; 
FIOO; TH 10 bytes 
FID1; TH 10 bytH 
FID2; TH 6 bytes 
FI03; TH 2 bytes 
FID4; TH 26 bytes 
FIOF; TH 26 bytes 
LIn~SetUp cOl'lfigured for 
arnulate" or monitor mode. 

o-ffff10-65535 Destination address fleld-2 
bytes In .FIDO aJldFlD1: 1 byte 
in'FlD2. Une Setup configured 
for emulate or monitor mode. 

O~fffflo-65535 Destination element field-2 
bytes; FID4 only. Line Setup 
configured for emulate or 
monltor.m~de . 

O-ffffffff I Destination subarea address 
0-4294967295 fleld-4 bytes; FI04 only. 

UneSetup configured for 
el'ntdate or" monitor mode. 

Lgoal sesSIon Identlficatl.on; 
FIDa only 

(actual value ssqP-PlI session 
of byte) SSCP-LUsession 

Reserved 
LU~LU session 
Line Setup configured for 
emulatE! ()f" monitor mode. 

) 

00-1f10-255 Orlgln address fleld-2 bytes in 
FIDOand FID1; 1 byte In FID2. 
LIn$ Setup configured for 
emulate or monitor mocle. 

00-fIIO-2oS origin element field-2 bytes: 
fl04 only. I.lne Setup 
cOliflgured for emulate or 
monitor mode. 

O-ffffffff I 0t1QIn subarea address fleld-4 
0-4294967295 bytes; FID4only. Line Setup 

c~gured for emulate or 
monitor mode. 



Type 

extern volatile OOMt·lJn$~ ~har 

extern VOlatile donlrt Llnsi~ ¢har 

extern volatile oonst unsigntifd char 

extern volatile unsigne.d ohar 

extern volatile unsigned chat 

extern yolatlle unalOOtld. char • 

exte.m volatile ~d chat • 

Table 74 .. 1 (continued) 

Tr~¥jll~l~tI",_fRl2D\_l ; 
th_ptr . 

Bgquewa~e11t.r:; 
m_paCket..;.N;':'Celtegory 

M_paoke.t_rrI 

m_paCketJtl 

m~aeket_sdl 

rh_ptr 

BeQYutlBtwoostlJOlt: 
N~tr 

74-3 

(} 

aOl.32 
40164 
60/96 

o 
8 

0 
80/128 

() 

10/16 

0 
4 

Meaning 

Pointer for the transmlsslon 
. header; begins at the byte 
oontainlng FlO type. Line Setup 
configured for emulate or 
monl~or mode. 

. BiQ!.lUt/BesQQllH VOlt; 
Fum:tton Management Data 
(FMO) 
NetwQtt Control (NO) 
DataFlow Control (OFC) 
Sesiion Control (SC) 
L.lr1$ SetUP oonfigured for 
emulate or monitor mode. 

Emmit Indlea.tor: 
User ·data without header In RV 
In LV-L.V frame, Indicates 
header fOIIow& the RH. In SC, 
NC. or DFC RU, indicates a 
formatted RU beginning wlth III 
request code . 

. . One Setup configured for 
emulate or monitor mode. 

FlCQUIttjReSl90H IQdicator: 
request 
re$pi)nse 
LIn$ Setup oonflgured for 
emulate or monitor mode. 

Bi\_90S. IY" fndIcator: 
~lve response 
neoatIve response 
LIne Setup eonflglJred for 
emulate or monitor mode. 

~ Pit, lodlqltQ(i 
SeI\ge data not Included 
sense data included 
Lln$Set~ oonfigured for 
emulate or monitor mode. 

Pointer for the request/response 
header; begins at the byte 
oontalnlng the request/response 
indicator. Line Setup oonfigured 
for' emulate or monitor mode. 

Pointer for Ute request/response 
unit: . begins at the first byte in 
the unit. LIne Setup configured 
for emulate or monitor mode. 



INTERVIt;W 7000 Series Advanced Programming; ATI,,e-107-9S1-108 

1. Info frame characteristics. Most Status variables in Table 74-1 contain an 
m_ prefix, indicating that they are valid in emulate or monitor mode; Some 
variables are associated with the transmission header: myacket.Jid_type, 
myacket_daf, myacket_def, myQcket_dsaj', mYQcIGet:..;,lsid, myacket_oaf, 
myacket_oej, and myacket_osaj. Other variables are associated with the 
request/response header: myacket_ru_category, myacket.Ji, myacketJri, 
myacketJti, and myacket_sdi. 

2. Pointers. There are three pointers to SNA fields. thytr points to first byte 
of the transmission header, rhytr points to the first byte of request/response 
header. and ruytr points to the stan of the request/response unit. 

(C) Controlling Protocol Trace Display 

To enhance or suppress particular packets on the Layer 2 Protocol Trace screen 
in emulate or monitor mode. assign a coded value to 12_enhanceor 12_suppress. 
The values are listed in Table 73-2. To assign a value to either of these 
variables. place the statement in an ACTIONS block. For example. display only 
Info frames with FID2 transmission headers. Of these, display frames with sense 
data in reverse-video. 

CONDITIONS: 
{ 
dteJrame && (mJrameJype == 0) && (mJacketJid_type 1= 2} 

} 
ACTIONS: 
{ 
12_suppress = 1; 

} 
CONDITIONS: 
{ 
dteJrame && (mJrame_type == 0) && (mJaclcetJid_type == 2) && (mJack.et_sdi == 4) 

} 
ACTIONS; 
{ 
12_enhance = 1; 

} 

Check the value of these display-control variables in a CONDITIONS block 

CONDITIONS: 
{ 
dteJrame && (mJrame_type == 0)&& (m"paclr.etJid_type != 2) .&& (l2_supp~ess == 0) 

} 
ACTIONS: 
{ 
12_suppress '" 1: 

} 

74-4 



or an ACTIONS block: 

CONDITIONS: 
{ 
dteJrame && (mJrame_type ;= 0) && (mJacketJid_type 1:: 2) 

} 
ACTIONS: 
{ 

} 

ijO'l_suppress "'''' 0) 
12_suppress '" 1; 

74.3 Routines 

There are no routines associated exclusively with SNA. Use the SDLe routines 
discussed in Section 73.3. To send a frame including SNA protocol, for example. 
include a transmit_string of SNA data in the sendJrame routine. 



INTEBVI/iW7000 Series Advanced Programming: AUO .. .,f.07-951-1CS 

74-6 



When th~ Dn<:MP package is loaded in via the Layer Setup screen. the following external 
1,fa$bl~.~omeJavailable for use by the.progra:mmer. Their use on the Protocol Spreadsheet 
is not limited to ~ny particular layer, though normally they belong at Layer 1. 

Thel;~.$ie no extern structures associated exclusively with DDCMP. 

r~e. onlY'. variables exclusive to DDCMP relate to block checking. When the 
PPCMP'package is loaded in. the resl.ll:ts of b~th header and data bl()¢ck dleeks ace 
disP~~Gi on the data screen. If you want your program to detect good or bad 
BCE.'.1s. you may use the BeC selections on the trigger menus and at Layer 1 of the 
Protocol;Spreadsheet to interrogate the header block check only . . 
If you ~nt to detect a good or bad data block check, you must use one of the C 
;e~entv,a#ables listed in Table 75-1. 

H~re is .~ program that counts bad DTEBCC*s for both header and data: 

{ 

t 
LAVeR; 1 

STATe; count aU bad cite bees 
CONDtTIONS: -OTE-SADBCC 
ACTiONS: COUNTER tjidbcc INC 
CONOITfONS: 
{ . 

75.3 RouUnes 

There are no routines associated exclusively with DDCMP. 



INTERVlEW]OOO Series Advanced Programming: ATLC-107...,951-108 

Table 75-1 
OOCMP Variables 

Type Variable Value (hex/decimal) Meaning 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

extern fast_event 

75-2 

T~ rmfm ... agoJd,;~~d8crabe 
Is reeelVed'on RD. Une Setup 
configured for emulate or 
monitor mode. 

True when a good header Bee 
Is receIVed on TO. Une Setup 
configured for emulate or 
monitor mode. 

True when a bad header Bee Is 
received on RD. Line Setup 
• oQrlfl9ured~or em~e or 
monitor mode. 

True when a bad header ace is 
received on TO. LIne Setup 
oonflgured for emulate or 
monitor mode. 

True When a goOdoata Bee is 
received on TO. Una Setup 
configured for emulate or 
monitor mode. 

True when a good data Bee is 
received on RD. Une Setup 
conflgU:red for emulate or 
monitor mode. 

True when a bad data Bee Is 
reoelVEKI on TO. Une Setup 
configured for emulate or 
monitor· mode. 
True when a bad data Bee Is 
received on RD. Une Setup 
configured for emulate or 
monitor mode. 



76ISDND' Channel library 
To ~~ th~ C s~ctures .• variaples. atld Z;Q:UJ;i~~s expl~ec:iin_ section, your INTERVIEW 
must, beequi~d with Option 15, ·ltulaU .thelSJ;)NTest tn,te;,l'{flce Module (TIM) in the rear 
of the INTERVI;EW. as explained in Secti:op,.aQ.AJ,soinstaU~;tSDN mux board according 
to the directions: in Appendix J4. Load in the ISDNJ) Layer 1 package via the Layer Setup 
ser.eeo. 'The .1SlpN_D .pac.kage contains ,thevarlables' and '~'·ofthe routines documented 

'. be;low. Finally., iJielectone of the :Bcftaooeis in the eheM~tfitld on the ISDN Interface . 
~.tup. screen. See Section 48.S. 

. . 
The Configur8tionOf the INTERVIEWf:ie~rlU:~d above. suppofi.s~al-channel monitoring. 
Dual-channel mhnitoring means tra,*ingo~ 'otthe ,B channelsan,d the D channel. All 
menu selections :(with the possible eXception of s~a:k8r on 'the ISDN Interface Setup menu), 
triggers. and spreadsheet conditions.~ ~ apply to the It channel selected. Use the C 
structures. varial?les, and routines .m.thi&,:.se~()nto monitor the D channel. 

NOTE: When thelSD~~g.~erface Setup screen shows Channel: 
*~"~«:!f''f.<~'"'' ' •• _':' ' fi" '..11 4: • t_ h 1 .. ~~;&":~:~:i~j~. ~our~~~~~, c;9n~re? '(Jr, sms:~;",c.atltlelrl~ltot:ma. 
Menu selections. ttiggers •. ~.~~. the. Protocol Spreadsheet apply. to 
the D channel. Do not load in the lSDN_D Layer 1 package. 

You may develop your own program to mOnitor the D channel. or simply load and run the 
Fqgnml contain~d in the ISDN trace application package (available as OPT-951-3S). 

,76i .. 1 StrueJures 
Use the. structure xmit_lisl. shown in Table 76-1. when transmitting on the 0 channel 
Viailie~end_dJrame routine. Refer to send_dJrame in Section 76.3 for an 
exampl~ of how to use this .strUcture. 

, ",,-, - ,-

Variable 

S:tfll~tyreNamei xmit.;..Iist 

t.II'I$~~ ol;1¥ .. strJrtg. 

u~dshort #tring .. ~h 

Table 76-1 
ISDNStructuret 

Strvcture <:ita trarnltrlft: !lst for send d frame 
routine. ~~d.$~& $truer. ReffJrenoe 
memberv~"ct ihe'ittucturG as follow$; 
xmltjl$t .• Wlngjetlgth. 

P.Qinter tQ th,e ~at~n.Of the traMmit string-the 
Vamlntftstrtno l$~artad separately 

~ttffi~"6 length of~tt~ string 



INTERVIEW 7000 Serips Advanced Programming: ATLC-1Q7-9S1:-108 

76.2 Variables 

Type 

extern event 

extern event 

extern event 

There are three event variables associated with the ISDN_D personality package. 
They are d_dteJrame. d_dceJrame. and d •• lcvJrame. See Table~6-2. 

(A) Monitoring Events 

1. In monitor mode. When a frame is detected on the D channel. one monitor 
event; d_dceJrame or d_dteJrame, is signaled. Use both event variables to 
conStruct an ISDN trace, 

2. In emu~(Jte mode. In emulate mode. the receive event dJcvJrame and one 
of .the monitor events are signaled when a frame is received on the D 
channel. The INTERVIEW's transmissions on the D channel may not be 
monitored when the unit is in dual-channel mode. The implica~on of this 
difference is that ISDN trace programs written in monitor mode may not be 
placed intact in an emulation program. 

Table 7&·2 
ISDN Variables 

Variable Value (hex/decimal) Meaning 

True when a DTE frame is 
deteoted on the D ohannel. 
Line Setup oonfigured for 
emulate or monitor mode. 

True when a DCE frame Is 
detected on the D channal. 
Une Setup conflgur.d for 
emulate or monitor ·mode. 
True when a frame Is reoeived 
on the 0 channel. Une Setup 
oonfigured for emulate mode 
only. 

76.3 Routines 
There are twtrroutines associated with the ISDN_D pl1ckage!send.:..dJrameand 
send_dJrame_il. Another ISDN routine, set_isdn_speaker _chan, controls the 
speaker for either of the B channels. This routine is supplied by the ISDNTe'St 
lnterface Module. 

(A). Transmit 
Use the following routines in emulate mode only. If you try to call one of these 
r~utines in mon~tor mode, you may be returned to the main program menu. 
When you go to the Protocol Spreadsheet and searCh for errors. a message like 
the following may be displayed: "Error 140: Unresolved reference 
send_dJrame_il. " 

76-2 



~\ ; I . 

76 ISDN D Channel Ubrary 

Synopsis 

extern void send_dJrame(count, struct3end_sfringJtr, xmit_tag); 
unsigned short count; 
struet xmit_list 

unsigned char" stringJtr; 
unsigned short strinLlength; 

}: 
struet xmit_tist ,. struct_send_stringJtr; 
unsigned short xmit_tag; 

DescriPtion 

The send_dJrame routine sends a specified string on the D channel 'with a 
user-determined BCC. 

The first parameter is the number of strings to be sent. 

The second parameter is a pointer to a structure which in turn identifies the 
location and length of each string. 

The third parameter is a transmit tag which includes a BCe in bits 0-2: good 
(001). bad (010). or abort (011). Bits 3-7 are reserved for future use. 
Integers may be used to indicate the value of the transmit tag: good (1). bad 
(2). and abort (3). 

Example 

Assume you want to send on channel D a fox message inside of an X.2S data 
packet with a good block check. You might have 2 strings. one with the Layers 
2 and 3 header information. and one with the fox message. You would send 
these strings as follows: 

{ 

} 

unsigned char headers {}:< {oxO!, OxOO, OxlO. OX04, OxOO}; 
unsigned char message [J "" "(FOX)) "; 

{ 
unsigned char" string; 
unsigned short string_length; 

}; 
struet xmit_tist send_string 11 "" {&headers[O}. S, &message[O}, sizeo!(message) - I}; 

76-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

LAYER: 1 
STATE: send_message 

CONDITIONS: KEYBOARD • • 
ACTIONS: 
{ 
send_dJrame(2, &send_stringED]. 1); 

} 

Syno.psis 

extern void send _ dJrame _il (ii_buffer _number, relay_baton, data_starr_offset , transmit_tag); 
unsigned short ii_buffer _number; 
unsigned short relay _baton: 
unsigned short data_start_offset; 
unsigned short transmit_tag; 

Description 

This routine sends a designated interlayer message buffer out on the D channel. 

The first parameter is the interlayer message buffer number. 

The second parameter is the maintain bit used to hold the buffer while the send 
operation is performed at Layer 1. 

The third parameter is the offset from the beginning of the buffer to the service 
data unit (SDU). 

The fourth parameter is a transmit tag which includes a Bee in bits 0-2: good 
(001), bad (010). or abort (011). Bits 3-7 are reserved for future use. 
Integers may be used to indicate the value of the transmit tag: good (1). bad 
(2). and abort (3). 

:example 

Send the same text as in the example for send _d Jrame . Refer to Section 
63.3(A) for a description of the ,Jet_iCms8_bu//. Jtart_iCbu/Llist, and 
_insert_il_bu//_lisl_cnt routines. 

{ 

} 

unsigned short ii_buffer _number; 
unsigned short relay_baton; 
unsigned short data_start_offset; 
unsigned char message (] '" "Ol\xOOOlo0~\xOOO((FOX)) "; 

76-4 



LAYER: 1 
STATE: senctmessage 

CONDITIONS: KEYBOARD •• 
ACTIONS: 
{ 

76 ISDN D Channel Library 

Jet_il_msLbuff(&il_buffer_lIumber, &relay_baton); 
_starUI_bufLlist(il_buffer_number, &datajtart_offset); 
_insert_il_buff_list_cnt(il_buffer_number. data_stort_offset, &message{O], 

(sizeof(message) - 1)); 
send_dJrame_il(il_buff"_lIumber, relay_baton, data_start_offset, 1); 

} 

(8) Speaker Control 

Synopsis 

extern void set _Isdn _speaker_chan (selection); 
unsigned short selection; 

Description 

The set_isdnjpeaker _chan routine allows the programmer to control the speaker 
located on the ISDN mux board. Option 15. The programmer may enable the 
speaker for one of the B channels. This selection is independent of the channel 
selected for monitor or emulation on the ISDN Interface Setup screen. 

The only parameter is the channel selection. A value of one means tum the 
speaker on for channel Bt. Enable the speaker for channel B2 with two. Tum 
the speaker off by setting the value to zero. 

Example 

Suppose you want to know whether data or voice is being transmitted over 
channel B1. Use the set_isdnjpeaker _chan routine to enable the speaker for 
B 1. Even if you are otherwise using the INTERVIEW to monitor B2. you will 
hear the Bl transmissions. 

LAYER: 1 
STATE: enable_b1 

CONDITIONS: KEYBOARD ·sS~ 
ACTIONS: 
{ 
set _isdn_speaker _chan ( 1) ; 

} 

76-5 



INTERVIEW 7000 Series Advanced ProQramming: ATLC-107-951-108 

76-6 



r.~\ . ,'- t 
i 

~l·\ 'f' 

1 

77 LAPD Library 

77 LAPD Library 

When the LAPD package is loaded in via the Layer Setup screen, the following external 
routines and variables become available for use by the programmer. Their use on the 
Protocol Spreadsheet is not limited to any particular layer, though normally they belong at 
Layer 2. 

The variables and routines approximate LAPD Layer 2 spreadsheet-generated conditions and 
actions. Refer to Section 39 for more detailed explanations of the purposes of specific 
conditions and actions. Sometimes the name of the variable or routine is sufficient for 
identifying its related spreadsheet token. When this is not the case, the information is 
provided below. 

77.1 

77.2 

Structures 

The structure sendJramejtructure defines the format of transmitted LAPD frames . 
See Table 77-1. Use this structure to send frames via the sendJrame routine in 
emulate mode. See Section 77.3(B). Each variable in the structure relates to some 
softkey selection or user entry in the SEND action. 

Variables 

(A) Monitoring Events 

1. Emulate or monitor mode. LAPD events include frames detected, good or 
bad Bee's, and aborts. All event variables in Table 77-2 containing a dle_ 
or dee_ prefix are valid in either emulate or monitor mode. These event 
variables are dteJrame, deeJrame, dteJood_bcc. dceJood_bce, 
dte_bad_bec, dee_bad_bee, dte_abort, dee_abort. The variable 
dceJood_bce, for example, equates to DCE GDBCC. 

You can use both dte and dee variables relating to the same event in one 
conditions block. Suppose you want to count all bad Bee's from either side 
of the line. Enter the following CONDITIONS/ACTIONS block: 

CONDITIONS: 
{ 

die_had_bee II dee_had_bee 
} 
ACTIONS: COUNTER bad_bCc INC 

77-1 



INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-951-10B 

Table 77-1 
LAPO Structures 

Type Variable Value (hex/decimal) Meaning 

Structure Name; send_frame_structure 

unsigned char sapLtype 

unsigned char teUype 

unsigned char or_type 

unsigned char frame_type 

unsigned char nr_type 

unsigned char 

unsigned char 

unsigned ehar boo_type 

unsigned char sapLvalue 

unsigned char tel_value 

unsigned ehar ontrLbyte 

unsIgned ohar nr_value 

unsigned char ns_value 

o 
1 
2 

Structure of a frame in LAPD. Declared as type 
struct. Declared automatically if a 
softkey-entered SEND action Is taken. Program 
frames assigned to structure as follows: struct 
send frame structure name. Reference a 
structure variable as foRows: name.bcc type. If 
values In the frame structure are not Initialized by 
the user, they default to O. You may Initialize the 
values when the structure Is declared: 
struct send_trame_structure name = {1. 1, 2. 0, 
0,0,1.1,1,0,0,O}; 

no other value valid-Indicates a value Is given 

no other value valid-Indicates a value Is given 

o 
1 
loopback 

(The codes for frame type are the same as for the LAPD-varlable 
rcvdjrame_type.j -

o , 
2 
3 

o 
1 
2 
3 

o 
1 
2 

o 
1 
2 
3 

00-3"0-63 

OO-7flO-127 

auto 
value 
received ns plus 1 
last nr sent 

auto 
skip 
last nr received 
value 

o 
1 
loopbaek 

default (bad bee) 
good bee 
bad bcc 
abort 

(actual value of the control byte) 

0-7 (MOD 8) 

0-7 (MOD 8) 

77-2 

If nr_type ,. 1 

if ns_type :: 3 



Type 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

Table 77-2 
LAPD Variables 

77 LAPD Ubrary 

Variable Value (hex/decimal) Meaning 

77-3 

True when a OTE frame Is 
detected. Une Setup 
configured tor emulate or 
monitor mode. 
True when a OCE frame Is 
detected. Une Setup 
configured for emulate or 
monitor mode. 
True When a good Bee is 
calculated for a OTE frame. 
Line Setup configured for 
emulate or monitor mode. 
True When a good Bee is 
calculated for a OCE frame. 
Une Setup configured for 
emulate or monitor mode. 
True When a bad Bee Is 
calculated for a OTE frame. 
Une Setup configured for 
emulate or monitor mode. 
True When a bad Bee Is 
calculated for a DeE frame. 
Une Setup configured for 
emulate or monitor mode. 
True When an abort Is detected 
for a OTE frame. line Setup 
configured for emulate or 
monitor mode. 
True when an abort Is detected 
for a DeE frame. L.1ne Setup 
cOnfigured for emulate or 
monitor mode. 
True When a frame Is reoeived. 
Line Setup configured for 
emulate mode only. 
True when an invalid frame is 
detected. Line Setup 
configured for emulate mode 
only. 
True when the T1 timeout-timer 
has expired. Une Setup 
oonfigured for emulate mode 
only. 
True when a Bee error is 
detected. Line Setup 
configured tor emulate mode 
only. 
True when an N (Rl error Is 
detected in a received INFO or 
supervisory frame. Une Setup 
configured for emulate mode 
only. 
True When an N(SI error Is 
detected in a received INFO 
frame. Line Setup configured 
10r emulate mode only. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Type 

extern event 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile oonst unsigned char 

extern volatile const unsigned char 

extern volatile oonst unsigned char 

extern volatile const unsigned ohar 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile const unsIgned char 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile const unsigned char 

Table 77·2 (continued) 

Variable 

rcvd_frame_addr _sapl 

rcvd_frame_addr _tel 

77-4 

Value (hex/decimal) Meaning 

00-3f10-63 

00-7f/0-127 

o 
1 

True when frame Is passed 
down to Layer 1. Line Setup 
configured for emulate mode 
only. 

LIne Setup configured for 
emulate or monitor mode. 
Une Setup configured for 
emulate or monitor mode. 
o 
1 
Une Setup configured for 
emulate or monitor mode. 

(same as rcvd frame type-Une Setup 
configured for-emulate or monitor mode) 

(actual value of control byte-Line Setup 
configured for emulate or monitor mode) 

o pf=O 
10/16 pf=1 

Line Setup configured for 
emulate or monitor mode. 

1 good. 
2 bad 
3 abort 

0-7 (MOD 8) 

0-7 (MOD 8) 

00-3f10-63 

00-7f/O-127 

o 
1 
2 

o 
1 
'3 
5 
9 
2f/37 
6f/111 
43/67 
f/15 
1/15 
63/99 
67/103 
87/135 
e7l224 
ff/255 
ff/255 

Line Setup configured for 
emulate or monitor mode. 

Une Setup oonflgured for 
emulate or monitor mode. 
Line Setup configured for 
emulate or monitor mode. 
Line Setup configured for 
emulate mode only. 
Line Setup configured for 
emulate mode only. 
o 
1 
Ioopback 
Line Setup configured for 
emulate mode only. 
Info 
rr 
ul 
mr 
raj 
sabm 
sabme 
disc 
dm 
sarm 
ua 
slo 
frmr 
sl1 
other 
unknown 
Line Setup configured for 
emulate mode only. 



Type 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile const unsigned 'char 

extern volatile const unsigned char 

extern volatUe const unsigned char 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

extern volatile unsigned short 

77 LAPD Library 

Table 71-2 (continued) 

Variable 

12Jower _window_edge 

12_upper _ window_edge 

12Jesend_ edge 

77-5 

Value (hex/decimal) Meaning 

(aoWal value of control byte-Une Setup 
configured for emulate mode only) 
o pf=O 
10/16 pf=l 

Line Setup configured for 
emulate mode only. 

1 good 
2 bad 
3 abort 

Line Setup configured for 
emulate mode only. 

0-7 (MOD 8) Une Setup configured for 
emUlate mode only. 

0-7 (MOD B) Line Setup configured for 
emulate mode only. 

Inter-layer message buffer 
number (actually. an IAPX-286 
segment number) in a received 
frame. This segment number 
can be converted to a pointer 
by shifting It left 16 bits. Line 
Setup configured for emulate 
mode only. 

Offset to where the service data 
unit begins In an Inter-layer 
message buffer In a received 
frame. Add to buffer segment 
number (converted to pointer) 
to point to first byte in frame. 
Line Setup configured for 
emUlate mode only. 

Size of service data unit In a 
received frame. Line Setup 
configured for emulate mode 
only. 

When equal to upper edge. 
window Is full; when equal to 
lower edge. window Is empty; 
when not equal to upper edge. 
window Is not full; and when not 
equal to lower edge, window Is 
not empty. Line Setup 
oonfigured for emulate mode 
only. 

see 12_ current_window _edge 

see 12_current_ window_edge 

When resend edge Is not equal 
to lower window edge. there Is 
more to resend; when resend 
edge Is equal to lower window 
edge. there Is no more to 
re.end. Une Setup configured 
for emulate mode only. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

Type 

extern unsigned ehar 

extern unsigned char 

Table 77-2 (continued) 

Variable Value (hex/decimal) Meaning 

o 
1 
4 
5 
8 
9 
12118 

o 
1 

normal 
reverse 
low 
reverse low 
blink 
reverse blink 
blink low 
Una Setup configured for 
emulate or monitor mode. 

off 
on 
Line Setup configured for 
emulate or monitor mode. 

Using spreadsheet tokens. the same test needs two CONDITIONS/ACTIONS 

blocks: 

CONDITIONS: DTE BDBCC 
ACTIONS: COUNTER bad_bee INC 
CONDITIONS: DCE BDBCC 
ACTIONS: COUNTER bad_bee INC 

When the user selects DTE or DCE on the first rack of softkeys for Layer 2 
conditions. a second rack appears from which he must select a particular 
frame type. A DTE INFO condition. for example. when translated. includes 
two C variables. one event variable and one status variable: 

dteJrame && (mJrame_fype == 0) 
) 

In C, the programmer does not need to specify a frame type. To include all 
frames in a condition, use the event variable only: 

CONDITIONS: 
{ 
dteJrame 

} 

2. Emulate mode only. Some events may be detected in emulate mode only. 
The event variables are rcvdJrame. invalidJrame. 12_T1. bee_error. 
nr _error. ns_error. and frame_sent. 

If you try to use one of these variables in monitor mode. you may be 
returned to the main program menu. When you go to the Protocol 
Spreadsheet and search for errors. a message like the following may be 
displayed: "Error 140: Unresolved reference rcvdJrame." 

When the user selects RCV on the first rack of softkeys for Layer 2 
conditions, a second rack appears from which he must select a particular 

77-6 



77 LAPD Library 

frame type. When the translator converts a Rev INFO condition into C. it 
will incltide two C variables, one event variable and one status variable: 

rcvdJrame && (rcvdJrame_type == O) 
} 

The C programmer does not have to specify a frame type. To include all 
received frames in a condition, use the event variable only: 

CONDITIONS: 
{ 
rcvdJrame 

} 

Error detecting may be accomplished via bec_error, nr _error, ns_error, and 
invalidJrame. These variables equate to the softkey tokens bearing similar 
names. 

One of the emulate-mode variables monitors an emulate action. The event 
variable frame _sent will not come true until the frame actually has been 
passed to the layer below. 

(8) Status Variables 

Status variables are those in Table 77·2 that do not include event in the Type 
column. Their associated event variables guarantee that they are updated and 
tested. 

The softkey-generated condition for received Info frames is ReV INFO. The C 
versi.on of the same condition should look like this: 

CONDITIONS: 
{ 
rcvdJrame && (rcvdJrame_type == 0) 

} 

1. Frame characteristics. All status variables in. Table 77-2 containing an m_ 
prefix are valid in either emulate or monitor mode: mJrame_addr _sapi, 
mJrame_addr _tei, mJrame_addr _cr, mJramejype, mJrame_cntrl_byte_l, 
mJrameYf, mJrame_bcc_type, mJrame_nr, and mJrame_ns. 

All status variables in Table 77-2 containing a rcvd_ prefix are valid in 
emulate mode only: rcvdJrame_addr _sapi, rcvdJrame_addr _tei, 
rcvdJrame_addr _cr, revdJrame,-type, rcVdJranfe_cntrl:,..byte_l, 
rcvdJrameYf, rcvdJrame_bccjype, rcvdJrame_nr, and rcvdJrame_ns. 

If you try to use an emulate-mode variable in monitor mode. you may be 
returned to the main· program menu. When you go to the Protocol 
Spreadsheet and search for errol'S, a messa.e like the following may be 
;displayed: "Error 140; Unresolved reference rcvdJrame_lype." 

77-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

2. Frame buffers. As BOP frames are received. they are automatically placed 
in IL message buffers to be passed up the layers. Three emulate-mode 
variables provide the user with access to the information in the frame that is 
located beyond the control byte. These variables are rcvdJrame_buff_se8, 
rcvdJrame_sdu_offset. and rcvdJrame_sdu_size. See Section 63.1 for a 
more detailed discussion of the buffer components to which these variables 
refer. 

Make a pointer to an IL buffer by casting rcvdJrame_buff_seg as a long, 
shifting it left sixteen bits, adding rcvdJrame_sdu_offset, and casting the 
result to a pointer. Increment the pointer twice (thereby adding two to the 
offset) . 

unsigned char .. ptr; 
ptr = ('\loid *)(((/ong)rcvdJrame_bufLseg« 16) + rcvdJrame_sdu_offset); 
ptr+=2; 

} 

It is now pointing at the first byte in the information field. You may 
continue to move through the frame for its entire length. indicated in 
rcvdJrame_sdu_size. 

3. Transmit window. Four related variables test the status of the Layer 2 
window. The particular values of these variables at any given time is not 
significant. What is significant is how they compare to each other. The 
softkey status condition on the left makes the variable comparison on the 
right: 

WINDOW FULL 

WINDOW EMPTY 

WINDOW NOT_FULL 

WINDOW NOT_EMPTY 

MORE_TO_RESEND 

NO_MORE_TO_RESEND 

12_current_window _edge =:: 12_upper _window_edge 

12_current_window _edge == 12_lower _window _edge 

12_current_window _edge != 12_upper _window_edge 

12_current_window _edge != 12_'ower _window _edge 

12Jesend_edge != l2_1ower _window _edge 

12_rtsend_edge == 12_1ower _window _edge 

(C) ContrOlling Protocol Trace Display 

To enhance or suppress particular frames on the Layer 2 Protocol Trace screen 
in emulate or monitor mode. assign a coded value to 12_enhance or l2_suppress. 
The possible values are listed in Table 77-2. To assign a value to either of these 
variables. place the statement in an ACTIONS block. For example. display RNR 
frames in reverse-video and suppress display of in,valid frames: 

77-8 



~fi" , I 
; 

CONDITIONS; RCV RNR 
ACTIONS: 
{ 
12_enhallce ::: 1; 

} 
CONDITIONS: RCV INVALID 
ACTIONS: 
{ 
12_suppress'" 1; 

} 

77 LAPD Ubrary 

Check the value of these display-control variables in a CONDITIONS block 

CONDITIONS: RCV INFO 
{ 
l2_enhallce =::: 1 

} 
ACTIONS: 
{ 
12_enhance = 0; 

} 

or an ACTIONS block: 

CONDITIONS: Rev INFO 
ACTIONS: 
{ 

} 

if(12_enhance =: 1) 
12_enhance ::: 0; 

77.3 Routines 

Use the following routines in emulate mode only. If you try to call one of these 
routines in monitor mode. you will be returned to the main program menu. When 
you go to the Protocol Spreadsheet and search for errors. a message like the 
following will be displayed: II Error 140: Unresolved reference 12 Jive_data. " 

(A) Receive 

12 _give_data 

Synopsis 

DeSl;rjption 

The 12.Jive_data routine takes an interlayer message buffer associated with a 
received INFO frame, changes the SDU offset to point to higher-level data, and 
sends a DL_DATA IND primitive up to Layer 3 along with a reference to this 
buffer. The softkey equivalent of this routine is the GIVE_DATA action on the 
Protocol Spreadsheet. 

77-9 



INTERVIEW 7000 Series Advanced Programming: ATLC 107-951 108 

Example 

Layer 3 wants access to the line in order to receive and send data. Assuming 
the LAPD personality package is loaded at Layer 2. enter the following program: 

LAYER: 2 
ST ATE: datalink 

CONDITIONS: DL_CONNECT REO 
ACTIONS: DL_CONNECT CONF 
CONDITIONS: DL_DATA REO 
ACTIONS: SEND INFO "(OL_DATA))' 
CONDITIONS: RCV INFO 
ACTIONS: 
{ 
l2Jive_data(); 

} 

(8) Transmit 

Synopsis 

extern Mid resendJrame(pf, first_or_next); 
unsigned char pf; 
unsigned char first_or _next; 

Description 

The resendJrame routine will resend either the first or next frame in the 
window with the P/F bit set to a specified value. The softkey equivalent of this 
routine is the (PROTOCL) RESEND action on the Protocol Spreadsheet. 

The first parameter is the value of the P/F bit in the frame. It may be set to 
either O. 1. or 2 (for loopback). 

The second parameter indicates whether the first frame in the window will be 
sent, or whether the next frame in the window will be sent. The first resend 
action will send the first frame in the window regardless of whether first or next 
has been selected. Legal entries are 0 (first) or 1 (next). 

77-10 



77 LAPD Ubrary 

Example 

Suppose you want to resend the entire transmit window if you receive a REJ 
frame. 

LAYER: 2 
STATE: xfer 

,. Whatever oonQltlons and actions send data precede the following condition. ., 

CONDITIONS: RCV REJ RESP 
ACTIONS: 
{ 
resendJrame(1. 0); 

} 
NEXT_STATE: recover 

STATE: recover 
CONDITIONS: FRAME_SENT 

MORE_TO _RESEND 
ACTIONS: 
{ 
resell dJra me (1 ,J}; 

} 
CONDITIONS: FRAME_SENT 

NO_MORE_TO_RESEND 
NEXT_STATE: )(fer 

SynQPsis 

Desctiption 

This routine resets the N(R) field in information and supervisory frames to zero. 
The softkey equivalent of this routine is the (PROTOCL) RSET _NR action on the 
Protocol Spreadsheet. 

Example 

When a link is established, reset N (R) . 

LAYER: 2 
STATE: reset 

CONDITIONS: ENTER_ STATE 
ACTIONS: SEND SABM 
CONDITIONS: RCV UA 
ACTIONS: 
{ 
reset_nrO; 

} 

77-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

reset ns 

Synopsis 

extern lIoid reset_ns(); 

DescJjption 

The N(S) field in information and supervisory frames is reset to zero and the 
transmit window is cleared. The softkey equivalent of this routine is the 
(PROTOCL) RSET _NS action on the Protocol Spreadsheet. 

Example 

When a link is established, reset N(S). 

LAYER: 2 
STATE: reset 

CONDITIONS: ENTER_STATE 
ACTIONS: SEND SABM 
CONDITIONS; RCV UA 
ACTIONS: 
{ 
reset _ ns () ; 

} 

send frame 

SynQPsis 

extern void sendJrame (ii_buffer _number, relay_baton. data _start_offset, transmit Jrame ""plr); 
unsigned short il_ buffer_number; 
unsigned short relay_baton; 
unsigned short data_start_offset; 
struct sendJrame_structure 
{ 
unsigned char sapi_type; 
unsigned char tei_type; 
unsigned char cr jype; 
unsigned char frame_type; 
unsigned char nr _type; 
unsigned char ns_type; 
unSigned char pJ_type; 
unsigned char bcc_type; 
unsigned char sapi_lIa/ue; 
unSigned char tei_lIalue; 
unsigned char cntrl_byte; 
unsigned char I'Ir _value; 
unsigned char nS_lJalue; 

}; 
struct sendJrame_structure "' transmitJrameJtr; 

Description 

The sendJrame routine adds a frame-level header to an interlayer message 
buffer and passes the buffer to Layer 1. The softkey equivalent of this routine is 
the SEND action on the Protocol Spreadsheet. 

77-12 



The first parameter is the interlayer message buffer number. 
63.3(A). Layer-Independent OSI routines. 

77 LAPD Ubrary 

See Section 

The second parameter is the maintain bit used to hold the buffer while the send 
operation is being performed. See Section 63.3(A). 

The third parameter is the offset from the beginning of the buffer to the start of 
the service data unit. See Section 63.3(A). 

The fourth parameter is a pointer to the frame structure to be sent. For a 
description of sendJrame_structure see Table 77-1. 

Example 

Send an Info frame containing a canned fox message and a good BeC onto the 
line. 

static unsigned short it_buffer _number; 
static unsigned short relay_baton; 
static unsigned short data_start_offset; 
struct sendJrame_structure 

} 

{ 
unsigned char sapi_type; 
unsigned char teCtype; 
unsigned char cr _type; 
unsigned char Jrame_type; 
unsigned char nr _type; 
unsigned char ns_type; 
unsigned char pJ_type; 
unsigned char bcc_type; 
unsigned char sapi_yalue; 
unsigned char tei_value; 
unsigned char cntrl_byte; 
unsigned char nr_yalue; 
unsigned char ns_value; 

}; 
struct sendJrame_structure transmitJrame; 
static char transmit_string [J :: "(FOX) "; 

LAYER: 2 
STATE: &end a frame 

CONDITIONS: KEYBOARD' • 
ACTIONS: 
{ 

} 

Jet_il_msg3)uf/( &iI_buf/er _number, .!trelay_baton); 
_start jCbuff_list (ii_buffer _number, &data_start_of/set); 
transmit Jrllme. bee_type :: 1; 
_insert_il_buf/_list_cnt(il_buJJer_lIumber, data_starr_offset, &transmit_string[Oj, 

(sizeof(transmit_string) - 1»; 
sen dJrame (ii_buffer _number, relay_baton, data_start_of/set, &transmitJrame); 

77-13 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

77-14 



~ fl··· 

78 Q.931 Library 

78Q.931 Library 

When the Q.931 package is loaded in via the Layer Setup screen, the following external 
variables become available for use by the programmer. Their use on the Protocol Spreadsheet 
is not limited to any particular layer. though normally they belong at Layer 3. 

The variables approximate Q.931 Layer 3 spreadsheet-generated conditions and actions. 
Refer to Section 38 for more detailed explanations of the purposes of specific conditions and 
actions. Sometimes the name of the variable is sufficient for identifying its related spreadsheet 
token. When this is not the case, the information is provided below. 

78.1 Structures 

There are no extern structures associated exclusively with Q.931. 

78.2 Variables 

The variables discussed below apply when the Line Setup menu shows either emulate 
or monitor mode. Emulate mode, however. is not supported by emulate-only 
conditions and actions on the Protocol Spreadsheet. 

(A) Monitoring Events 

Q.931 Layer 3 event variables detect packets on either side of the line. See 
Table 78-1. They are valid in either emulate or monitor mode. The event 
variables are dt€....packet and dce....Packet. 

When the user selects DTE or DCE on the first rack of softkeys for Layer :3 
conditions. a second rack appears from which he must select a particular 
message type. A DTE INFO condition. for example. when translated, includes two 
C variables, one event variable and one status variable: 

{ 
dteYQCktt && (m_messageJype == O.x7b) 

} 

Asa C programmer, you do not need to specify a message type. To include all 
DTn messages in a condition, use the event variable only: 

CONDITIONS: 
{ 
dtl!Jacket 

} 

78-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Table 78-1 
0.931 Variables 

Type Variable Value (hex/decimal) Meaning 

extern event 

extern event 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile const unsigned char 

m_packet_bcc_type 1 
2 
3 

m_caIIJef_lIag 0 
1 

78-2 

True when a OTE packet Is 
detected. Line Setup 
configured for emulate or 
monitor mode. 

True when a DeE packet is 
detected. Line Setup 
configured for emulate or 
monitor mode. 

good 
bad 
abort 

Une Setup configured for 
emulate or monitor mode. 

Actual value of protocol 
discriminator-should be 6. Line 
Setup configured for emulate or 
monitor mode. 

origination side 
destination side 

Une Setup configured for 
emulate or monitor mode. 

Actual value received is not a 
defined value for a LAPD 
message type. 

Aotual value received Is one of 
the following valid values for a 
LAPD message type: 

1 alerting 
2 call proceeding 
5 setup 
7 connect 
d/13 setup ack 
f 115 connect ack 
20/32 user Info 
21/33 suspend rej 
22/34 resume rej 
25/37 suspend 
26/38 resume 
2d/45 suspend ack 
2e/46 resume aok 
40/64 detach 
45/69 disconnect 
48/72 detach ack 
4d/77 release 
5a/90 release complete 
60/96 cancel 
62/98 facility 
6411 00 register 
68/104 cancel aek 
6a/106 facility ack 
6e/l06 register ack 



Type 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile const unSigned char 

"~ f' i 

extern volatile const unsigned char * 

extern volatHe const unsigned char * 

extern unsigned char 

extern unsigned char 

78 0.931 Library 

Table 78·1 (continued) 

Variable Value (hex/decimal) Meaning 

13 _suppress 

78-3 

OO-fflO-255 

0-15 

o 
1 
4 
5 
8 
9 
12/18 

o 
1 

70/112 
72/114 
741116 
79/121 
7b/123 
7d/125 

cancel rej 
facUlty raj 
raglster rej 
congestion control 
Info 
status 

Une Setup configured for 
emulate or monitor mode. 

Actual value of the 
message-type byte. Una Satup 
configured for emulate or 
monitor mode. 

Length of the call-reference 
value field. Une Setup 
configured for emulate or 
monitor mOde. 

Length of Information element 
field. The total includes all 
information elements. Une 
Setup configured for emulate or 
monitor mode, 

Pointer to the call-reference 
valUe field. Begins at the first 
byte, oontalning the call 
reference length, Line Setup 
configured for emulate or 
monitor mode. 

Pointer to the Information 
element field, Begins at the 
first byte after the 
message-type byte. Line Setup 
configured for emulate or 
monitor mode. 

normal 
reverse 
low 
reverse low 
blink 
reverse blink 
blink low 

Une Setup configured for 
emulate or monitor mode, 

off 
on 

Une Setup configured for 
emulate or monitor mode. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

(8) Status Variables 

Status variables are those in Table 78-1 that do not include event in the Type 
column. Their associated event variables guarantee that they are updated and 
tested. 

The softkey-generated condition for DTE Info frames is DTE INFO. The C 
version of the same condition should look like this: 

CONDITIONS: 
{ 
dteyacket &d'< (m_messag'_type == Ox7b) 

} 

1. Packet characteristics. All status variables in Table 78-1 containing an m_ 
prefix are valid in either emulate or monitor mode: myacket_bccjype, 
myrot_disc, m_callJef_len, m_calCrefJlag, m_message_type, 
m_message_type_defined, and m_info_element_len. 

2. Pointers. Two pointers provide access to variable-length fields. 
mytr _to_callJef is the pointer to the call-reference field. 
mytr _to_info_element is the pointer to the information-element field. 

(C) Controlling Protocol Trace Display 

To enhance or suppress particular packets on the Layer 3 Protocol Trace screen 
in emulate or monitor mode, assign a coded value to 13_enhance or I3_suppress. 
The values are listed in Table 78-1. To assign a value to either of these 
variables. place the statement in an ACTIONS block. For example, display 
Suspend messages in reverse-video and suppress display of Status messages: 

CONDITIONS: DTE SUSPEND 
ACTIONS: 
{ 
lJ_,nhance= 1; 

} 
CONDITIONS: DTE STATUS 
ACTIONS: 
{ 
13 juppress = 1; 

} 

Check the value of these display-control variables in a CONDITIONS block 

CONDITIONS: DTE INFO 
{ 
is_enhance == 1 

} 
ACtiONS: 
{ 
l3 _enhance'" 0; 

} 

78-4 



f"t'. .. I 

or an ACTIONS block: 

CONDITIONS: DTE INFO 
ACTIONS: 
{ 

} 

if(13 _enhance == 1) 
I3_enhance:= 0; 

78.3 Routines 

There are no routines associated exclusively with Q.931. 

78-5 

----.-~-------- -----.----.-.-------... -.-. 

78 9.931 Ubrary 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

78-6 



#~f"'\ 
" ! 

; 

79 SS#7 Layer 2 Ubrary 

79 SS#7 Layer 2 Library 

When the SS#7 Layer 2 package is loaded in via the Layer Setup screen, most of the 
foHowing external variables become available for use by the programmer. Their use on the 
Protocol Spreadsheet is not limited to any particular layer, though normally they belong at 
Layer 2. 

The SS#7 Layer 1 variables shown in Table 79~2 are accessible only when the Layer 1 
SS7 _CMPRESN package is loaded in via the Layer Setup screen. They do not have related 
spreadsheet tokens. These Layer 1 variables are included in this section since they are 
associated with the Layer 2 event variables in Table 79~ 1. 

The Layer 2 variables approximate 5S#7 Layer 2 spreadsheet-generated conditions and 
actions. Refer to Section 42 for more detailed explanations of the purposes of specific 
conditions and actions. Sometimes the name of the variable is sufficient for identifying its 
related spreadsheet token. When this is not the case, the information. is provided below. 

79.1 Structures 

There are no extern structures associated exclusively with SS#7. 

79.2 Variables 

The variables discussed below apply when the Line Setup menu shows either emulate 
or monitor mode. Emulate mode, however, is not supported by emulate-only 
conditiohs and actions on the Protocol Spreadsheet. 

(A) Monitoring Events 
88#7 Layer 2 events include frames detected. good or bad BCC's, and aborts. 
All event variables in Table 79*1 containing a dtt_ or dee_ prefix are valid in 
either emulate or monitor mode. These event variables are dteJrame. 
de~Jrame, dteJood_bee. deeJood_bce. dte_bad_bee, dee_bad_bee, dte_abort. 
dee,-abort. 

You can use both dte and dee variables relating to the same event in one 
conditions block. Suppose you want to count all bad BeC's from either side of 
the line. Enter the following CONDITIONS/ACTIONS block: 

CONDITIONS: 
{ 

dte_bad_bee II dee_had_bee 
} 
ACtiONS: COUNTER bad_bee INC 

79-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table 79-1 
SS#7 Layer 2 Variables 

Type Variable Value (hex/decimal) Meaning 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern event 

extern volatile const unsigned char 

extern volatile const unsigned char 

extern volatile canst unsigned char 

79-2 

1 
2 
3 

o 
non-zero 

o 
1 

True when a non-suppressed 
OTE frame Is detected. Line 
Setup configured for emulate or 
monitor mode. 

True when a non-suppressed 
DeE frame Is detected. Line 
Setup configured for emulate or 
monitor mode. 

True when a non-suppressed 
good Bee is calculated for a 
OTE frame, Line Setup 
oonfigured for emulate or 
monitor mode. 

True when a non-suppressed 
good Bee Is calculated for a 
DeE frame. Une Setup 
configured for emulate or 
monitor mode. 

True when a bad Bee Is 
oalculated for Ii OTE frame. 
Line Setup configured for 
emulate or monitor mode, 

True when a bad Bee Is 
calculated for a DeE frame, 
Line Setup configured for 
emulate or monitor mode, 

True when an abort Is detected 
for a OTE frame. Line Setup 
configured for emulate or 
monitor mode. 

True when an abort Is detected 
for a DeE frame. Line Setup 
oonflgured for emulate or 
monitor mode. 

Fill-In Signal Unit (FI) 
Link Status Signal Unit I LSU) 
Message Signal Unit (MSU) 

Line Setup configured for 
emulate or monitor mode. 

o 
1 
Line Setup oonfigured for 
emulate or monitor mode. 

o 
1 
Line Setup configured for 
emulate or monitor mode. 



79 SS#7 Layer 2 Ubrary 

Table 79-1 (continued) 

Type Variable Value (hex/decimal) Meaning 

extern volatile const unsigned char mJI o FI 
LSU 
MSU 

1-2 
3-3f/63 

Une Setup configured for 
emulate or monitor mode. 

extern volatile const unsigned char o 
1 
2 
3 
4 
5 

out of alignment 
normal 
emergency 
out of service 
processor out 
busy 
Une Setup configured for 
emulate or monitor mode. 

extern volatile const unsigned char 1 
2 
3 

good bcc 

extern unsigned char 

extern unsigned char 

12_enhance o 
1 
4 
5 
8 
9 
12/18 

o 
1 

bad boe 
abort 
Une Setup oonflgured for 
emulate or monttor mode. 

normal 
reverse 
low 
reverse low 
blink 
reverse blink 
blink low 
Une Setup configured for 
emulate or monitor mode. 

off 
on 
Line Setup configured for 
emulate or monitor mode. 

When the user selects DTE or DCE on the first rack of softkeys for Layer 2 

conditions, a second rack appears from which he must select a particular frame 
type. A DTE FILL_IN condition, for example, when translated. includes two C 
variables, one event variable and one status variable: 

dteJrame && (m_unit_type =: 1) 
} 

The C programmer does not need to specify a frame type. To include all 
frames in a condition, use the event variable only: 

CONDITIONS: 
{ 
dteJrame 

} 

79-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

(8) Status Variables 

Status variables are those in Table 79-1 that do not include event in the Type 
column. Their associated event variables guarantee that they are updated and 
tested. 

The softkey-generated condition for DTE Busy Link Status Signal Unit is DTE 

STATUS= B. The C version of the same condition should look like this: 

CONDITIONS: 
{ 
dteJrame && (m_unit_type == 2) && (mJoO == 5) 

} 

Status variables in Table 79-1 containing an m_ prefix are valid in either emulate 
or monitor mode: m_unit_type, m_bib, mJib, m_li, m_soO, and 
mJrame_bcc_type. 

The Layer 1 variables listed in Table 79-2 are also status variables. valid in 
either emulate or monitor mode. Any of the Layer 2 event variables in 
Table 79-1 guarantee that they are updated and tested. 

NOTE: The SS#7 Layer 1 variables are updated frequently. If 
you want to track these variables for statistical purposes, we 
recommend that you copy their values into temporary variables. 

(C) ContrOlling Protocol Trace Display 

To enhance or suppress particular frames on the Layer 2 Protocol Trace screen 
in emulate or monitor mode. assign a coded value to 12_enhance or 12_suppress. 
The values are listed in Table 79-1. To assign a value to either of these 
variables. place the statement in an ACTIONS block. For example. display only 
Link Signal Units. Of these, display Emergency LSU's in reverse-video. 

CONDITIONS; 
{ 
dteJrame &:& (m_unit_type 1= 2) 

} 
ACTIONS: 
{ 
12_suppress:;: 1; 

} 
CONDITIONS: 
{ 
dteJrame && (m_unit_type :::= 2) && (m_soO == 2} 

} 
ACTIONS: 
{ 
12 _enhance::: 1; 

} 

79-4 



~" . i . 
I 

Type 

extern unsigned short 

extern unsigned shart 

extern unsigned short 

extern unsigned short 

79 SS#7 Layer 2 Library 

Table 19-2 
SS#7 Layer 1 Variables 

Variable Value (hex/decimal) Meaning 

Number of DTE Fill-In or Link 
Status Signal Units suppressed 
since the last nan-suppressed 
frame. Una Setup configured 
for emulate or monitor mode. 

Number of DCE Fill-In or Unk 
Status Signal Units suppressed 
since the last non-suppressed 
frame. Une Setup configured 
for emulate ar monItor mode. 

Number of DTE flags received 
since the last non-suppressed 
frame. Une Setup configured 
for emulate or monitor mode. 

Number of DCE flags received 
since the last non-suppressed 
frame. Une Setup configured 
for emulate or monitor mode. 

Check the value of these display-control variables in a CONDITIONS block 

CONDITIONS: 
{ 
dteJrame && (m_unitJype == 2) && (m_soO "':: 2) && (12_enhance == OJ 

} 
ACTIONS: 
{ 
12_enhance::: 1; 

} 

or an ACTIONS block: 

CONDITIONS: 
{ 
dteJrame && (m_unit_type == 2) && (m_saO == 2) 

} 
ACTIONS: 
{ 

} 

if(12_enhance == 0, 
l2 _enhance::: 1; 

79.3 Routines 

There are no routines associated exclusively with SS#7. 

19-5 



INTERVIEW 7000 Series Advanced Proaramming: ATLC-107-9S1-10B 

79-6 



80 S$#7 Laysr 3 Library 

80 S5#7 Layer 3 Library 

When the SS#7 Layer 3 package is loaded in via the Layer Setup screen, the following 
external variables become available for use by the programmer. Their use on the Protocol 
Spreadsheet is not limited to any particular layer, though normally they belong at Layer 3. 

The variables approximate 55#7 Layer 3 spreadsheet-generated conditions and actions. Refer 
to Section 43 for more detailed explanations of the purposes of specific conditions and 
actions. Someilines the name of the variable is sufficient for identifying its related spreadsheet 
token. When this is not the case, the information is provided below. 

80.1 Structures 

There are no extern structures associated ex.clusively with SS#7. 

80.2 Variables 

The variables discussed below apply when the Line Setup menu shows either emulate 
or monitor mode. Emulate mode, however, is not supported by emulate-only 
conditions and actions on the Protocol Spreadsheet. 

(A) Monitoring Events 

SS#7 Layer 3 event variables detect Message Signal Units on either side of the 
line. See Table 80-1. They are valid in either emulate or monitor mode. The 
event variables are dteyacket and dceyacket. 

When the user selects OTE or DeE on the first rack of softkeys for Layer 3 
conditions, a second rack appears from which he must select a particular MSU 
type. A DTE NETM condition, for example. when translated. includes two C 
variables. one event variable and one status variable: 

{ 
dttYQcket &-eft (m_sio_si == 0) 

} 

As a C programmer, you do not have to specify an MSU type. To include all 
DTE Message Signal Urtits in a condition. use the event variable only: 

CONDITIONS: 
{ 
dttYQclut 

} 

80-1 



INTERVIEW 7000 Series Advance~d Programming: ATLC-107-951-10B 

Table 80-1 
SS#7 Layer 3 Variables 

Type Variable Value (hex/decimal) Meaning 

extern event dee -packet 

extern event dte_packet 

extern volatile const unsigned char 

extern volatile canst unsigned char 

extern volatile canst unsigned char 

extern volatile canst unsigned char 

o 
40/64 
60/128 
cO/192 

o 
10/16 
20/32 
30/48 

0-7 

o 
1 
2 
3 
4 
5 
6 
7 

8-fl8-15 

1 
2 

True when a DeE packet Is 
detected. Line Setup 
configured for emulate or 
monitor mode. 

True when a OTe packet Is 
detected. Line Setup 
configured for emulate or 
monitor mode. 

International 0 
International 1 
national 0 
national 1 
Line Setup configured for 
emulate or monitor mode. 

prlorlty=O 
prlorlty=1 
prlorlty=2 
prlorlty=3 
Line Setup configured for 
emulate or monitor mode. 

User part: 

netm 
ntr 
nts 
seep 
tup 
Isdn 
dupO 
dup1 

spare 
Une Setup configured for 
emulate or monitor mode. 

lest headers:t 
(high 4 bits not defined) 

ltm 
Ita 

t The high four bits In test headers are not defined. To check the value of m_cod8_type for test headers, and 
m _code_type with OxOf: 

For LIM's, header equals 1; for LTA's, header equals 2. 

80-2 



Type' 

tr\ 
I 

80 SSlf7 Layer 3 Library 

Table 80-1 (continued) 

Variable Value (hex/decimal) Meaning 

80-3 

1 
2 
3 
4 
5 
6 
1 
8 
9 
a/10 
bIll 
0/12 
d/13 
e/14 
f/15 
10/16 

11117 
12/18 
13/19 
14/20 
15/21 
15/21 
16/22 
18/24 
21/33 
22/34 
23/35 
24/36 
25i37 
25/37 

26138 
28/40 
34/52 
35/53 
36/54 
38156 
44/68 
45/69 
46/70 
48/72 
51/81 
54/84 
56/86 
61/96 
641100 
661102 
76/118 
86/134 

SCCp beaders: 

or 
oe 
oref 
rlad 
ric 
dt1 
dt2 
ak 
udt 
Udts 
ed 
ea 
rsr 
rso 
err 
it 

NETM headers: 

coo 
eoo 
ret 
tfp 
rap (US format only) 
rst (CCITT format only) 
lin 
dle 
eoa 
eea 
tfo 
top (US format only) 
rar (US format only) 
rst (CCITT format only. national 
option) 
Ion 
css 
tfr 
rep (US format only} 
lia 
ens 
tor (US format only) 
rer {US format only I 
lua 
cnp 
obd 
Ua 
lid 
cba 
tca (US format only) 
Ifu 
HI 
In 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

Table 80-1 (continued) 

Type Variable Value (hex/decimal) Meaning 

IUe !:u~ag~l:i: 

6 anu 
10 reserved 
11/17 lam 
12/18 gsm 
13/19 grq 
14120 acm 
15/21 see 
16/22 ane 
17123 rig 
18/24 mgb 
19/25 efm 
21/33 lal 
24/36 chg 
25/37 cge 
26/38 ann 
27/39 blo 
28/40 mba 
29/41 cpm 
31/49 sam 
32/50 cot 
35/53 nne 
36/54 cbk 
37/55 bla 
38/56 mgu 
39/57 cpa 
41/65 sao 
42/66 cef 
45/69 adi 
46/70 elf 
47/71 ubi 
48/72 mua 
49/73 esv 
55/85 efl 
56/86 ran 
57/87 uba 
58/88 hgb 
59/89 evm 
65/101 ssb 
66/102 fot 
67/103 eer 
68/104 hba 
69/105 erm 
75/117 unn 
76/118 ecl 
77/119 rsc 
76/120 hgu 
79/121 ell 
85/133 los 
88/136 hua 

80-4 



80 SS#7 Layer 3 Library 

Table 80·1 (continued) 

Type Variable Value (hex/decimal) Meaning 

{TUP headers continued) 

951149 sst 
98/152 grs 
a5/165 aob 
a8/168 gra 
b5/181 dpn 
be/184 sgb 
051197 mpr 
08/200 sba 
da1216 sgu 
88/232 sua 
f5/245 eum 
161246 earn 

ISDN beaders: 

1 tam 
2 sam 
3 Inr 
4 Inf 
5 oot 
6 aom 
8 fot 
9 anm 
a/10 ubm 
bIll rei 
d/12 pau 
e/14 res 
f/15 rlad 
10116 rio 
11/17 oor 
12/18 rse 
13119 blo 
14120 ubi 
15/21 bla 
16/22 uba 
17123 grs 
18/24 cgb 
19/25 ogu 
1a/26 ogba 
lb/27 agua 
10/28 emr 
1d/29 erne 
1e/30 rem 
1fI31 far 
20/32 faa 
21133 frj 
22/34 fad 
23/35 tal 
25/37 cavr 
26/38 esvs 
27/39 drs 
28/40 pam 
29/41 gra 

Une Setup oonfigured for 
emulate or monitor mode. ~, 

i 

80-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table 80·1 (continued) 

Type Variable Value (hex/decimal) Meaning 

extern volatile unsigned long mJabel_dpc 0-31ft{ 
0-16383 CCITT format (2 bytes) 

O-ffffffl 
0-16777215 ANSI format (3 bytes) 

LIne Setup configured for 
emulate or monitor mode. 

extern volatile unsigned iong 0-3ftfl 
0-16383 CCrTT format 12 bytes) 

O-ffffffl 
D-16777215 ANSI format (3 bytes) 

Line Setup configured for 
emulate or monitor mode. 

extern volatile canst unsigned char mJabeLsls 0-flO-15 CCITT format 
D-1f/O-31 ANSI format 

LIne Setup configured for 
emulate or monitor mode. 

extern volatile unsigned short 0-ffflO-4095 TUP MSUs 
O-ffft 10-65535 ISDN MSUs 

Line .Setup configured for 
emulate or monitor mode. 

extern unsigned char 0 normal 
1 reverse 
4 low 
5 reverse low 
8 blink 
9 reverse blink 
12/18 blink low 

Line Setup configured for 
emulate or monitor mode. 

extern unsigned char 0 off 
1 on 

Line Setup configured for 
emulate or monitor mode. 

(8) Status Variables 
Status variables are those in Table 80-1 that do not include event in the Type 
column. Their associated event variables guarantee that they are updated and 
tested. 

The softkey-generated condition for NETM Message Signal Units on the DTE 
side of the line is DTE NETM. The C version of the same condition should look 
like this: 

CONDITIONS: 
{ 
dte....packtt cleft (m_sio_si =:: 0) 

} 

80-6 



~. 
I 

60 SS#7 Layer 3 Ubrary 

Most status variables in Table 80-1 contain an m_ prefix: m_sio_ni, 
mjioyriority, m_sio_si, m_codejype, m_labeCdpc, m_labeCopc, m_Iabel_sls, 
and m_cic. 

(C) Controlling Protocol Trace Display 

To enhance or suppress particular packets on the Layer 3 Protocol Trace screen 
in emulate or monitor mode, assign a coded value to 13 _enhance or 13 _suppress. 
The values are listed in Table 80-1. To assign a value to either of these 
variables, place the statement in an ACTIONS block. For example. display only 
messages with NETM headers. Of these, display Transfer Restricted headers in 
reverse-video. 

CONDITIONS: 
{ 
dteJacket && (m_sio_si 1= 0) 

} 

ACTIONS: 
{ 
l3 _suppress = 1: 

} 
CONDITIONS: 
{ 
dteJacket && (m_sio_si == 0) && (m_code_lJpe == Ox34) 

} 
ACTIONS: 
{ 
13_enhance = 1; 

} 

Check the value of these display-control variables in a CONDITIONS block 

CONDITIONS: 
{ 
dteJacket && (m_sio_si 1= 0) && (l2_suppress == 0) 

} 
ACTIONS: 
{ 
12_suppress = I; 

} 

or an ACTIONS block: 

CONDITIONS: 
{ 
dteJacket && (m_sio_si != 0) 

} 
ACTIONS: 
{ 

} 

if(12_suppress =::: OJ 
12_suppress = 1; 

80-7 

.......... ~m _______ "~,_ .. jI£ ____ • ,_I!!u .... ?_ ...... ' 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

80.3 Routines .... 

There are no routines associated exclusively with 88#7. 

80-8 



Il', 
{ I 

I 

~ , i 

Appendix A Operator Messages 

Appendix A: Operator Messages 

A-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

A-2 



,I'i", Appendix A 1 Interactive Messages 

Appendix A 1: Interactive Messages 

The following messages are displayed on the second line of the screen. normally during execution of 
menu-screen functions. 

MESSAGE 

Attempt to transfer source to itself 

Attempted to mount uninitialized 
disk 

Attempting to initialize link 

BNDX message request failed 

Backup complete. no errors 

Bad object file format 

Can't load object file - Incompatible 
FEB installed 

Can't load object file - Incompatible 
MPM addressing 

MEANING 

Source selections in the From and To fields on the 
Data Transfer screen are the same. Change one 
selection. To use one drive to perform data transfer 
involving two disks. change To selection to ~ . 

Check disk. It may require formatting. 

Physical link being established prior to transfer. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Duplication process is successful. 

Data is not recognized in format of object file. Try 
again to save the source file as an object file. 

Current hardware is different from hardware of unit on 
which object file was saved. Save the source file as an 
object file on the unit on which it will be loaded and 
run. 

Current hardware is different from hardware of unit on 
which object file was saved. Save the source file as an 
object file on the unit on which it will be loaded and 
run. 

A1-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Can't load object file - Incompatible 
mux installed 

Can't load object file - Insufficient 
MPMs 

Can't load object file - No mux installed 

Can't read disk 

Cannot append to a wrapped OAT 

Cannot copy a file to itself 

Cannot copy directory tree into itself 

Cannot delete a non-empty directory 

Cannot open file 

Cannot open redirect file 

Current hardware is different from hardware of unit on 
which object file was saved. Save the source file as an 
object file on the urnt on which it will be loaded and 
run. 

Current hardware is different from hardware of unit on 
which object file was saved. Save the source file as an 
object file on the unit on which it win be loaded and 
run. 

Current hardware is different from hardware of unit on 
which object file was saved. Save the source file as an 
object file on the unit on which it will be loaded and 
run. 

Make sure disk is correctly inserted. If message 
recurs, disk may be bad. 

Record Setup menu shows Stop at: :~li¢$.~~:'99f:L End 
of data acquisition tracks was reached, so wrapping 
occurred. Then, Data Transfer command attempted 
to append data from source to the end of OAT on 
destination disk. Select Start At: ::;'-t{~'ifu~i: on Data 
Transfer screen. 

Be certain that name of destination file on File 
Maintenance screen differs from name of 
source file. 

Attempt to copy a directory into one of its 
subdirectories. For example, a command to copy lusr 
into lusr/programs will fail. 

File named for deletion is directory containing files. 
Before deleting directory, delete or move files. 

In attempt to load or save a file, the file could not 
be opened. Check the write-protect window. It 
should be closed to write to the disk. 

Printer Setup menu shows that output will be 
redirected to a file. Check to make sure that the disk 
is properly inserted in the correct drive and is not 
write-protected. 

A1-2 



~, 
[ I , 

Cannot move file across disk boundaries 

Cannot remove an open file 

Cannot unmount disk. files open 

Cannot write to redirect file 

Change floppy disk 1 

Change floppy disk 2 

Character buffer not yet allocated 

Compilation aborted 

Compilation completed 

Compilation failed - Errors detected 

Compilation is in progress 

Appendix A1 Interact/ve Messages 

Attempt to rename a file from one disk to another. 
Make sure only one drive is specified on File 
Maintenance screen. 

Attempt was made to copy a directory into itself. 
Files being copied also need to be deleted. but cannot 
be since they are open. Copy the directory to another 
source. In general. close files before attempting to 
delete them. 

Attempt was made to remove disk before operation 
was completed. 

Printer Setup menu shows that output will be 
redirected to a file. Error in trying to write to the file. 
Check disk. 

During multi-disk recording operation. disk in drive 1 
has been filled. Remove old disk and insert 
new one. 

During multi-disk recording operation. disk in drive 2 
has been ruled. Remove old disk and insert 
new one. 

From field on the Data Transfer screen shows 
~~, but unless Run has been executed. there 
is no character buffer. Press S, and then try the 
transfer operation again. 

User has pressed ABORT softkey or S to arrest the 
Compile operation (from the File Maintenance menu). 
Destination file may have been partially overwritten if 
compile was to an existing file. 

The Compile command (from the File Maintenance 
menu) has been executed. 

The Compile command (from the File Maintenance 
menu) has been aborted because of errors. Go to the 
Protocol Spreadsheet and press S. @ to display the 
first error message. 

The Compile command (from the File Maintenance 
menu) is being executed to compile and save a file of 
standard C code as object code. 

A1-3 

"" .. ~=~n""""""'_ .... " ______ """ __ ""''' _______ '''''·~·~ ___ ·_'·'_·_~~ ___ ~_~---->~,----.--.----"----



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Copy completed 

Copy is in progress 

Could not load a layer personality 
package 

Current test invalidated 

Data transfer source and destination are 
the same 

Destination disk does not contain 
user file system 

Destination file is a directory 

Destination file is write protected 

Directory file expected 

Directory is empty 

Directory is not empty 

Disk corrupted 

Disk duplication aborted 

Selected file(s) has (have) been copied successfully. 

Selected file(s) is (are) being copied. 

Attempt to load a protocol package from the Layer 
Setup screen has failed. Make sure that correct 
disk is installed in drive indicated on menu. If 
attempt still fails, package may have been corrupted. 

Changes have been made to the menu screens or 
Protocol Spreadsheet which invalidate a loaded object 
file. 

Source selections in the From and To fields on the 
Data Transfer screen are the same. Change one 
selection. To use one drive to perform data transfer 
involving two disks. change To selection to ~W: . 

Check file contents on File Maintenance screen. If 
disk is intended for user files. you may need to 
allocate disk space to the filing system. Use Disk 
Utilities screen to check disk allocation. 

Copy or save operation not complete because file 
named to receive copy is a directory. Change 
destination filename and re-execute. 

Change destination filename or write-enable file. 
Then repeat save or copy operation. 

Check directory named in Change Directory 
command. Use only names labeled DIR in file 
listings. 

Attempted to copy the contents of an empty directory. 

Directory cannot be deleted until all of the files it 
contains have been deleted. 

Disk is worn out or damaged and should not be used 
for future operations. 

Operator has· aborted disk duplication. Data on 
destination disk may have been panially overwritten. 

A1-4 



Disk duplication in progress 

Disk formatted 

Disk full 

Disk not mounted 

Disk record error ( controller error) 
-- Aborted 

Disk record error (timeout) -- Aborted 

Display screen command failed 

Entering testprep 

Error during load of code file 

Error trying to print file 

Error trying to print screen 

Errors occurred during load 

Errors occurred during save 

Errors occurred during testprep 

.---.--------.-----~ .. -- , 

Appendi)( A 1 Interactive Messages 

Disk is being duplicated. Do not remove disks from 
active drives. 

Formatting operation is complete. 

No space left on disk to perform operation. Use a 
new disk. or remove unneeded data from disk. 

Re-insert disk and attempt operation again. Also try 

to power-up again. If message recurs, the disk may 
be bad. 

Disk may be write protected or recording too 
fast. Also may be an internal error or bad disk. Try 
again with a new disk. Contact Customer Service if it 
recurs. 

May be an internal error or bad disk. Try again with 
a new disk. Disk may be write protected or recording 
too fast. 

Message should not normally appear. Contact 
Customer Service if it recurs. 

First status message entering Run mode. Test 
preparation mode precedes compilation of program. 

Check code files. Message indicates code file is not 
found. or code file has been modified. 

Try printing again. If attempt fails. disk file is 
probably corrupted. 

Try printing again. If problem recurs. contact 
Customer Service. 

Try loading again. If attempt fails, disk file is 
probably corrupted. 

Try saving again. If attempt fails, disk is probably 
corrupted. 

Attempt to perform Save command as a object file 
before the program had ever been compiled. An error 
was detected as compilation was attempted. Go to the 
Protocol Spreaclsheet and search for errors. The Line 
Setup menu. for example, may show Mode: 

:@;~Qa?i% and Source: :~:, but no disk is present 
in the selected drive. 

Al-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Fatal Hardware Error 

Fatal Software Error 

FE buffer overflowed - Incoming data 
halted 

File access error 

File copy aborted 

File is a directory 

File is write-protected 

File loaded 

File name not found 

File name already exists 

File saved 

File size can't be increased, 
index block full 

Formatting disk - max floppy disk 
DAT allowed = 1422K bytes 

Formatting disk - max hard disk DAT 
allowed = 20774K bytes 

Invalid hardware setup. Contact Customer Service. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Data is coming in faster than it can be received. 

File named cannot be accessed. Check disk. 

User has pressed ABORT softkey to arrest copy 
operation. Destination file may have been partially 
overwritten if copy was to an existing file. 

Operation. View for example. could not be performed 
on a directory. Select or enter the name of a file. 
See listings -on File Maintenance screen for entry NOT 
labeled DIR. 

File named cannot be deleted or saved. Check name. 
To perform operation on named file, write-enable it 
from the File Maintenance screen. 

File has been loaded successfully as a Program. Setup, 
or Object file. 

Filename (or directory) as entered does not appear in 
listings. Check spelling of entry. Make sure you are 
operating in correct directory. 

Attempt to use the Make Directory command. naming 
a directory that already exists. 

File has been saved successfully as a Program, Setup, 
or Object file. 

File is larger than the file system can handle. 

Too much space specified for data acquisition 
tracks. Maximum space has been allocated. 

Too much space specified for data acquisition 
tracks. Maximum space has been allocated. 

A1-6 



Formatting disk 

Formatting will destroy data 
- Depress F1 key to continue. 

Function failed -- Check media 

Function(s) not yet implemented 

II buffer services error 

Illegal device name 

Illegal expansion unit. not 1-255 

Illegal file number passed to open 

Illegal major device number given 

Illegal parameter to volume iniL function 

Illegal pathname 

Illegal position parameter, not 0-2 

illegal synchronization mode, not 0-2 

Indirect stat update msg received 

APpendix A 1 Interactive Messages 

Formatting in progress. Do not remove disk from 
active drive. 

Message appears when a formatted disk has been 
inserted for reformatting. Press ABORT to avoid 
overwriting data. Press F1 to format the disk. 

Attempt operation again. If operation still fails. disk 
may be bad. Try new disk. 

Operation attempted is not available with the software 
version installed. 

Error in using OSI variables or routines. May occur, 
for example, if operation is attempted on buffer which 
no longer exists. Set maintain bits at each layer that 
needs to reserve the buffer for subsequent operations. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Message should not normally appear. If it recurs. 
contact Customer Service. 

Message should not normally appear. If it recurs. 
contact Customer Service. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Pathname provided is incomplete or invalid. Check 
entry. 

Message should not normally appear. If it recurs. 
contact Customer Service. 

Message should not normally appear. If it recurs. 
contact Customer Service. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

A1-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Insert next disk -- Depress F 1 key 
to continue 

Insert destination disk, depress F 1 key to 
continue 

Insert source disk, depress Fi key to 
continue 

Internal disk sub-system error 

Inter-processor communication overrun 

Invalid contents in field 

Invalid DA T block version number 

Invalid DA T version number 

Invalid data type 

Invalid destination 

Invalid disk sub-system function 
number 

Invalid file identifier, no such 
open file 

Invalid file identifier. out of range 

Invalid filetype 

More than one disk required to perform duplication. 

Operation involving more than one disk being 
performed using one drive. 

Operation involving more than one disk being 
performed using one drive. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Communication from MPM to CPM occurring too fast 
for CPM. Available buffer space exceeded. 

Entry made in menu field is illegal. 

Each block in DAT has a version number. If it is 
wrong. the disk may be corrupted. 

Header in OAT has a version number. If it is wrong, 
the disk may be corrupted. 

During attempted playback, INTERVIEW did not 
recognize type of data. Be certain recoKled data 
rather than program data is being accessed. 

Destination file in a Copy command is a relative 
pathname on a drive which is not the current drive. 

Message should not normally appear. If it 
recurs. contact Customer Service. 

Message should not normally appear. If it 
recurs, contact Customer Service. 

Message should not normally appear. If it recurs. 
contact Customer Service. 

Command cannot be used on file type indicated. A 
Load command. for example. is not valid for SYS 
files. 

A1-8 



Invalid filetype for viewing 

Invalid layer number 

Invalid object code version 

Invalid section name 

Invalid stat update msg received 

Load aborted 

Load is in progress 

Loaded package and configuration screen 
don't match 

Marked entry not copied 

Marked entry not deleted 

Marked entry not printed 

Appendix A 1 Interactive Messages 

View command cannot be used for data in file 
indicated. Files with type SYS, for example. cannot 
be viewed. 

User has entered layer number out of valid range. 

Object file was saved under a different version than 
current software. Save the source file as an object file 
using the same software with which is will be loaded 
and run. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Operator has aborted Load operation. Program 
already residing in INTERVIEW may have been 
altered. 

Selected Program, Setup, or Object file is being 
loaded. 

Message should not normally appear. If it recurs. 
contact Customer Service. 

Too many items have been marked for single 
operation. Not all files marked have been copied. 
Check listings on the File Maintenance screen. Files 
still marked are not yet copied. Repeat copy 
operation on remaining files. 

Too many items have been marked for single 
operation. Not all files marked have been deleted. 
Check listings on the File Maintenance screen. Files 
still marked are not yet deleted. Repeat delete 
operation on remaining files. 

Too many items have been marked for single 
operation. Not all mes marked have been printed. 
Check listings on the File Maintenance screen. Files 
still marked are not yet printed. Repeat print 
operation on remaining files. 

A1-9 



INTERVIEW 7000 Series Advanced Programming: ATLC-l07-9S1-10B 

Maximum number of entries exceeded 

Maximum disks already mounted 

Memory has not been unlocked yet 

Message exchange full 

Message ID too big 

Move would destroy directory tree 
structure 

MPM -- Bus error 

. MPM -- Divide fault 

MPM -- Processor fault 

MPM -- Memory fault 

MPM -- Stack fault 

NEWDISK illegal with source of hard disk 

Error on Tabular Statistics screen. Maximum number 
of entries is 100. 

Message should not normally appear. If it recurs. 
contact Customer Service. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Message should not normally appear. If it recurs. 
contact Customer Service. 

Message should not normally appear. If it recurs. 
contact Customer Service. 

Attempt to rename a directory the same as one of its 
subdirectories. 

May indicate a hardware problem, but check program 
for logic errors relating to storage allocation. May 
have attempted to access something that doesn't exist. 

Program may include an attempt to divide by zero. 
Check for other logic errors in program. 

May indicate a hardware problem, but check program 
for logic errors relating to storage allocation. May 
have attempted to access something that doesn't exist. 

Logic error in program, typically relating to storage 
allocation. May have attempted to access something 
that doesn't exist, accessing an array outside of its 
range, for example. May also indicate type 
mismatches. 

Logic error in program, typically relating to storage 
allocation. May have attempted to access something 
that doesn't exist, accessing an array outside of its 
range, for example. May also indicate type 
mismatches. 

When To field for a Copy command isN.$W, it means 
that the same drive will be used to perform a copy 
involving two disks. Change From field to ~~~( or 
:R: .. 

A1-10 



NEWDISK illegal with source of RAM or 
hard disk 

No DA T RAM currently allocated 

No default directory set 

No file name specified 

No package loaded for this layer 

No packages loaded 

No RAM recording memory available 

No start of section indicator 

No message entered in message 
buffer 

Obsolete object program - Source must 
be recompiled 

Out of memory 

Operation not allowed on specified file 

Parent directory of fueis 
write-protected 

Parent directory of targ~t fUe does not 
exist 

ARpenrlixA1 Interactive Messages 

When To field for a Data Transfer command is ~, 
it means that the same drive will be used to perform a 
transfer involving two disks. Change From field to 

~~ff or :~ffl#1 . 

Attempt to transfer data from RAM without it having 
been recorded previously to RAM. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Enter or indicate file on which operation attempted is 
to be performed. 

Selection has been made on the Layer Setup screen, 
but no protocol package has been loaded. Return to 
Layer Setup, check selection, and press §]. 

Selections have been made on the Layer Setup screen. 
but no protocol packages have been loaded. Return to 
Layer Setup, check selections. and press §J. 

Program is too large to be recorded into available 
RAM. 

Operation on file cannot be performed because (1) file 
is not a program or setup, (2) format of the file is 
invalid. or (3) file has been corrupted. 

Check BERT screen. Configured menu indicated a 
message would be sent, but none was entered. 

Object file is incompatible with current software. 

Insufficient memory to perfonn operation. (Program is 
too large to run.) 

Selected command cannot be used on file indicated. 

Parent directory must be write-enabled before you 
can modify or delete this file. 

Check spelling of directory. 

Al-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

Play underrun 

Premature end of section 

Previous lock user has died 

Print queue is full 

Printing is done 

Record overrun 

Remove screen command failed 

Replace screen command failed 

Resetting compiled test 

Routine calling save""pr0L,setup is 
unknown 

Save aborted 

Save is in progress 

Seek attempted before beginning of DAT 

Data could not be output at speed requested. 

Operation on file cannot be performed because (1) file 
is not a program or setup, (2) format of the file is 
invalid. or (3) file has been corrupted. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Maximum number of print jobs has been requested. 
Wait for some requests to be completed. Then repeat 
print operation. 

Print jobs requested are completed. 

Data being received too rapidly for capture to RAM. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Program being run again without recompiling. Menus 
can be viewed and selected changes can be made to 
menus without forcing a recompile. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Operator has aboned save operation. If save was to 
an existing file, the file may have been partially 
overwritten. 

Selected Program, Setup, or Object file is being saved. 

Data Transfer screen shows transfer from disk with 
Start At Block entry that precedes the block number at 
which data actuaUy begins. DAT may begin at block 
20, for example. If yoU enter Start At Block: 2, this 
error message will be displayed. To guarantee that 
data transfer starts from the beginning of DAT. enter 
zero in the Start At Block field. Zero is a special 
entry. It references the beginning of DAT, regardless 
of what the actual block number may be. Any other 
entry is interpreted as a literal block number. 

A1-12 



~, 
ilH I : , ! 

Seek attempted past end of DA T 

Seek attempted past end of file 

Source & destination can't be the 
same disk 

Source disk does not contain user 
file system 

Source file not found 

Stopped at end of DA T 

TEST PREPARATION Phase 1 

TEST PREPARATION Phase 2 

TEST PREPARATION Phase 3 

TEST PREPARATION Phase 4 

TEST PREPARATION Phase 5 

TEST PREPARATION Phase 6 

TEST PREPARATION' Phase 7 

There are no free locks left 

ARBt.ndix A 1 InteraCt/vI Messages 

Data Transfer screen shows transfer from disk with 
Start At Block entry that exceeds the block number at 
which data actually ends. DAT may end at block 
100. for example. If you enter Start At Block: t01, 

this error message will be displayed. To guarantee that 
data transfer stans from the beginning of DAT. enter 
zero in the Start At Block field. Zero is a special 
entry. It references the beginning of DAT, regardless 
of what the actual block number may be. Any other 
entry is interpreted as a literal block number. 

Message should not normally appear. If it recurs. 
contact Customer Service. 

Error in entries made for disk duplication. Check 
disks selected. 

Check disk contents on the Disk Utility screen. 
If disk is intended for user files. you may need 
to allocate space to the filing.system. 

In Interview 10/15/20 file transfer. the source file 
which was specified does not exist. 

During playback. stopped at end of recorded data. 
During recording. stopped at end of data acquisition 
tracks. 

Program is being compiled. 

Program is being compiled. 

Program is being compiled. 

Program is being compiled. 

Program is being compiled. 

Program is being compiled. 

Program is being compiled. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

A1-13 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Token in load file is invalid 

Token is incomplete 

Too many files in directory 

Too many files on disk, FLIST full 

Too many open files for process 

Too many open files for system 

Too many processes using disk sub-system 

Too many source files selected 

Transfer aborted 

Transfer complete 

Transfer in progress 

Transmit overrun 

Unable to access disk 

Operation on file cannot be performed because (1) 
file is not a program, setup, or object, (2) format of 
the file is invalid, or (3) file has been corrupted. 

Operation on file cannot be performed because (1) file 
is not a program, setup, or object, (2) format of the 
file is invalid, or (3) file has been corrupted. 

Maximum number of files that can be displayed is 
200. If the current directory contains more than 200 
files, this message is displayed. 

Directory area on disk is full, although there may be 
more space available for recording. Delete 
unnecessary filenames to gain access to free space 
remaining on disk. 

Each process is limited to a maximum of ten files open 
at one time. 

There is a system-wide limit of 20 files open at one 
time. 

There can be no more than twelve processes using file 
1/0 simultaneously. 

Operator has used E3 to select multiple source files 
for executing the Compile command (from the File 
Maintenance menu). Select only one source file to 
compile and save as a linkable-object (LOBJ) file. 

Data transfer operation has been aborted. Partial 
transfer of data may have occurred, overwriting storage 
medium at destination. 

Data transfer has been completed successfully. 

Data transfer being executed. 

Attempt to transmit data faster than unit can transmit. 

No file named in a Data Transfer to a file, disk not in 
drive, disk is write-protected. or disk is unformatted. 

A1-14 



~, 
", I , 

l 

Unable to access disk in selected drive. 

Unable to access m_list 

Unable to execute XEQ key 

Unable to open OAT 

Unable to open file 

Unable to open next disk 

Unable to read DAT info block 

Unable to read file 

Unable to read from DAT 

Unable to write to DA T 

Unhandled CPM interrupt 

Unhandled MPM interrupt 

Unknown DAT type 

Apoendlx A 1 Interactive Messages 

During multi-disk recording, the next drive in 
sequence does not contain a disk, contains a 
write-protected disk. or contains an unformatted disk. 
During file maintenance operations or disk duplication, 
source disk is not present in selected drive, is 
write-protected, or is unformatted. 

Disk error. Check disk and try operation again. If 
message recurs, disk may need reformatting. 

Attempt to execute a File Maintenance command 
before the current directory is displayed. 

There are no data acquisition tracks on the disk being 
accessed. 

Disk error. Check disk and try operation again. If 
message recurs. disk may need reformatting. 

Recording using more than one disk. Next disk may 
not be installed. 

DA T block not where indicated. Disk may be 
corrupted. 

Check disk. 

Check disk. 

1) May have attempted to transfer more data to 
destination disk than the space allocated for data 
during disk formatting. A Summary of the disk may 
show no free space remaining for data acquisition. 2) 
Disk may be write-protected. 

Message should not normally appear. If it recurs, 
contact Customer Service. 

Press S to recover from this error. Message should 
not normally appear, however. If it recurs, contact 
Customer Service. 

Data acquisition tracks may have been recorded on a 
unit with more recent software than is installed in the 
unit being used to playback the data. 

Al-15 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Unknown filetype 

Unprintable screen 

Unrecoverable error during format 

Check entry in file listing. Check disk. Try operation 
again. If message recurs, delete and recreate file (if 
possible). Some file types may not be known for 
certain operations. A Print command on a SYS file, 
for example, generates this error message. 

Screen requested cannot be printed. Refer to section 
on printing for printable screens. 

Format operation failed. Make sure disk is inserted 
properly in selected drive. Check disk type. One 
Mbyte disks are not supported. If disk type is correct, 
re-attempt formatting. If second attempt fails, disk 
may be bad. 

A1-16 



ApQflndix A2 Error Mess'mls Issued by C Trans/ator 

AppendixA2: Error Messages Issued by 
C Translator 

If a spreadsheet program contains any of the fonowing errors, the compilation will be interrupted and 
you win be returned to the Protocol Spreadsheet. A diagnostic message about the first error will be 
displayed at the top (second line) of the screen. To search for additional error messages, press £rn. 

MESSAGE 

AR "C" conditions text too long 

Bad format in object file 

BIB value out of range 

Bit mask exceeds maximum length 

Cannot find object file 

Constant reference stack overflow 

Constant value too long 

Duplicate state name 

MEANING 

A C region in a CONDITIONS block is more than 300 
characters. 

Unsuccessful attempt to access linkable-object file via 
the OBJECT block identifier. Use the Compile 
command on the File Maintenance screen to recreate 
the LOBJ file. and try again. 

An 5S#7 condition at Layer 2 specifies a BIB= value 
that is not zero or one. 

A FLAG condition or FLAG name SET action includes a 
bit mask that exceeds 16 bits. In other uses, bit mask 
is typically eight bits. ' 

Attempt to access a linkable-object file via the OBJECT 

block identifier. Either the file does not exist, or it 
resides in a directory not included in the search path. 

1) Attempt to nest constants more than eight deep, or 
2) constants are defined circularly. 

Context in which constant is used determines what 
value is too long. A constant in a Layer 1 receive 
string condition, for example, when expanded. cannot 
exceed 32 characters. 

Attempt to use state name twice in the same test. 

A2-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Duplicate test name 

Edit buffer full 

Empty conditions section 

FIB value out of range 

Identifier exceeds maximum length 

Idle string must contain exactly one 
character 

Illegal bit value 

Illegal cause value 

Illegal eIe type for ISDN 

Illegal eIe type for TUP 

Illegal control byte 

Illegal diag value 

Attempt to use test name twice in the same task 
(layer) . 

Spreadsheet program is too large. Use include files. 

There is no entry for a CONDITIONS block. 

An SS#7 condition at Layer 2 specifies an FIB:: value 
that is not zero or one. 

Message should not normally appear. It means, 
however, that an identifier is too long for the context 
in which it is being used. 

Layer 1 IDLE action includes a string with more than 
one character. 

Bit has been assigned a value other than zero or one. 
In X.2S protocol, for example. the user supplies a 
value for the Q, D, or M bit at Layer 3. 

An X.2S condition at Layer 3 specifies a numeric 
value for the CAUSE= selection which is outside the 
valid range. Select a value between hexadecimal 0 
and FF. 

An 5S#7 condition at Layer 3 specifies a CIC:: value 
for an ISDN header which is outside the valid range. 
Select a value between hexadecimal 0 and FFFF. 

An SS#7 condition at Layer 3 specifies a CtC= value 
for a TUP header which is outside the valid range. 
Select a value between hexadecimal 0 and FFF. 

An X.2S. LAPD, SDLe, or SNA condition at Layer 2 
(as in the example which fonows) specifies a value for 
the frame type which is outside the valid range: 
CONDITIONS: DTE OTHER 1FF. Select a value between 
hexadecimal 0 and FF. 

An X.2S condition at Layer 3 specifies a value for the 
DIAG= selection which is outside the valid range. 
Select a value between hexadecimal 0 and FF. 

A2-2 



Illegal OPC type 

Illegal frame address 

Illegal LCN value 

Illegal OPC type 

Illegal path number 

Illegal P/F bit 

Illegal PR value 

Illegal PS value 

Illegal receive count 

Illegal SAPI value 

Appendix A2 Error MesUflts Jss.y&d by C Translator 

An SS#7 condition at Layer 3 specifies a value for the 
DPC= selection which is outside the valid range. For 
CCITT format, select a value between hexadecimal 0 
and 3FFF. For ANSI format. select a value between 
hexadecimal 0 and FFFFFF. 

An X.2S, SOLC. or SNA condition at Layer 2 (as in 
the example which follows) specifies a value for the 
frame address which is outside the valid range: 
CONDITIONS: OTE INFO ADOR= 1FF. Select a value 
between hexadecimal 0 and FF. 

An X.2S condition at Layer 3 specifies a value for the 
LCN:::: selection which is outside the valid range. Select 
a value between hexadecimal 0 and FFF. 

An SS#7 condition at Layer 3 specifies a value for the 
OPC", selection which is outside the valid range. For 
CCIIT format, select a value between hexadecimal 0 
and 3FFF. For ANSI format, select a value between 
hexadecimal 0 and FFFFFF. . 

An X.2S condition or action at Layer 3 specifies a 
value for the PATH", selection which is outside the valid 
range. Select a value between zero and eight. 

An X.2St SOLC. or SNA condition or SEND action at 
Layer 2 specifies a value for the P/F= selection that is 
not zero or one. 

An X.2S SEND action at Layer 3 specifies a value for 
the PR= selection which is outside the valid range. 
Select a value between zero and 127. 

An X.25 SEND action at Layer 3 specifies a value for 
the PS= selection which is outside the valid range. 
Select a value between zero and 127. 

In an X.2S, SDLC. LAPO. or SNA Layer 2 SEND 

action. the value specified for N(R) is out of range. 
Select a value between zero and 127. 

A LAPD condition or SEND action at Layer 2 specifies 
a value for the SAPI: selection which is outside the 
valid range. Select a value between hexadecimal 0 
and 3F. 

A2-3 

.----.-~-----.. -------..... -. 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Illegal send count 

Illegal SI type 

Illegal SLS type 

Illegal TEl value 

Incomplete EIA action 

Invalid constant reference 

Invalid counter arguments 

Invalid counter value 

Invalid day of month 

Invalid flag arguments 

In an X.2S. SDLC, LAPD. or SNA Layer 2 SEND 

action, the value specified for N (S) is out of range. 
Select a value between zero and 127. 

In an SS#7 Layer 3 OTHER condition, the value 
specified for Service Information is out of range. 
Select a value between hexadecimal 0 and FF. 

An SS#7 condition at Layer 3 specifies a value for the 
SLS= selection which is outside the valid range. For 
CCIrr format. select a value between hexadecimal 0 
and F. For ANSI format, select a value between 
hexadecimal 0 and iF. 

A LAPD condition or SEND action at Layer 2 specifies 
a value for the TEI= selection which is outside the valid 
range. Select a value between hexadecimal 0 and 7F. 

Required number of softkey selections have not been 
made for a Layer 1 EIA action. 

Valid characters for a constant name include 0-9, 
upper- and lower-case letters. and underscores. 
Name cannot begin with a number. The message also 
may indicate that a special "constant" of the form 
(!name/45j») has been used, but the string using it is 
missing the enclosing quotation marks. 

In a SEND action. the string to be sent contains a 
reference of the form ((counterln]). The value of n is 
out of range. Select a value between zero and three. 

COUNTER condition or a COUNTER name SET action 
specifies a value for the counter which is outside the 
valid range. Select a value between zero and 
4.294.967,295. 

TIME condition specifies a day of the month which is 
outside the valid range. Select a value between one 
and thirty-one. 

In a SEND action, the string to be sent contains a 
reference of the form «Jlag{nj)). The value of n is out 
of range. Select either zero or one. 

A2-4 



Invalid time value 

Invalid time of day 

Invalid timeout value 

Invalid trigger (lacks transitional) 

Invalid trigger (multiple transitional-only) 

Invalid character in constant name 

No closing ) 

No closing J 

No more errors 

Not an object file 

Obsolete object file version 

Ape,9'1dix A2 Error Messatns Issued by C Translator 

TIME condition specifies a time which is outside the 
valid range for the 24-hour format. 

TIME condition specifies a time which is outside the 
valid range for the 24-hour format. 

TIMEOUT name RESTART action specifies a value which 
is outside the valid range. Select a value between 
0.001 and 65.535. Do not begin entry with decimal 
point. 

Condition does not contain an event. At Layer 3 in 
X.25 for example. the status-only condition 
MORE_TO_RESEND is not combined with an event. 
Add an event such as PACKET_SENT to the condition. 

Condition contains more than one event. Since no 
two events can come true at the Same time. move one 
of the events to a separate CONDITIONS block. 

Valid characters include 0-9, upper- and lower-case 
letters, and underscores. Name cannot begin with a 
number. 

Double parentheses delimit constants. 

In a SEND action, the string contains a reference to a 
flag or counter which includes additional information 
inside brackets. The closing bracket is missing. 

There are no more errors to be displayed via 
GO_ERR. The next time you press @, the last error 
message will be displayed. 

Attempt to access a file via the OBJECT block identifier 
that has a type other than LOBJ (linkable-object). 
Use the Compile command on the File Maintenance 
screen to create a linkable-object file from a source 
file containing standard C code. 

Attempt to access a linkable-object file via the OBJECT 

block identifier. Use the Compile command on the 
File Maintenance screen to recompile the source file. 
and try again. 

A2-5 



INTERVIEW 7000 Series Advanced Programming: ATLG-107-951-10B 

Obsolete package loaded 

Out of buffer space 

Out of memory 

Premature end of file 

Receive string cannot be longer than 
32 characters 

Reference to undefined constant 

Reference to undefined state 

Syntax error 

There is no next state 

Unclosed AR"C" region 

Unclosed quoted string 

Undefined name 

Unexpected character in constant name 

Unknown object file version 

A layer personality package is loaded which came from 
an older version of the software. The package is 
attempting to use facilities which are not provided in 
the current version of the software. 

The translator has run out of memory. 

The translator has run out of memory. 

1) Required softkey selections for a condition have not 
been made. To send a string at Layer 1, for example, 
you must make a BCC selection. or 2) string does not 
contain closing quotation mark. 

RECEIVE STRING condition at Layer 1 contains more 
than 32 characters. Note that constants are expanded 
before they are counted. 

Attempt to use a constant that has not been defined. 

State name referenced in NEXT_STATE does not exist. 

Program may contain punctuation errors or incomplete 
softkey selections. This message often accompanies 
other errors messages. 

Included NEXT_STATE: NEXT, but no state follows. 

1) Unequal number of opening and closing curly 
braces. 2) unclosed quotation marks, or 3) unclosed 
parentheses. 

Insert closing quotation marks at end of string. 

The string in a SEND action contains a constant 
reference which does not refer to any defined flag, 
counter, constant. or special inter-layer data constant. 

Valid characters include 0-9. upper- and lower-case 
letters, and underscores. Name cannot begin with a 
number. 

Should not normally appear. May be attempting to 
use version of a linkable-object file which is 
incompatible with older versions of software. 

A trigger condition has both ENTER_STATE and a line 
condition including the WAIT _EOF option. This error is 
a special case of the "Invalid trigger (multiple 
transition-only)" error. 

A2-6 



App,ndix A3 Error MeSS8Q'f!S Issued by C Complier 

Appendix A3: Error Messages Issued by C 
Compiler 

Most of the following messages report errors that interrupt the compilation of a spreadsheet program 
and return you to the Protocol Spreadsheet. A diagnostic message about the first error will be 
displayed at the top (second line) of the screen. Some messages also serve as warnings. Warnings do 
not cause compilation to be aborted, but they are displayed on the Protocol Spreadsheet with error 
messages. Suppress warning messages using the following #pragma: 

#pTagma nOWQm 

Table A3·1 
Numbered Error Messages Returned for C Codingt 

001 Only integral values may be added to pointers. 

002 Within constant expressions, the operand of the unary '&' operator must be an 
object of static storage class. 

003 Only integers and pointers may be converted to pointers. 

004 Attempt to create more than one instance of a task which waits for fast_event 
variable-task instance '(identifier)'. 

005 Only numeric values may be converted to float. 

006 Illegal operation on relocatable value in constant expcession. 

007 Illegal conversion from a structure or union type. 

008 Operands of binary operator have incompatible types. 

009 Illegal indirection through a non-pointer value. 

010 An integral constant expression is required. 

011 A scalar expression is required. 

012 Bitfield values are not allowed in constant expressions. 

013 Operands of .... '/'. and ''YO' must be numeric. 

~' tErrors 001 - 699 are returned by the compiler. Errors 700 and higher are returned by the pre-processor. 
t 

A3-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

Table A3-1 (Continued) 

014 Operands of logical operators must be integers. 

015 Pointer values being compared or subtracted in constant expressions must pointJo 
the same aggregate. 

016 Assignment operators are invalid in constant expressions. 

017 Operands of % operator may not be floating point. 

018 The ++ and -- operators are invalid in constant expressions. 

019 A non-relocatable constant expression is expected. 

020 Relocatable quantities cannot be converted to float in constant expressions. 

021 Void expressions are not permitted in constant expressions. 

022 A structure or union is required for membership operators. 

023 Attempt to apply a subscript to something other than an array or pointer. 

024 Only integral values and pointers may be subtracted from pointers. 

025 Pointers may only be subtracted from pointers of the same type. 

026 Undeclared variable • (identifier)' . 

027 Constant expressions may not have type 'void'. 

028 Illegal implicit pointer-to-floating conversion. 

029 Illegal implicit pointer-ta-integer conversion. 

030 Illegal implicit pointer-to-pointer conversion. 

031 Illegal implicit integer-to-pointer conversion. 

032 Illegal implicit floating-to-pointer conversion. 

033 Illegal conversion. 

034 Attempt to use an event variable in an arithmetic expression. 

A3-2 



APRf,ndix A3 Error M!ssaaes Issued by C Compiler 

Table A3-1 (Continued) 

035 Parameter declarations are invalid with function prototypes. 

036 Functions may not be initialized. 

037 Task instances may not be initialized. 

038 Typedefs may not be initialized. 

039 Invalid initializer on function or task. 

040 Array or structure initializers must be a list of constant expressions. 

041 Attempt to initialize a bitfield with a relocatable value. 

042 String is too long to fit into array. 

043 Too many levels of braces in initializer. 

044 Too many initializers. 

~, 045 
, I 

Union (identifier) undefined. 
I , 
I 

046 Struct (identifier) undefined. 

047 Task has more than one entrypoint. 

048 File has more than one entrypoint. 

049 A function exceeds 64K bytes in size. 

050 Integral type expected. 

051 Incompatible types. 

052 Pointers must be of the same type. 

053 Integral expression expected. 

054 Illegal operands of minus. 

055 Arithmetic types required. 

A3-3 



INTERVIEW 7000 Series Advanced Proaramming: ATLC-107-9S1-108 

Table A3-1 (Continued) 

056 Division by zero. 

057 Division by zero prohibited. 

058 Illegal types. 

059 Arithmetic types expected. 

060 Integral types expected. 

061 The operands of the (symbol) operator have incompatible types. 

062 Operands of incompatible type to '(symbol)' operator. 

063 Branch condition must have scalar type. 

064 Value of void function used. 

065 Value of task invocation used. 

066 Attempt to invoke an object which is not a function or task. 

067 Argument must not be void. 

068 Not enough arguments supplied in function call. 

069 Too many arguments supplied in function call. 

070 Unknown size. 

071 Attempt to call bad function. 

072 Extensive use of fast_event variables has caused a code segment to overflow it's 
64K byte limit. 

073 (Identifier) undeclared. 

074 The left operand of the DOT operator must be of structure or union type. 

075 The left operand of the -> operator must be either a pointer to a structure, or a 
pointer to a union. 

A3-4 



~" 
i' I ' , 

'I. / > ••• 

076 

077 

078 

079 

080 

081 

082 

083 

084 

085 

086 

087 

088 

089 

090 

095 

091 

092 

093 

094 

ApRendix A3 Error Messages Issued by C Compiler 

Table A3-1 (Continued) 

(Identifier) is an unknown member. 

Illegal indirection or illegal subscript. 

Illegal L-value. 

Operand of prefix (symbol ++ or --) operator must be scalar. 

Operand of postfix (symbol ++ or --) operator must be scalar. 

Unary PLUS operator requires scalar operand. 

Unary minus operator requires arithmetic operand. 

Bitwise NOT operator requires integral operand. 

DEFAULT not inside SWITCH. 

Multiple DEFAULT's in switch. 

Label • (identifier)' multiply defined. 

BREAK outside of loop or switch. 

CONTINUE outside of loop. 

RETURN is invalid inside WAITFOR. 

Void functions must not return a value. 

Conflicting tag: (struct, union, enum, or task) (identifier) and (struct. union, 
enum, or task) (identifier). 

Expression must have type 'label'. 

Controlling expression must be integral. 

CASE expression must be integral. 

Duplicate CASE. value = (number). 

A3-5 



INTERVIEW 7000 Series Advanced Proarammlng: ATLC-107-9S1-108 

Table A3-1 (Continued) 

096 WAITFOR is invalid within another WAITFOR. 

097 Attempt to wait for non-event variable. 

098 Invalid L-value. 

099 Attempt to modify CONST L-value. 

100 Attempt to use an event value in an expression. 

101 Attempt to use a label value in an expression. 

102 Attempt to use a void value. 

103 Arrays of functions or tasks are invalid. 

104 Illegal storage class for function. 

lOS Illegal storage class for task instance. 

106 Invalid storage class. 

107 Extern variables may not be initialized within a function. 

108 Function (identifier) redeclared. 

109 Function (identifier) redefmed. 

110 (Identifier) redec1ared. 

111 (Identifier) redefined. 

112 Typedef redefined. 

113 Label '(identifier)' is undefined. 

114 (1) Unknown size for (identifier). 

115 (2) Unknown size for (identifier). 

116 Enum (tag identifier) redeclared. 

A3-6 



117 

118 

119 

120 

121 

122 

123 

124 

125 

126 
·1"1\ 

127 I 

128 

129 

130 

131 

132 

133 

134 

135 

136 

Agpendix A3 Error Messs!l!s Issued by C Compiler 

Table 1\3-1 (Continued) 

Newline in character constant. 

Newline in string constant. 

Unknown character. 

Unexpected character. 

Token type missing. 

Wrong type of declarator for function definition. 

Parameter # (number) has no identifier. 

(Named item) is declared in the parameter declarations. but is not listed in the 
parameter list of the function. 

Extra ; in function definition. 

Syntax error in attribute. 

Syntax error in declarator or initializer. 

Syntax error in initializer. 

Syntax error in parameter definition. 

Attempt to initialize a formal parameter. 

Syntax error in parameter. 

Syntax error in struct/union declaration. 

Syntax error in type specifier. 

Syntax error in strUcture member. 

Syntax error in enumerator list. 

Syntax error in enumerator. 

A3-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Table A3-1 (Continued) 

137 Syntax error in task specifier. 

138 Syntax error in array subscript. 

139 Syntax error in parameter list. 

140 Unresolved reference (identifier). 

141 Syntax error in statement. 

142 Syntax error in conditional expression. 

143 Syntax error in DO statement. 

144 Syntax error in condition. 

145 Syntax error in BREAK statement. 

146 Syntax error in CONTINUE statement. 

147 Syntax error in RETURN statement. 

148 Syntax error in GOTO expression. 

149 Syntax error in TASK list. 

150 Syntax error in FOR statement. 

151 Syntax error in FOR initialization. 

152 Syntax error in FOR condition. 

153 Syntax error in FOR increment. 

154 Syntax error in SWITCH condition. 

155 Syntax error in CASE expression. 

156 Syntax error in compound statement. 

A3-8 



&:»2endix A3 ErrQr MQssagss Issued by C Compl/er 

Table A3-1 (Continued) 

157 Syntax error in sizeof type name. 

158 Syntax error in subscript. 

159 Syntax error in function caU. 

160 Syntax, error in expression. 

161 Type clash. 

162 More than one storage class. 

163 Array of unknown size. 

164 Cannot take size of function. 

165 Structure or union of unknown size. 

166 Circular definition of enumerated type. 

~. ..... I ' . 167 Cannot take size of task. 

168 Srruct (identifier) redeclared. 

169 Functions and tasks may not be structure members. 

170 Zero-width bitfields may not be named. 

171 Structure member (identifier) multiply defined. 

172 Invalid negative bit-field width. 

173 (Struct, union, enum, or task) (identifier) multiply defined. 

174 Task (identifier) redeclared. 

175 Union (identifier) redeclared. 

176 Functions and tasks may not be union members. 

A3-9 



INTERVIEW 7000 Series Advanoed Programming: ATLC-107-951-108 

Table A3·1 (Continued) 

177 Invalid zero-bit member. 

178 Union member (identifier) multiply defined. 

179 No main routine supplied. 

180 Arrow operator given structure, not a pointer. 

181 DOT operator given a pointer to a structure. not a structure. 

182 Address of array. 

183 Address of function. 

184 Address of register variable. 

185 Address of bit-field. 

186 Address of non-L-value. 

187 Attempt to use a LABEL value in an expression. 

188 Attempt to use an EVENT value in an expression. 

189 Invalid zero or negative array dimension, 

190 Only canst or volatile allowed. 

191 Maximum bit-field width is 16. 

192 Illegal storage class for formal parameter. 

193 Function parameters may not be functions. 

194 Function parameters may not be tasks. 

195 Bad parameter storage class. 

196 Event expression required in waitfor clause, 

A3-10 



Appendix A3 Erro( Messages Issued by C Compiler 

Table A3-1 (Continued) 

197 Scalars must be initialized with a single expression. optionally in braces. 

198 Label undeclared. 

199 Syntax error in declarator or initializer. 

200 Pointers to different objects shouldn't be subtraCted. 

201 Duplicate formal parameters of a function. 

202 External variables may not be initialized inside of a function. 

203 Formal parameters of functions may not be initialized. 

204 Attempt to use labels outside a function. 

205 Variable (identifier) undeclared. 

206 Attempt to take the value of a typedef. 

207 Function's stack frame is too large. 

208 Floating point has not yet been implemented. 

209 Invalid conversion of relocatable quantity in constant expression. 

210 Attempt to redefine the reserved name '(identifier)'. 

211 CASE outside of switch statement. 

212 Returned values of this size are not implemented. 

213 Unrecoverable syntax error. 

214 Parsing stack overflow. 

215 Too many errors have been encountered during compilation. 

216 Compiler aborted. 

A3-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

Table A3-1 (Continued) 

217 Register variable • (identifier)' declared with non-scalar type. 

218 Implicit declaration of function • (identifier) , . 

219 Out of memory during compilation-program too big. 

220 Internal software error in compiler (error number). Compilation aborted. 

221 No T1 Mux Installed. 

222 A waitfor statement has one or more condition clauses, none of which names an 
event variable. This is often caused by either misspelling an event variable, or by 
failing to declare an event variable. 

223 The variable '(identifier)' has been declared inside of a task with the "extern" 
attribute. but has never been defined within that task. In this context, the 
keyword "extern" may only be used to forward-declare an identifier which is fully 
defined later in the task body. 

226 Invalid or Incompatible Data Acquisition Tracks on selected playback device. 

227 No ISDN Mux Installed. 

230 Object file (name) is in obsolete format. Fix by recompiling it. 

231 Symbol (identifier) multiply defined by object file. 

232 The symbol (identifier) has been used as an event variable in one module and as a 
. function or variable in another. 

233 The symbol (identifier) has type event in one module. but has type fast_event in 
another. 

234 Different modules have used the symbol (identifier) inconsistently as code, data, or 
read-only data. 

235 Bad format in object file (name). 

236 Cannot find object file (name). 

A3-12 



.>7~. 
< ! 

I 

A()pendix A3 Error Messages Issued by C Compiler 

Table A3·1 (Continued) 

700 HeIse inside of #else clause. 

701 #elif inside of #else clause. 

702 Too many nested #if's. 

703 Extra tokens at end of line. 

704 Unexpected end of file. 

705 Identifier missing from#ifdef directive. 

706 Identifier missing from #Undef directive. 

707 #elif without matching #if. 

708 #else without matching #if. 

709 #endif without matching #if. 

710 Syntax error. 

711 Syntax error in constant expression. 

712 String constant in constant expression. 

713 Invalid character in collstant expression. 

714 Error in hex number. 

715 End of file in char constant. 

716 Newline in char constant. 

717 End of file in string. 

718 Newline inside string. 

719 Attempt to divide by zero. 

720 Unknown preprocessor command. 

A3-13 

•• _O< _____ • __ ~ ___ ••• __ • ___ ._. ____ ~. ________ • __________ •• _ •• _. --



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

Table A3-1 (Continued) 

721 Syntax error in formal parameters of macro. 

722 Duplication of formal parameter (identifier) in macro definition. 

723 No macro name given. 

724 Macro. redefined. 

725 Syntax error in #line directive. 

726 Unterminated string literal. 

727 Cannot open include file (identifier). 

728 Cannot find include file (identifier). 

729 Identifier does not exist. 

730 Syntax error in #include directive. 

731 Include identifier is not defined. 

732 Unterminated character constant. 

733 End of file inside char constant. 

734 End of file inside string. 

735 End of file inside comment. 

736 Argument list required. 

737 Attempt to close bracket [ or { with ). 

738 Attempt to close arg list with}. 

739 Attempt to close bracket [ or ( with }. 

740 Attempt to close arg list with]. 

A3-14 



AppendlxA3 . . Error MHsgs Issued by C Compiler 

Table A3-1 (Continued) 

741 Attempt to close bracket ( or { with ]. 

742 Incomplete argument list. 

743 No parameter after a # char. 

744 (User-generated error message.) 

745 File ends with \ \. 

746 Number of arguments does not match number of parameters. 

749 Identifier missing from #undef. 

A3-15 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

A3-16 



~, 
~ ~ 

! 

r 

AppendIx B Glossary 

Appendix B: Glossary of Acronyms, 
Abbreviations and Mnemonics 

ACK 
ACTLU 
ADR 
AK 
ANSI 
ASCII 

ASYNC 
AUX 

BAUDOT 

BBI 
BCC 
BCN 
BDLC 
BEL 
BERT 
BIB 
BISYNC 
BITIM 
BL 
BLI 
BM 
BNC 

BOP 
bps 
BS 
BSC 

Acknowledgment 
Activate Logical Unit (SNA) 
Address 
ACK: Acknowledgment 
American National Standards Institute 
American Standard Code for Information Interchange. standard code for 
digital communications 
Asynchronous format (indicates START and STOP bits) 
Auxiliary 

Five bit code for data transmission using one start and one stop element; used 
in some teletypewriter machines 
Begin Bracket Indicator. (SNA) 
Block Check Calculation 
Beacon (SDLC) 
Burroughs Data Link Control 
Bell 
Bit Error Rate Testing 
Backward Indicator Bit (SS#7 Layer 2) 
Binary Synchronous Communications Protocol (IBM); also BSC 
Bit image 
BEL: Bell 
Blink (CRT enhancement) 
Bit Mask 
A highly reliable twist-lock connector used to carry wide-band video/digital 
signals: used with coaxial cable (G.703) 
Bit-Oriented Protocol. e.g., SDLC 
l:lits per second 
Backspace 
BISYNC 

B-1 



INTERVIEW 7000 SerIes Advanced Programming: ATLC-107-951-10B 

C 
CAN 
CAS 
CCITI 
CCS 
CCSS#7 
CD 
CDr 
CEDI 
CF 
CHAR 
CHDAT 
CIC 
CLR 
CN 
CONF 
const 
CPM 
CR 
CRC 
CSI 
CSN 
CTS 

D 
DAF' 
DAT 
DB-25 
DCl 
DC3 
DCE 

DCF 
DDCMP 
DEC 
DEF 
#define 
DEL 
DFC 
DIAG 
DIR 
DISC 
DL 
DLC 
DLE 

Control (X.21 signal) 
Cancel 
Channel Associated Signaling (G.703) 
Consultative Committee, International Telephone and Telegraph 
Clear Channel Signaling (G.703) 
Common Channel Signaling System #7 
Carrier Detect (RS-232/V.24 and V.35 signal); same as RLSD 
Change Direction Indicator (SNA) 
Conditional End Bracket Indicator (SNA) 
Command Format (SNA) 
Character 
Character data 
Circuit Identifier Code (SS#7 Layer 3) 
Clear 
CAN: Cancel 
Confirm 
Constant. modifier to a declaration in C language 
Central Processing Module 
Carriage Return 
Cyclic Redundancy Check 
Code Selection Indicator (SNA) 
Command Sequence Number (SNA) 
Clear To Send (RS-232N.24 and V.35 signal) 

D bit (Bit 7 in first octet of packet-level X.2S) 
Destination Address Field (SNA) 
Data Acquisition Tracks 
25-Pin D connector (standard for RS-232N.24) 
Device Control 1 
Device Control 3 
Data Circuit-terminating Equipment (or Data Communications 
Equipment). typically a modem 
Data Count Field (SNA) 
Digital Data Communications Message Protocol 
Decrement 
Destination Element Field (SNA) 
Preprocessor directive, C language 
Delete 
Data Flow Control (SNA) 
Diagnostic (X.25 Layer 3) 
Directory 
Disconnect (SDLC, LAPD. X.2S Layer 2) 
DLE: Data Link Escape; also Data Link layer (OSI primitive) 
Data Link Control 
Data Link Escape (used principally in transparent BISYNC) 

B-2 



~.-.•. ,." 
~: I , 

DM 
DMA 
DPC 
DRAM 

DRI 
DSAF 
DSK 
DSR 
DTE 
DTR 
DUP 

EB 
EBCD 
EBCDIC 
EBI 
EC 
EIA 
#elif 
EM 
#endif 
ENQ 
enum 
EOB 
EOF 
EOM 
EOT 
EPROM 
EQ 
EQ 
ERI 
ERN 
ESC 
ET 
ETB 
ETX 
evar 
EX 
extern 

FAC 
FAS 
FCS 
FD1 

Disconnected Mode (SDLC. LAPD. X.25 Layer 2) 
I)irect Memory Access 
Destination Point Code (SS#7 Layer 2) 

Appendix B Glossary 

Dynamic Random Access Memory; one Mbyte of memory space of each 
MPM. dedicated to storage or receive data 
Direct Response Indicator (SNA) 
Destination Subarea Address Field (SNA) 
Disk 
Data Set Ready (RS-232N.24 and V.35 control lead) 
Data Terminal Equipment 
Data Terminal Ready (RS-2321V.24 and V.35 control lead) 
Duplicate 

ETB. EOB: End of Transmission Block 
Extended Binary Coded Decimal 
Extended Binary Coded Decimal Interchange Code 
End Bracket Indicator (SNA) 
ESC: Escape 
Electronic Industries Association 
Else if, preprocessor directive, C language 
EOM: End of Message 
Preprocessor directive, C language 
Enquiry 
Enumeration. set of integer constants, C language 
End of Transmission Block 
End of Frame 
End of Message 
End of Transmission 
PROM containing power-up software and initialization routines 
Equal 
ENQ: Enquiry 
Exception Respoo.se Indicator 
Explicit Route Number 
Escape 
EOT: End of Transmission 
End of Transmission Block 
End of Text 
Event variable, pre-declared identifier, ARD extension to C language 
ETX: End of Text 
External, storage class specifier, C language 

Facilities (X.25 Layer 3) 
Frame Alignment Signal (0.703) 
Frame Check Sequence (used in BOP) 
Floppy-disk Drive 1-

B-3 



JNTI;RVIEW 7()Q() Series Advanced Programming: ATLC-107-9S1-108 

FD2 
FDX 
FEB 
fevar 
FF 
FI 
FIB 
FID 
fifo 
FMD 
FRMR 
FS 
FSN 

GBM 
GE 
GFI 
goto 
GS 
GT 

HDLC 
HDX 

HEX 
HRD 
Hz 

I 
I 
iAPX 286 
IERN 
#if 
#ifdef 
#ifndef 
IL 
INC 
#include 
IND 
INFO 
init 
int 
INT 
I/O 
IPARS 

Floppy-disk Drive 2 
Full duplex (permits simultaneous data in both directions) 
Front End Buffer 
Fast event variable, pre-declared identifier, ARD extension to C language 
Form Feed 
Format Indicator (SNA) 
Forward Indicator Bit (SS#7 Layer 2) 
Format Identifier (SNA) 
First in. first out; memory queue on boards 
Function Management Data (SNA) 
Frame Reject (SDLC. LAPD, X.25 Layer 2) 
Field Separator 
Forward Sequence Number (S8#7 Layer 2) 

Global Bus Module 
Greater than or equal to 
Group Format Indicator (X.25 Layer 3) 
Jump statement, C language 
Group Separator 
Greater than 

High Level Data Link Control procedure 
Half duplex (data cannot be transmitted in both directions 
simultaneously) 
Hexadecimal number; also the hex key 
Hard disk 
Hertz 

Indication (X.21 signal) 
Information (SDLC, LAPD, X.25 Layer 2) 
Pan number for Intel 80286 processor 
Initial Explicit Route Number (SNA) 
Preprocessor directive, C language 
If defined ... , preprocessor directive, C language 
If not defined ... , preprocessor directive, C language 
Interlayer (message buffer) 
Increment 
Preprocessor directive, C language 
Indication 
Information (SDLC. LAPD, X.25 Layer 2) 
Initialize 
Integer data type. C language 
Interrupt (X.25 Layer 3) 
Input/Output 
International Passenger Airlines Reservation System 

8-4 



ISDN 
ISO 
ISOC 

JIS 

kana 
Kbits 
Kbps 
Kbyte 

LAF 
LAPD 
LCG 
LCN 
LE 
LED 
LF 
LI 
LOBJ 
LRC 
LSD 
LT 
LTA 
LTM 
LU 

M 
macro 

Mbyte 
MOD 
MPM 
msec 
MSU 
mux 

N 
NAK 
NC 
NE 
NETM 
NI 
NK 
NP 

Integrated Services Digital Network 
International Standards Organization 
Isochronous 

J;apanese Industrial Standard 

Japanese syllabic alphabet 
Kilobits 
Kilobits per second 
Kilobyte 

Local Address Field (SNA) 
Link Access Procedure on the D-channel 
Logical Channel Group (X.25 Layer 3) 
Logical Channel Number (X.2S Layer 3) 
Less than or equal to 
Light Emitting Diode 
Line Feed 
Length Indicator (SS#7 Layer 2) 
Linkable-object 
Longitudinal Redundancy Check 
Link Status Unit (85#7 Layer 2) 
Less than 
Link Test Acknowledge 
Link Test Message 
Logical Unit (SNA) 

M bit (X.2S Layer 3. Bit 4 ·0£ first octet) 

Appendix B Glossary 

Macro replacement of text initiated by define pre-processor directive. C 
language 
Megabyte 
Modulus; maximum. window size for frames or packets. 8 or 128 
Main Processing Module 
Millisecond 
Message Signal Unit (S5#7 Layer 2) 
Multiplexer 

Network layer (OSI primitive) 
Negative Acknowled.JIllent 
Network Control (SNA) 
Not equal to 
Network Management (SS#7 Layer 3) 
Network Indicator 
NAK: Negative Acknowledgment 
Network Priority (SNA) 

e-5 



INTERVIEW 7000. SerIes Advanced Programming: ATLC-107-9S1-10B 

Nr 

NRZI 

Ns 
NT 
NTR 
NTS 
NU 
NUL 

OBJ 
OEF 
OPC 
OSAF 
OSI 
OUTSYNC 

pad 
pal 
parens 
PCM 
PDU 
PERC 
PIF 
PH 
PI 
PIU 
PLU 
pos 
Pr 
#pragma 
PRGM 
PROGTR 
PROM 
Ps 
PU 

Q 
QRI 

R 
RAM 
RD 
REG 

Number (next) receive frame (SDLC, LAPD. X.2S Layer 2); also NR and 
NCR) 
Non-Return to Zero Inverted (used with SDLC and ASYNC modems­
sometimes with clocked modems) 
Number (frame) sent (SDLC. LAPD. X.2S Layer 2); also NS and N(S) 
Network Termination (ISDN) 
Network Test Regular (SS#7 Layer 3) 
Network Test Special (SS#7 Layer 3) 
NUL: Null 
Null 

Object code 
Origin Element Field (SNA) 
Originating Point Code (SS#7 Layer 3) 
Origin Subarea Address Field (SNA) 
Open Systems Interconnection 
Out of synchronization 

DEL or idle line character 
Programmable array logic 
Parentheses 
Peripheral Control Module 
Primitive Data Unit 
Percentage 
PolllFinal bit used in control byte at frame level (SDLe. X.2S) 
Physical layer (OSI primitive) 
Pacing Indicator (SNA) 
Path Information Unit (SNA) 
Primary Logical Unit (SNA) 
Position 
Packet (next) receive sequence number (X.2S Layer 3); also PR and peR) 
Preprocessor directive. C language 
Program 
Program Trace Run-mode screen 
Programmable Read-Only Memory 
Packet send sequence number (X.2S Layer 3); also PS and peS) 
Physical Unit (SNA) 

Q bit (Bit 8 of first octet in packet-level X.2S) 
Queued Response Indicator (SNA) 

Receive (X.21 signal) 
Random Access Memory 
Received Data (RS-232N.24 andV.35 signal) 
Registration (X.2S Layer 3) 

B-6 



REJ 
REQ 
RESP 
Rev 
RGB 
RH 
RJ-llC 
RLSD 

RNR 
ROM 
RR 
RS 
RS-232N.24 

RS-449 
RTI 
RTS 
RU 

SABM 
SABME 
SAPI 
SB 
SC 
SCCP 
SCR 

SCT 

SCTE 

SDI 
SDLC 
SDU 
SELECTRIC 
SFO 
SH 
SI 
S10 
SI1 
SIG 
SIO 
SLS 
SLU 

Appendix B Glossary 

Reject (SDLC, LAPD, X.25 Layer 2) 
Request 
Response 
Reverse 
Red Green Blue (connector. forcolortnonitor) 
Request/Response Header (SNA) 
Standard for common telephone jack 
Received Line Signal Detect (RS-232N.24 signal); same as CD: Carrier 
Detect 
Receive Not-Ready (SDLC. LAPD, X.25 Layer 2, X.2S Layer 3) 
Read-Only Memory (firtnw8r:e/sofiware storage) 
Receive Ready (SOLe. LAPD. X.2S Layer 2, JC25 Layer 3) 
Record Separator 
List of definitions for interchange circuit between data terminal equipment and 
data circuit termination equipment established by EtA 
EIA Standard for 37-pin and 9-pin DTE-DCEinteriace 
Response Type Indicator (SNA) 
Request To Send (RS'!"'232N.24 and V.35 signal) 
Request/Response Unit (SNA) 

Set Asynchronous Balanced Mode (LAPD.X.2S Layer 2) 
Set Asynchronous Balanced Mode Extended (LAPD. X.25 Layer 2) 
Service Access Point Identifier (LAPD) 
SUB: Substitute 
Sessi9nControl (SNA) 
Signalling Connection Control,Part (85#7 Layer. 3) 
Signal Clock Receive (RS-2321V.24.and V.35 signal), used when DCE clock 
drives PTE 
Signal ClockTran~nUt{~S-232/V.24 and V.35 sianal). used when DCE clock 
drives· DTE . 
Signal Clock Transmit·Bxtemal (R8 ... 232/V.24 and·V.35 signal). used when 
DTE clock drives DCE 
Sense Data Indicator (SNA) 
Synchronous Data Link Control (IBM) 
Service Data Unit 
IBM typewriter Iprintercode 
Status Field Octet (SS#1Layer 2) 
SOH: Start of Header 
Shift In 
S~q~enced Information.· fra~e .. 0 (LAPD) 
Sequenced Information F'fame 1 (LAPD) 
Signal 
Service In~ormation Octet (SSI7Layer 3) 
Signalling Link Selection (55117 Layer 3) 
S~condary Logical Unit (SNA) 

B-7 



INTERVIEW 7000 Series Advanced Programming:. ATLC-107-951-108 

SMP 
SNA 
SNAI 
SNF 
SNRM 
SO 
SOH 
SRC 
SREJ 
SSCP 
SS#7 
struet 

STR 
STX 
SUB 
SX 
SY 
SYN 
SYS 
sys 

T 
T 
TD 
TE 
TEl 
TGNFI 
TGSI 
TGSNF 
TH 
TIM 
TPF 
TS 
TTL 
TUP 
typedef 

UA 
UI 
UL 
#Undef 
US 
usec 

Sample 
System Network Architecture (IBM) 
SNA Indicator (SNA) 
Sequence Number Field (SNA) 
Set Normal Response Mode (SDLC) 
Shift Out 
Start of Header 
Source 
Selective Reject (SDLC) 
System Services Control Point (SNA) 
CCSS#7: Common Channel Signaling System #7 
Structure,data type which consists of a group of variables referenced under 
the same name, C language 
String 
Start of Text 
Substitute 
STX: Start of Text 
SYN: Synchronization character 
Synchronization character 
System file 
System directory 

Transmit (X. 21 signal) 
Transport layer (OSI primitive) 
Transmitted Data (RS-232N.24 and V.3S signal) 
Terminal Equipment (ISDN) 
Terminal Endpoint Identifiet(LAPD) 
Transmission Group Non-Fifo Indicator (SNA) 
Transmission Group Sweep Indicator (SNA) 
Transmission Group Sequence Number Field (SNA) 
Transmission Header 
Test Interface Module 
Transmission Priority Field (SNA) 
Transmission Services (SNA) 
Transistor-to-Transistor Logic 
Telephone User Part (SS#7 Layer 3) 
Type definition. data type which creates new name for existing data type, C 

language 

Unnumbered Acknowledgment (SDLC, LAPD, X~2S Layer 2) 
Unnumbered Information (SDLe) 
Underwriters' Laboratory 
Undefine. preprocessor directive. C language 
Unit Separator 
Microsecond 

9-8 



USER TR 
usr 

VRCWI 
VRCWRI 
VRID 
VRN 
VRPCI 
VRPRQ 
VRPRS 
VRRWI 
VRSI 
VRSSN 
VRSTI 
VT 

X.21 

X.25 

XDRAM 
XEQ 
XFER 
XID 
XMIT 

Run-mode User Trace screen 
User directory 

Virtual Route Change Window Indicator (SNA) 
Virtual Route Change Window Reply Indicator (SNA) 
Virtual Route Identifier (SNA) 
Virtual Route Number (SNA) 
Virtual Route Pacing Count Indicator (SNA) 
Virtual Route Pacing Request (SNA) 
Virtual Route Pacing Response (SNA) 
Virtual Route Reset Window Indicator (SNA) 
Virtual Route Suppon Indicator (SNA) 
Virtual Route Send Sequence Number (SNA) 
Virtual Route Sequen.ce and Type Indicator (SNA) 
Vertical Tab 

Append/I( B Glossary 

CCIT! recommendation governing synchronous DTE-DCE operation on 
public data networks 
CCIT! recommendation governing the packet mode link connecting the user 
site with a public data network 
Extended Dynamic Random. Access Memory 
Execute 
Transfer 
Exchange Identification (SDLC) 
Transmit. transmission 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

8-10 



~, 
, l 

Appe;ndix C: Selectable DataS;peeds 

There are four clock crystalsinstaUed in the INTERVIEW. These clocks provide the 
bits-per-second rates listed on the following pages. (An optional crystal is also available that 
may be factory-configured for speeds not li~ted here.) 

These baud rates apply to all clock and data format selections. with one exception. If you 
are operating in Emulate DeE mode using internal clock and the data format is anything 
other than Async, you may enter clock speeds 16 times higher than thosellsted. The 
follOwing formula allows you to.detennme whether a higher data speed is selectable in this 
special case. 

The frequency of each standard clock crystal is first divided by 2 to derive four values of X: 

Xl = 3686400/2 

X2 :: 4096000/2 

X3 :: 4608000/2 

X4 :: 5376000/2 

Divide the desired bps rate into each of the values of Xto produce result Y. 

Yl :: Xl/bps 

Y2 :: X2/bps 

Y3 :: X3/bps 

Y4 :: X4/bps 

Round each of the Y values to the nearest whole number. 

Next. divide each Y value into the corresponding X value.Ut produce four possible speeds: 

XIIY1 ;. SPEED1 

X2/Y2 :: SPEED2 

X31Y3 ... SPEED3 

X4/Y4 == SPEED4 

The values resultJng from this. calculation are the data speeds which may be selected for the 
desired bits-per..:5econd rate .. Select the closest speed and use this as your entry on the Line 
Setup Screen as the Intemal Clock speed. 

0-1 



INTERVIEW'?,m ifC!!I A~ Programming: ATI.C-107-951-10B 

Table C-1 
Line Setup Clock Speeds 

168000.0 12923.08 6582.9 4421.05 3339.1 2679.07 2215.38 

144000.0 12800.0 6545.45 4413.79 3294.12 2666.67 2210.53 

128000.0 12126.3 6461.54 4363.64 3291.43 2648.3 2206. 810" 
1;V', ' 

115200.0 .. ~2q.O' 6400.t) .4347.2 Sla~05 . 262';0. . &·;114'; .', 
"11636.36 621S0.A7 

·ti W""'''fr A'·,. f 0;("~ "''"?~ ',If,,:i' ,: 

84000.0 4307.69 3272.73 2618.18 21g1.B2 

76800.0 11520.0 6227.0 4266.67 3245.1 2612.24 2173.58 

72000.0 11200.0 6222.22 4235.29 3230.77 2588,8 2169.49 

64000.0 11076.92 6095.24 4200.0 3200.0 258;4.62 2153.85 

57600.0 10971.4 6063.16 4189.1 3169.81 2571.43 2149.25 

56000.0 10666.67 6000.0 4129.03 3156.2 2560.0 2133.33 

48000.0 10500.0 5907.7 4114.29 3130.43 2545.45 2126.58 

46080.0 10472.73 5818.18 4097.56 3121.95 2526:32 2117.65 

42666.67 10285;71 5793.10 4042.1 311.3.51 2509.80 2113.8 

42000;0 10017.4 5760.0 4000.0 3111.11 2507.46 2100.0 

38400.0 9882.35 5619.5 3972.41 3072.0 2504.35 2098.36 

36000.0 9846.15 5600.0 3906.98 3063.83 2482.76 2094.55 

33600.6 9600.0 5565.22 3905.1 3054.55 2477.4 2086.96 

32914.3 9333.33 5538.46 3891.89 3047.62 . 2470.59 2075.7 

32000.0 9216.0 5485.71 3878.79 3031.58 2461.54 2074.07 

28800.0 9142.86 5419.35 3840.0 3000.0 2451.06 2064.52 

28000.0 9000.0 5358.1 3818.18 2992.2 2440.68 2057.14 

25600.0. 8861.54 5333.33 3789.47 2976.74 2434.78 2048.78 

24000.0 8842.11 5250.0 3777.0 2953.85 2425.3 2038.9 

23040.0 8533.33 5236;36 3764.71 2947.37 2415.09 2031.75 

21333.33 8470.59 5142.86 3733.33 2938.78 2400.0 2028.17 

21000.0 8400.0 5120.0 3716.13 2916.5 2375.3 2024.010 

20945.5 8228.57 5090.91 3692.31 2909.09 . 2370.37 2021.05 

20571.43 8000.0 5008.610 3657.14 2896.55 2366.110 2003.5 

19200.0 7944.8 4965.52 3652.17 2880.0 2360.66 2000.0 

18666.67 7680.0 4941.18 3600.0 2847.46 2351.02 1986.21 

18285.71 7636.36 4923.08 3574.47 2844.~4 2333.33 U!76.47 

18000.0 7578.95 4902.1 3555.56 2823.53 2327.27 1972.60 

17723.1 7529.41 ·liI800.0 3544.6 2809.76 23:12.58 1969.23 

16800.0 7432.3 4740.74 3512.110 2800.0 2304.0 1953.49 

16457.14 7304.35 4702.0 3500.0 2782.61 2301.37 1952.54 

16000.0 7200.0 4666.67 3490.·91 2775.9 2285.71 1945.95 

15360.0 7111.11 4645.16 3459.46 2769.23 2281.~ 1939.39 

15272.73 7000.0 4608.0 3438.8 2754.010 2270'.2" 1931.03 

14400.0 6981.8 4571.43 3428.57 2742.86., 22S8.12 1920.0 

14222.22 6857.14 4540.54 3388.24 2723.40 2250.0 1910.45 

140QO.0 6776.47 4517.6 3368.42 2716.98 2245.61 1909.09 
.. t,? 

. ~110.6 
, 
2i~0.0 1904.1 

13552.9 6736.84 4500.0 . 3360.0 
".;. . ; },;, ',: L .... I: 

3348.84 Z;lQ9.68 .2236.9 1a94.74 
13090.91 6720.0 4430.77 ,. 

C-2 



tt, gell;f:iix . Q..~J§rs.le.OlAta SQ"dS 
. ~ 

TabfeC-1 (continued) 

IS88.52 1655.17 1473.68 1331.8 1210 .. 0.8 1112.S8 1028.57 

1887.64 1647.06 1471.26 1324.14 1208.63 1107.69 1024.39 

1882.35 1645.71 1469.39 1322.83 1207.55 1105.26 1024.0 

1813.2 164] .03 1467.5 1321.10 1206.3 1103.45 1021.28 

1870.13 1636.36 1460.87 1l19.59 1200.0 1102.4 1019.47 

1866.67 1634.0 1458.23 1316.6 1196.20 1099.24 1018.18 

1858.06 1631.07 1454.55 1312.:50 1193.8 109S.G4 1015.81 

1855.07 1622.54 1449.1 1309.09 1191.49 1097.14 1015.0 

1846.15 1620.25 1448.28 130ti.lZ 1190.08 1094.02 1014.08 

1843.2 1617.98 1440.0 1302.33 1187.63 1091.9 1012.0S 

1828.57 1615.38 143lqo 1301.7 1185.19 1090.91 1010.53 

1826.09 1611.2 1435.810 1297.210 1183.010 1086.79 1007.81 

1822.78 1600.0 1431.1 1294.38 1181.5 1084.75 1006.99 

1814.2 1589.0 1425.7. 1292.93 1180.33 1083.87 1006.1 

1806.45 1$84.91 1423.13 1292.31 1175.51 1082.71 1005.99 

1802.82 1582.42 1422.22 1287.2 1114.83 1081.7 1001.74 

1800.0 IS80.25 1413.5 1285.71 1174.31 1016.92 1000.0 

1787.23 1578.08 1411.76 1282.44 1170.73 1076.64 997.4 

1786.0 1570.09 1406.59 1280.0 1169.5 1075.63 994.08 

1777.78 1567.3 1404.88 1274.34 1166.67 1074.63 993.10 

1772.31 1565.22 1400.0 12n.9 1163.64 1071.6 992.25 

1768.42 1560.98 1398.06 1272.73 1161.29 1070.06 988.8 

1758.8 1556.76 1396.0 1267.33 1158.62 1066.67 988.24 

1756.010 1555.56 1391.30 1265.93 1157.8 1063.19 986.30 

1753.42 1548.39 1388.43 1263.16 1153.15 1061.8 984.62 

1750.0 1546.3 1388.0 1259.0 1152.0 1058.82 982.46 

1745.45 1542.17 1387.95 1254.90 1150.68 lOS7.8S 980.4 

1734.94 1541.28 1384.62 1253.73 1146.3 1056.88 979.59 

1732.3 1536.0 1379.6 1252.17 1142.86 1056.60 977.010 

1731.96 1531.91 1377.05 1Z45.4 1140.59 1052.1 916.74 

1729.73 1527.27 1376.34 1244.44 1135.14 1051.09 976.27 

1719.40 1525.8 1371.43 1242.72 1135.0 1050.0 972.97 

1714.29 1523.81 1365.85 1241.38 1133.86 1049.18 972.2 

1706.67 1515.79 1363.3 1238.11 1132.74 1047.27 971.010 

1696.97 1513.51 1361. 70 1235.2.9 1129.41 1043.48 969.610 

1694.12 1505.88 1358.49 1232.1 1127.52 1042.5 968.07 

1684.21 1500.0 1355.29 1230.71 1125.0 1040.65 966.44 

1681.8 1496.10 1354.84 1226.28 1123.9 1037.84 965.52 

1680.0 1488.37 1347.37 1225.53 1122.81 1037.04 964.0 

1674.42 1486.7.3 1345.79 1220.34 1120.0 1035.97 962.41 

1669.S7 1486.S 1344.0 1219.05 1118.45 1033.2 960.0 

1663;37 1484.54 1339.53 1217.39 1116.28 1032.1~ 956.0 

~. 1662.34 1476.92 1333.33 1212.63 1113.04 1030.67 955.22 

i,S I . 

0-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-:1 07-9S 1...,108 

Table C-1 (continued) 

954.55 893.02 835.82 786.89 743.23 702.93 669.32 

953.64 889.6 834.78 786.3 742.27 702.44 667.8 

952.07 888.89 832.37 785.28 740.8 700.3 666.67 

949.15 886.15 831.8 785.05 740.(}9 700.0 665.9 

948.15 884.21 831.68 783.67 739.88 699.45 665.810 

947.37 883.44 831.17 782.61 738.46 699.03 664.03 

944.26 882.76 828.78 781.310 736.84 698.18 663.59 

943.82 879.58 827.59 781.0 736.1 697.010 663.21 

941.18 879.39 825.81 780.49 73'.63 696.1 662.07 

940.4 878.05 823.53 778.38 734.69 695.65 661.42 

938.55 876.71 822.86 777.78 133.76 694.21 660.55 

936.59 876.0 820.51 775.76 733.62 694.0 660.2 

935.06 875.0 819.9 774.19 731.43 693.98 659.79 

934.31 872.73 819.51 773.15 730.96 692.31 658.82 

933.33 870.75 818.18 771.08 730.43 691.89 658.29 

932.8 810.41 811.02 710.64 129.11 691.36 657.53 

929.03 869.4 815.53 770.05 727.27 689.82 656.41 

928.18 867.47 815.29 768.0 726.8 688.910 656.25 

927.54 866.17 814.1 767.12 724.53 688'.52 654.55 

925.3 865.98 813.56 766.47 724.14 688.17 653.610 

923.08 864.86 811.59 765.96 723.62 687.8 653.06 

921.60 862.9 811.27 765.4 723.16 685.71 652.7 

920.86 862.28 810.13 763.64 722.3 684.49 651.58 

918.03 861.54 808.99 762.91 721.03 683.7 651.16 

917.9 859.70 808.4 761.90 720.0 682.93 650.85 

917 .110 859.06 807.69 760.4 719.10 682,46 649.75 

914.29 8S7.14 805.59 760.18 717.95 681.66 649.0 

913.04 856.5 805.03 757.89 717.8 680.S5 648.65 

911.39 853.33 804.47 757.310 716.42 680.16 647.19 

910.7 852.79 803.83 756.76 715.53 679.6 646.46 

908.11 852.01 802.8 755.4 715.08 679.25 646.15 

907.80 850.2 800.0 753.93 714.89 677.65 645.74 

907.09 848.48 797.2 753.36 713.3 677.42 645.4 

905.66 847.68 796.21 752.94 712.87 677.25 643.68 

903.5 847.06 795.58 750.5 711.86 676.06 643.58 

903.23 844.22 795.03 750.0 711.11 675.7 643.22 

901.41 844.0 794.48 748.54 709.36 674.610 642.86 

900.0 842.11 792.45 748.05 708.86 673.68 641.8 

898.310 840.88 791.8 746.67 707.18 672.810 641.22 

896.'- 840.6 791.21 746.11 706.75 672.0 640.0 

895.10 837.8 790.12 745.6 705.88 671.7 638.78 

894.41 837.21 789.04 744.19 704.6 670.16 638.2 

893.62 836.60 188.73 743.36 703.210 669.77 637.17 

0-4 



~'T>4" ADDeng.lx· C§jiectable Dafa Sr>eeds , 
TabteQ.-1 (continued) 

636.82 608.610 581.82 559.22 538.32 517.8 498.52 

636.46 607.9 581. 31 558.95 537.82 516.92 498.27 

636.36 607.59 580.65 55S.14 537.31 516.59 498.05 

634.7 606.64 580.4 557.9 537.1 516.13 497.6 

634.36 606.410 579.31 556.52 536.74 515.4 497.04 

633.96 606.32 579.19 556.29 535.81 515.34 496.55 

633.66 605.04 578.89 555.98 535.56 514.29 496.6 

633.0 604.7 578.31 555.2 535.32 514.06 496.12 

632.97 604.32 577.4 554.46 535.03 513.76 495.58 

631.58 603.77 577.32 554.11 534.6 513.1 495.5 

631.2 603.14 576.5S 553.85 533.33 512.46 494.85 

630.54 602.51 576.0 552.63 532.1 512.110 494.42 

629.51 602.15 575.34 55Z.5 531.65 512.0 494.21 

629.21 601.6 574.6 551.72 531.37 510.9 494.12 

628.82 600.94 573.99 551.2 531.12 510.64 493.4 

627.8 600.0 573.71 551.110 530.88 509.96 493.15 

627.45 598.4 573.38 550.82 529.97 509.73 492.67 

626.87 598.13 573.13 549.9 529.7 509.09 492.31 

626.09 597.86 571.7 549.oZ 529.41 508.83 491.47 

ft1 624.54 597.51 571.43 549.36 528.93 508.6 491.3 

! 624.39 596.89 570.3 549.02 528.44 507.94 491.23 

623.38 595.74 570.210 548.57 528.30 507.55 490.42 

622.70 595.35 569.49 547.53 527.47 507.49 490.21 

622.22 595.04 569.17 547.3 527.2 507.04 489.710 

621.36 593.81 568.89 547.23 526.75 506.4 489.2 

621.0 593.64 567.57 547.01 526.65 506.02 488.55 

620.69 592.59 567.49 546.0 526.03 505.93 488.37 

619.93 592.3 566.93 545.97 525.55- 505.26 488.14 

619.35 591.55 566.37 545.45 525.0 504.50 486.96 

617.7 590.77 566.1 544.68 524.8 504.2 486.69 

618.36 590.16 565.66 543.6!l 524.59 503.94 486.49 

618.03 S89.86 564.71 543.4 523.64 503.410 486.08 

617.65 589.47 563.8& 543.310 523.36 503.1 4&5.55 

616.04 589.3 563.76 542.37 522.45 503.06 484.85 

615.38 587.76 563.3 542.1 521.74 502.99 484.15 

614.4 587.41 562.50 541.94 521.27 502.0 484.03 

613.14 587.16 562.0 541.35 520.33 501.96 483.22 

612.77 586.3 561.95 540.85. 520.12 501.74 483.02 

612.44 585.37 561.87 S40.19 519.86 501.49 482.76 

611.1 584.77 561.40 540.08 518.92 500.87 482.01 

610.91 584.47 560.31 539.6 SIS.52 500.0 481.61 

610.17 583.33 560.6 539.33 518.22 499.8 481.3S 

'lc; 609.52 582.910 560.0 538.46 517.99 498.70 481.20 

0-5 



INTERVIEW ~§frI!s Act:wPrJ~Proar8mmlna: ATLC7107~951-10B 

Tabl. C-1 (conttnued) 

481.0 464.09 449.12 435.23 422.29 " 407.93 393.85 

480.0 463.77 449.110 435.05 422.11 407.77 393.44 . 

479.40 463.6 448.510 434.72 422.0 407.64 393.17 

479.0 463.02 448.25 434.11 421.98 407.07 392.64 

478.63 462.81 448.2 433.9 421.2 406.78 392.52 

478.41 462.7 448.0 433.810 421.05 406.35' 392.37 

478.01 462.65 447.55 433.73 420.44 405.710 391.84 

477.61 462.09 447.4 433.08 420.0 405.63 391.61 

477.27 461.7 447.20 432.99 419.83 405.06 391.44 

477.0 461.54 446.81 432.43 419.67 404.82 391.30 

476.82 460.80 446.51 432.3 418.95 404.49 390.610 

476.03 460.43 445.99 431.88 418.91 404.21 390.51 

475.92 460.27 445.82 431.46 418.9 403.85 390.24 

475.84 460.06 445.62 431.14 418.60 403.79 389.79 

475.25 459.9 444.79 430.98 418.30 403.36 389.19 

475.1 459.02 444.44 430.77 418.1 402.88 389.06 

474.58 458.96 443.9 430.7 417.91 402.710 388.89 

474.07 458.78 443.27 429.9 417.39 402.52 388.14 

473.68 458.510 443.08 429.85 416.94 402.23 387.99 

473.24 458.1 442.91 429.67 416.87 401.91 387.88 

473.1 457.77 442.2 429.53 416.18 401.39 387.010 

472.32 457.14 442.11 429.1 415.88 401.25 386.71 

472.13 456.52 441.72 428.57 415.84 401.11 386.58 

471.91 456.2 i 441.38 428.3 415.58 400.95 386.21 

471.2 455.610 440.94 428.25 414.99 400.0 386.06 

470.59 455.52 440.5 428.09 414.81 399.05 - 385.54 

470.20 455.34 440.37 427.48 414.39 398.89 385.32 

469.27 455.28 439.86 427.210 414.24 398.75 385.28 

469.2 454.4 439.79 426.67 413.79 398.62 385.03 

469.06 454.26 439.69 426.310 412.90 398.10 384.44 

468.86 454.05 439.02 426.04 412.78 397.79 384.38 

468.29 453.90 438.9 425.9 412.61 397.52 384.0 

467.97 453.54 438.64 425.32 411.76 397.24 383.56 

467.53 452.83 438.36 425.25 411.58 397.16 383.23 

467.15 452.7 438.02 425.09 411.43 396.69 382.98 

466.67 452.210 438.0 424.78 410.76 396.28 382.72 

466.4 451.76 437.69 424.3 410.26 396.23 382.69 

466.310 451.61' 437.50 424.24 409.96 395.88 382.09 

466.02 451.41 437.2 ' 423.84 409.76 395.60 381.96 

465.5 450.9 436.86 423.53 409.09 395.29 381.82 

465.45 450.70 436.36 .' 423.17 408.95 395.06 381.46 

465.37 450.40 435.5 422.8 408.76 394.52 380.95 

464.52 450.0 435.37 422.44 408.51 394.31 380.110 

C-6 



ARefJlirlix .c. . 8rlttBtfbllil?!l.ta Smds 

TabU.. e,..1 i(cont1nued) 
1( .• 

380.09 367.61 355.93 344.91 334.2D 324.3~ 315.110 

379.95 367.35 355.56 344.410 334.11 324.05 315.010 

319.82 366.88 355.18 344,26 333.91 323.610 314.75 

379.23 366.81 354.68 344.09 333.33 323.510 314.61 

378.95 366.76 354.57 343.88 332.95 323.23 314.410 

378.610 366.41 354.46 343.68 332.67 323.08 314.02 

378.38 366.01 354.43 343.56 332.56 322.87 313.810 

377.95 365.71 353.81 343.16 332.47 322.69 313.73 

377.70 365.48 353.68 342.86 332.02 322.46 313.43 

377.58 365.22 353.59 342.25 331.99 322.42 313.04 

377.53 364.67 353.37 342.16 331. 710 322.15 312.96 

376.96 364.56 352.94 342.04 331.61 321.84 312.85 

376.68 364.43 352.62 341.84 331.36 321.79 312.36 

376.47 363.64 352.29· 341.46 331.03 3Z1:61 312.27 

375.98 363.41 352.20 341.33 330.15 321.43 312.110 

375.84 362.85 352.08 341.23 330.71 321.22 311.69 

375.37 362.72 351.65 340.83 330.28 320.89 311.44 

375.24 362.61 351.46 340.77 330.09 320.80 311.35 

375.0 362.26 351.22 340.43 330.06 320.71 311.11 

374.27 362.07 350.73 340.08 329.810 ,320.61 311.02 

374.16 361.81 350.68 339.82 329.52 320.0 310.68 

374.03 361.58 350.36 339.62 329.41 319.39 310.54 

373.33 361.29 350.15 339.52 329.14 319.29 310.51 

373.18 361.13 350.0 339.39 329.05 319.20 310.34 

373.06 360.90 349.73 338.82 328.77 319.11 309.96 

372.82 360.56 349.51 338.71 328.21 3U.79 ·309.93 

372.51 360.52 349.27 338.62 328.13 318.58 309.68 

372.09 360.0 349.09 338.03 328.02 3HI.41 309.39 

371.68 359.74 348.77 337.83 327.49 SUU3 309.18 

371.61 359.55 348.67 337.73 327.37 318.18 309.01 

371.13 359.10 348.55 337.35 327.27 317.88 308.85 

371.01 358.97 348.04 337.24 326.85 317.62 308.82 

370.86 358.88 347.83 336.84 326.53 317.58 308.43 

370.42 358.54 347.11 336.67 326.35 317.36 308.35 

370.18 358.21 346.99 336.45 326.21 317.18 308.26 

370.04 357.76 346.88 336.0 325.79 316.98 308.02 

369.94 357.54 346.39 335.96 325.610 316.83 307.69 

369.23 357.45 346.15 335.86 325.58 316.48 307.20 

368.88 357.32 345.95 335.66 3%5.42 316.38 307.13 

368.42 356.69 345.68 335.33 325.06 316.05 307.04 

368.29 356.66 345.32 335.08 324.95 315.79 306.95 

368.05 356.55 345.01 334.88 324.87 315.62 306.57 

367.82 356.44 344.97 334.66 324.51 315.27 306.38 

0-7 



INTERVIEW 70QO Series Advanqep, Programming: A TLC-1 07-951-108 

Table C-1 (continued) 

306.22 303.710 301.18 150.0 100.0 45.0 16.0 

306.01 303.32 301.08 144.0 96.0 42.0 15.0 

305.73 303.25 300.0 140.0 90.0 40.0 14.0 

305.57 303.16 288.0 134.5 84.0 36.0 12.0 

305.49 302.70 280.0 128.0 80.0 35.0 10.0 

305.45 302.60 256.0 125.0 75.0 32.0 9.0 

305.08 302.52 210.0 120.0 72.0 .30.0 S.O 
304.90 302.36 200.0 250.0 70.0 28.0 7.0 
304.76 302.16 192.0 240.0 64.0 25.0 6.0 

304.44 301.89 180.0. 225.0 60.0 24.0 5.0 

304.35 301.62 175.0 224.0 56.0 21.0 4.0 

304.04 301.57 168.0 112.0 50.0 20.0 3.0 

303.96 301.26 160.0 105.0 48.0 18.0 2.0 

C-8 



Appendix 0: Code Charts 

0-1 



INTERVIEW 7000 §erJes Advanced Programming: ATI,.C-107-951-108 

0-2 



Appenclix;Jj)1: Keyboard-to-Hex Translation 

.~. 
~_v t 

i 

01-1 



.~.INT€RVIEW70Q.Q§!!1u . Advanced PfOfII'8mmlngr·· ·AlLO:: 1 07 ~951-10B 

Table 01·1 
Keyboard-to-EBCDIC 

UNSHIFTED SHIFTED CONTROL 
KEY CHAR' HEX' CHAR' HEX' CHAR' HEX' 

A a 81 A C1 SOH 01 
B b 82 B C2 STX 02 
C c 83 C C3 ETX 03 
D d 84 D C4 EOT 37 
E • 85 E C5 ENQ 2D 
F f 86 F C6 ACK 2E 
G g 87 G C7 BEL 2F 
H h 88 H C8 BS 16 
I I 89 I C9 HT 05 
J t 91 J 01 LF 25 
K 92 K 02 VT OB 
L I 93 L 03 FF OC 
M m 94 M D4 CR 00 
N n 95 N ~5 !t OE 
0 0 98 0 ~ . (i OF 
p P 97 P 10 
Q q 98 Q 08 OCl 11 
R r 99 R D9 OC2 12 
S 8 A2 S E2 DC3 13 
T t A3 T E3 OC4 3C 
U u A4 U E4 NAK 30 
V v AS V E5 SYN 32 
W w A6 W E6 ETB 26 
X x A7 X E7 CAN 18 
Y Y A8 Y E8 EM 19 
Z z A9 Z E9 SUB 3F 
0 0 FO I 50 
1 1 F1 SA 
2 2 F2 @ 7C Same 
3 3 F3 # 7B 
4 4 F4 $ 5B 
5 5 F5 % 6C as 
6 6 F6 
7 7 F7 & 50 
8 8 F8 • 5C Unshlfted 

9 9 F9 ( 40 
dish dish 80 u~II'" 60 
= = 7E + 4E A1 
\3 \ EO , 6A 79 , 

I f CO DEL 07 
00 ESC 27 

5E 7A NUL 00 
70 . 7F GS 10 
8B < 4C RS 35 
4B > 6E US 1F 

I I 61 ? 8F FS 22 
space Space 40 Space 40 Space 40 

Untranslatable characters ("-" in the above table) that are entered in transmit strings 
will be replaced by NULL (hex 00) during transmission. 

1 CHAR displayed in Run mode 
2HBX byte trapped/transmitted 
:tEnter the hex value for the \ character. 

01-2 



l'abJe,D1-2 
K.y&l •• ,-d,."t .... ASCIl 

UNSHIFTED SHIFTED CONTROL 
KEY CHAR' HeX;!' CHAR' HeX2 CHAR' HEX2 

A a 61 A 41 $OH (11 
B b 62 a 42 srx 02 
C c 63 C 43 ETX 03 
0 d 64 0 44 EOT 04 
E e 65 E 45 ENG 05 
F f '6 F 46 ACK 06 
G 9 67 G 41 BEL 07 
H h 68 H 48 as 08 
I 1 69 I 49 HT 09 
J k SA J 4A LF OA 
K $B K 4B VT OB 
L I 60 l 4C FF OC 
M m SO M 40 OR 00 
N n SE N 4E SO OE 
0 0 SF 0 4F SI OF 
p P 70 P 50 OLE 10 
Q q 71 Q 51 tDC1 11 
R r 72 R 52 DCl 12 
S s 73 S 53 OC3 13 
T t 14 T 54 004 14 
U u 75 U 55 .NAK 15 
V v 76 V 56 SYN 16 
W w 77 W 57 ETB 17 
X x 78 X 58 CAN 18 
Y Y 79 Y 59 EM 19 
Z z 7A Z SA SUB 1A 
(I (I 30 ) 29 
1 1 31 ! 21 
2 2 S2 @ 40 Same 
:3 3 33 # 23 
4 4 34 $ 24 
5 5 35 % 25 as 
6 {5 36 56 
7 7 37 & 2S 
8 8 38 * 2A Ul'Isnifted 
9 9 39 { 28 

. dash dish 20 ~rU!'!8 SF 
= ::: 30 + 2B 7E 
Vi \ 50 I 70 60 I 

{ [1 5B f 7B DEL 7F 
I 50 70 ESC 1B 

3B SA NUL 00 
21 * 22 GS 10 
2C < 30 AS 1E 
2E > 3E US 1F 

/ I 2F ? 3F FS 10 
Space Space 20 Space 20 SpaDe 20 

'CHAR displayed in Run mode 
2HEXbytetrappei1lttansmitte4 (space.p1U!ty) 
3Enter the hex value for the " character. 

Dl-3 



INTERVIEW 7000 Sarles Advanced Programming: ATLC-107-951-108 

UNSHIFTED 

KEY L.OWER!\}! UF>PEFWI'l 

A a A 
8 b 8 
C c C 
0 d 0 

E e E 
F f F 
G 

~ G 
H H 
I I I 
J j J 
K k K 
L I L 
M m M 
N n N 
0 0 0 
P P P 
Q q Q 
R r R 
S s S 
T t T 
U u U 
V v V 
W w W 
X x X 
Y y Y 
Z z Z 
0 0 ) 
1 1 = 
2 2 < 
3 3 
4 4 
5 5 % 
6 6 . 
7 7 > 
8 8 * 
9 9 ( 
dash dash dish 
= 1 :: 
\5 \ \ 
( 
J 

:3 . 
6 , 

76 
37 

I ? 
Spaoe Space Space 

HEX3 

23 
13 
73 
08 

68 
58 
3B 
07 
67 
61 
51 
31 
49 
29 
19 
79 
45 
25 
52 
32 
4A 
2A 
lA 
7A 
46 
26 
54 
20 
10 
70 
08 
68 
58 
38 
04 
64 
01 
20 
1F 

70 
58 
76 
37 
62 
40 

Table 01·3 
Keyboard-to-EBCD 

SHIFTED 

L.OWER(\) 1 UPP!!FW)'l 

a A 
b 8 
c C 
d 0 

e E 
f F 
g G 
h H 
I I 
J J 
k K 
I L 
m M 
n N 
0 0 
p P 
q Q 
r R 
s S 
t T 
u U 
v V 
w W 
x X 
y Y 
z Z 
0 > 
$ I 
@ 02 
# · $ , 
5 % 

& + 
8 • 
9 

& + 

4 
# · 
2 < 
7 > 
I ? 
Space Space 

HEXS 

23 
13 
73 
08 

68 
58 
3B 
07 
67 
61 
51 
31 
49 
29 
19 
79 
45 
25 
52 
32 
4A 
2A 
1A 
7A 
46 
26 
54 
75 
02 
34 
75 
68 
1C 
43 
04 
64 

43 

08 
34 
10 
38 
62 
40 

Untranslatable characters ("-" in the above table) that are entered n transmit strings 
will be replaced by SPACE (hex 40) during transmission. 

'CHAR displayed in Run mode if latest case-control character was lower 
.2CHAR displayed in Run mode if latest case-control character was upper 
3HEX byte trapped/transmitted (odd parity) 
.cCHAR displayed in Run mode 
IIEnter the hex value for the \ character. 

D1-4 

CONTROL 

CHAR4 HEX3 

SOH 3E 

EOT 7C 

BS 50 
HT 2F 
LF 6E 

CR 60 

OC2 4C 

OC4 4F 

SYN 3D 
ETB 5E 

Same 

as 

Unshifted 

DEL 7F 

RS 2C 



· !ie!rtrijx·p1 Qost!. Charts: ·J<flrbWl!Sl,-t9::H~x-TrgnsJ(Jtion 

Tebf$·D1-4 
Keyboard"'~~ (SVN;:3S; EOM=55) 

UNSHIFTEO SHIFTED CONTROL 
CHAR' HEX· CI:b\R' HEXli OHAR' HeX2 

A A 54 A 54 
B B 15 8 15 
C C 16 C 16 
0 0 57 (,) 57 
E E 58 e 58 
F F 19 F 19 
G G 1A G lA 
H H 58 H 58 
I I 10 I 10 
J J 64 J 64 
K K 25 K 25 
L L 26 L, 26 
M M 67 M 67 
N N 68 N 68 
0 0 29 0 29 p p 2A P 2A 
Q Q 68 Q 68 
R R 20 R 20 
S S 75 S 75 
T T 76 T 76 
U U 37 U 37 
V V 38 V 38 
W W 79 W 79 
X X 7A V 7A 
y Y 3B Y 38 
Z Z 70 Z 7C 
0 0 43 ) 30 
1 1 04 1 23 
2 2 45 @ 20 Same 
3 3 46 #I 1F .. .. 07 $ 62 
5 5 08 % 60 as 
6 6 49 2F 
7 7 4A & 73 
8 8 08 

., 
61 Unshlfted 

9 9 4C ( 31 
dish dish 02 ~ettlne 70 
= '" 50 + 10 
\3 \ 00 

f [ 4F 
1 01 

OE 51 
Sf 7F 
32 < SE 
52 > 3E 

I I 34 ? 13 
Space Space 40 Space 40 .$paQe 40 

Untranslatable <::baracters (U_" in the above tables) tha.t are en1ered in tr~mi.t strings 
wUl be replaced by NULL (hex 00) during transmission. 

ICHAR displa~d in Run mode 
llHEX byte trapped/transmitted (odd parity) 
SHnter the hex value for the \. charaeter. 

01-5 



INTERVIEW 70eO Series Advanced PrQ{Jfammlna: ATLC-1 07 .... 951-1 DB 

Table D1-5 
Keyboard-to-IPARS 

UNSHIFTED SHIFTED CONTROL 
KEY OHARI HEX!! CHARI HEX! CHAR! HEX!! 

A A 31 A 31 
B B 32 B 32 
C C 33 C 33 
0 '0 34 0 34 
E E 35 E 35 
F F 36 F 36 
G G 37 G 37 
H H 38 H 38 
I I 39 I 39 
J J 21 J 21 
K K 22 K 22 
L L 23 L 23 
M M 24 M 24 CR OC 
N N 25 N 25 
0 0 26 0 26 
P P 27 P 27 
Q Q 28 0 28 
R R 29 R 29 
S S 12 S 12 
T T 13 T 13 
U U 14 U 14 
V V 15 V 15 
W W 16 W 16 
X X 17 X 17 
Y Y 16 Y 18 
Z Z 19 Z 19 
0 0 OA ) 2E 
1 1 01 
2 2 02 @ 20 Same 
3 3 03 It 18 
4 4 04 $ 30 
5 5 05 % 3C as 
6 6 06 
7 7 07 
8 8 08 • 08 Unshifted 
9 9 09 2F 
dish dash 1A 
= = OE + 2C 
\ 
{ 1E 
J 2A 

3E 
IF < 28 
38 

I ? 3A 
space Space 1C Space 1C Space 1C 

ICHAR displayed in Run mode 
2HEX byte trapped/transmitted 

01-6 



UNSHIFTED 

KEY 

A a A 
a b a 
c c C 
D d 0 
E e E 
F f F 
G ~ G 
H H 
I I I 
J j J 
K k K 
L I L 
M m M 
N n . N 
0 0 0 
P P P 
Q q Q 
R r R 
S s S 
T t T 
U u U 
V v V 
W w W 
x x X 
y y y 
Z z Z 
0 0 ) 
1 1 .. 
2 2 < 
3 3 
4 4 
5 5 % 
6 6 

, 

7 7 > 
8 8 * 
9 9 ( 
dash ' dish ~sh 
:: 1 :; 

\4 \ \ 

I { I ! 
6 

5B 
3B 

I ? 
Space Space Space 

T8I)le01.& 
Keyb_d.:.to~RE\lERSS,·ESCO 

.j 

SHIFTED 

31 a A 31 
32 b a 32 
73 0 C 73 
34 d 0 34 
75 e E 75 
16 f F 76 
37 ~ G 37 
38 H 3S 
79 I I 79 
61 j J 6f 
62 k K 62 
23 I L 23 
64 m M 64 
25 n N 25 
26 0 0 .26 
67 P P 67 
68 q Q 68 
29 r R 29 
62 s S 52 
13 t T 13 
54 u U 54 
15 v V . 15 
16 w W 16 
57 x X 57 
58 y y 58 
19 z Z 19 
4A 0 ) 4A 
01 $ I 5B 
02 <W 10 10 
43 It . OB 
04 $ I 68 
45 5 % 45 
46 ~ OE 
01 & + 10 
,08 8 • OS 
49 9 49 
20 
01 & + 70 
3E 
4C ~ ~ lC 
4C 1C 
43 4 04 
46 It ~ OB 
58 2 < 02 
38 7 > 07 
51 I ? 51 
40 Space Space 40 

CONTROL 

EOT EOT 4F 

as as SE 
HT HT 30 
LF LF 5D 

FF FF 00 
CR CR 60 

ETB ETa SE 

Same 

as 

Unmilled 

7C 
7C 

DEL DEL 7F 

Space Space 40 

Untranslatable charaeter$ ("-" in the above table),lha,t·,.~.ptlm~dm 1ranstnit $tru)gs 
will be replaced by SPJ\CE (hex 40J,~1;t.tmni$SiQlh 

'CHAR displayed in Run mode if late$1.~",qo.1;t(!1 ctIafMter.waS lower 
'CHAR displayed in Run: mode if latest eue-control character was lipper 
lIHEX byte trapped/transmitted (odd parity) 
4Enter the hex value for the \ character. 

.CH-7 

.---. --_.- -------_._--_.'----,.,----_._------



INTERVlgW 7000 Serle§. Advanoed Programming: ATLC-107-951-10B 

UNSHIFTEO 

KEY LOWER(\'), UPPER!')2 

A a A 
B b B 
C c C 
0 d 0 
E e E 
F f F 
G 9 G 
H h H 
I i I 
J j J 
K k K 
L I L 
M m M 
N n N 
0 0 0 
P P P 
Q q Q 
R r R 
S s S 
T t T 
u u U 
V v V 
W w W 
X x X 
Y Y y 
Z z Z 
0 0 l 1 1 
2 2 @ 
3 3 # 
4 4 $ 
5 5 % 
6 6 58 
7 7 & 
6 8 • 
9 9 ( 
dish dash u'!Qerline 

'" '" + 
\& \ \ 

I 1 [ 

* 

? 
Space Space Space 

Table D1-7 
Keyboard-to-SElECTRIC 

SHIFTED 

HEX3 LOWER(\), UPPER (I'J2 

79 a A 
76 b B 
7A c C 
2A d 0 
4A e E 
73 f F 
23 ~ G 
26 H 
19 I I 
43 J J 
1A k K 
46 I L 
61 m M 
52 n N 
45 0 0 
08 P P 
58 q Q 
29 r R 
25 s S 
02 t T 
32 u U 
31 v V 
75 w W 
62 x X 
67 Y Y 
54 z Z 
64 0 ) 
20 I 01 
10 2 @ 
70 3 it 
04 4 $ 
08 5 % 
58 
68 7 & 
38 8 * 
34 9 ( 
37 dash Uf!Ierline 
13 ::: + 
1F 
20 

68 
49 
38 
51 

07 I ? 
40 Space SPAce 

HEX3 

79 
76 
7A 
2A 
4A 
73 
23 
26 
19 
43 
1A 
46 
61 
52 
45 
OB 
58 
29 
25 
02 
32 
31 
75 
62 
67 
54 
64 
01 
10 
70 
04 
08 
lC 
68 
38 
34 
37 
13 

66 
49 

01 
40 

Untranslatable characters ("-" in the above table) that are entered in transmit strings 
will be replaced by SPACE (hex 40) during transmission. 

'CHAR displayed in Run mode if latest case-control character Was lower 
2CHAR displayed in Run mode if latest ease-control character was upper 
3HEX byte trapped/transmitted (odd parity) 
·CHAR displayed in Run mode 
5Enter the hex value for the \ character. 

01-8 

CONTROL 

CHAR" HEX3 

EOT 7C 

as 50 
HT 2F 
LF 6E 

CR 60 

' ;.,-.-,~ 

ETB 5E 

Same 

as 

Unshifted 

DEL 7F 

RS 2C 

Space 40 



~. 
~ t 

! 

Appendix D1 COde Charts: Keyboard-to-Hex-Translation 

UNSHIFTEO 

KEY 

A A duh 
B B ? 
C C 
0 0 $ 
E E 3 
F F I 
G G & 
H H # 
I I 8 
J J 
K K 
L L 
M M 
N N 

9 0 0 
P P 0 
Q Q 1 
R R 4 
S S BEL 
T T 5 
U U 7 
V V 

2 W W 
X X I 
Y y 6 
Z Z II 

0 P 0 
1 Q 1 
2 W 2 
3 E 3 
4 R 4 
5 T 5 
6 y 6 
7 U 7 
a I 8 
9 0 9 
dish A dish 
:: 

\4 \. \ 

I 
V 
J 
N 
M 
X I 

Space Space Space 

03 
19 
OE 
09 
01 
00 
1A 
14 
06 
OB 
OF 
12 
1C 
oc 
18 
16 
17 
OA 
05 
10 
07 
lE 
13 
10 
15 
11 
16 
17 
13 
01 
OA 
10 
15 
07 
06 
18 
03 

1F 

1E 
oe 
OC 
1C 
10 
04 

Table 01·8 
Keyboal'd-to...sAUDOT 

SHIFTED 

A dilh 
B ? 
C 
0 $ 
E 3 
F ! 
G & 
H # 
I 8 
J 
K 
L 
M 
N 

9 0 
P 0 
Q 1 
R 4 
S BEL 
T 5 
U 7 
V 

2 W 
X I 
Y 6 
Z II 

L 
F 

H # 
0 $ 

G & 

K 

C 
z 

e ? 
Space Spaoe 

03 
19 
OE 
09 
01 
00 
1A S 
14 
06 oe LF 
OF 
12 
1C CR 
oc 
18 
16 
17 
OA 
05 
10 
07 
1E 
13 
10 
15 
11 
12 
00 

14 
09 

1B 
lA 

OF 

OE NUL 
11 

19 
04 

Untranslatable character$ ("-" in the above table) that are entered in transmit strings 
will be replaced by NULL (hex 00) <Juring tranamission. 

'CHAR displayed in Run mode if latest case-control charaeter was letter 
2CHAR displayed in Run' mode if latest case-contro} character was ilgul'e 
3HEX byte searched for/transmitted 
4Enter the hex value for the \ character. 

01-9 

CONTROL 

BEL 05 

LF 02 

CR 08 

NUL 00 

,---- -----_ .. _-------,-----------------_. __ ." .. ,,----" .~ .. -.,,-,,---



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

UNSHIFTED 

KEY 

A a 61 61 

B b 52 62 

C c 63 63 

D d 64 64 

E e 65 65 

F f 66 66 

G g 67 67 

H h 68 68 

59 69 

J 6A 5A 

K k 58 58 

L BC 5C 

M m 60 60 

N n 5E 6E 

0 0 SF SF 

P P 70 70 

Q q 71 71 

R r 72 72 

S s 73 73 

T t 74 74 

U u 75 75 

V v 7S 76 

W w 77 77 

X x 78 78 

Y Y 79 79 

Table D1·9 
Keyboard-to-JIS7 

SHIFTED 

A f 
B ')/ 

C T 

D ~ 

E ;-

F 

G X 
H j: 

I ) 

J J\ 

K t:: 
L ") 

M '" 
N it 
0 ~ 

P ~ 

Q 6 
R ;I-

S t: 
T ." 
U :2 

V 3 
W 

., 
X IJ 

Y JII 

41 

42 

43 

44 

45 

46 

47 

48 

49 

4A 

48 

4C 

40 

4E 

4F 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

'CHAR displayed in Run mode if latest case-control charaeter was Shift In (Sx). 
2CHAR displayed in Run mode if latest case-control character was Shift Out (lb). 
3HEX byte trapped/transmitted (space parity) 

01-10 

CONTROL 

SOH SOH 01 

STX STX 02 

ETX ETX 03 

EOT EOT 04 

ENQ ENQ 05 

ACK ACK 06 

BEL BEL 07 

8S as 08 

HT HT 09 

LF LF OA 

VT VT 08 

FF FF OC 

CR CR 00 

SO SO OE 

SI SI OF 

OLE OLE 10 

DCl oCl 11 

OC2 DC2 12 

DC3 DCS 13 

DC4 DC4 14 

NAK NAK 15 

SYN SYN 16 

ETB ETB 17 

CAN CAN 18 

EM EM 19 



Aepsndix D1 eggs Charts: Keyboard-to-Hex-Translation 

Table D1·9 (continued) 

UNSHIFTED SHIFTED CONTROL 

KEY 

z z 7A 7A Z J.,. SA SUB SUB 1A 

0 0 30 .., 2.9 

1 Y 31 • 21 

2 2 if 32 @ 51 40 Same 

3 3 
., 33 # .J 23 

4 4 I 34 $ 24 

5 5 it 35 % 25 as 

6 6 1J 36 \\ 5E 

7 7 * 37 & ? 26 

8 8 ry 38 • I 2A Unshifted 

9 9 7 39 .( 28 
• 

dallh dillh .::1 20 u~ltne SF 

== ~ 3D + it 2B 7E 7E 

\'" ¥ t) 5C 1C 7C 60 60 

I Cl 5B { 7B 7B DEL DEL 7F 

1 :J 50 } 70 70 ESC ESC 18 

+j 3B :J 3A NUL NUL 00 

l' 27 r 22 GS GS 10 

l' 2C < SJ 3C RS RS 1E 

J'iI 2E > t! 3E US US 1F 

!!I 2F ? ') 3F FS FS 1C 

Space Space Space 20 Space Space 20 Space Space 20 

lCHAR displayed in Run mode if latest case-control character was Shift In (~). 
2CHAR displayed in Run mode if latest case-control character was Shift Out (\l). 
3HEX byte trapped/transmitted (space panty) 
"Enter the hex value for the 'it and IJ characters. 

01-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table 01-10 
Keyboard-to-JISa (space parity)1 

UNSHIFTED SHIFTED 
KEY 

A a 61 A 41 
B b 62 B 42 
C c 63 C 43 
0 d 64 0 44 
E e 65 E 45 
F f 66 F 46 
G 9 67 G 47 
H h 68 H 48 
I I 69 I 49 
J J SA J 4A 
K k 68 K 48 
L I 6C L 4C 
M m 60 M 40 
N n SE N 4E 
0 0 SF 0 4F 
P p 70 P 50 
Q q 71 Q 51 
R r 72 R 52 
S s 73 S 53 
T t 74 T 54 
U u 75 U 55 
V v 76 V 56 
W w 77 W 57 
X x 78 X 58 
y Y 79 Y 59 
Z z 7A Z 5A 
0 0 30 ) 29 
1 1 31 ! 21 
2 2 32 @ 40 
3 3 33 # 23 
4 4 34 $ 24 
5 5 35 % 25 
6 6 36 ~ 5E 
7 7 37 & 26 
8 8 38 • 2A 
9 9 39 ( 28 
dish dash 20 u!'Lderline 5F 
::: = 30 + 28 
,4 ¥ 5C I 7C I 

[ r 58 { 78 
J ] 50 } 70 

3B SA 
27 22 
2C < SC 
2E > 3E 

I 2F ? SF 
Space Space 20 Space 20 

lHex data-entry will override parity 
llCHAR displayed in Run mode 
3HEX byte trapped/transmitted 
"'Enter the hex value for the ¥ character. 

D1-12 

CONTROL 

SOH 01 
STX .02 
ETX 03 
EOT 04 
ENQ 05 
ACK 06 
BEL 07 
BS 08 
HT 09 
LF OA 
VT 08 
FF OC 
CR 00 
SO OE 
51 OF 
OLE 10 
OCl 11 
DC2 12 
DC3 13 
DC4 14 
NAK 15 
SYN 16 
ET8 17 
CAN 18 
EM 19 
SUB 1A 

Same 

as 

Unshlfted 

7E 
60 

DEL 7F 
ESC 18 
NUL 00 
G5 10 
RS 1E 
US 1F 
FS 1C 
Space 20 



fi'~ Apeendix D1 COde Charts: 

Tabla 01-11 
Kayboard-to-JIS8 (mark parity)1 

UNSHIFTEO 
KEY CHAR2 HEX3 

A E1 E1 
B E2 E2 
C E3 E3 
0 E4 E4 
E E5 E5 
F Ea Ea 
G E7 E7 
H E8 E8 
I Ea E9 
J EA fA 
K fB fB 
L EC EC 
M ED ED 
N EE EE 
0 EF EF 
P FO FO 
Q F1 F1 
R F2 F2 
S F3 F3 
T F4 F4 
U F5 F5 
V Fe F6 
W F7 F7 
X Fa F8 
Y F9 F9 
Z FA FA 
0 80 
1 J' B1 
2 -r 82 
3 ? B3 
4 I 54 
5 ;t 85 
6 1J 8S 
7 ::f B7 
8 1) B8 
9 ~ B9 

dash .::1 AD 

'Hex data-entl(Y will override parity 
2CHAR displayed in Run mode 
3HEX byte trapped/transmitted 

SHIFTEO 
CHAR:! HE~ 

f C1 
')I C2 
"f C3 
~ C4 
1 C5 - C6 -
~ C7 
~ C8 
) C9 
J\ CA 
C: CB 
"J cc 
..... CD 
iI: CE 
-:( CF 
~ DO 
I:,. 01 
j. 02 
;: D3 
." D4 
2 05 
3 06 
5 07 
IJ 08 
JV 09 
L- OA ., AS 
• A1 
51 co 
J AS 

A4 
AS 

\\ DE 
3 AS 
I AA 
-f A8 
• OF 

01 .... 13 

KeYbQard-to-Hex-Trans/ation 

CONTROL 
CHAR2 HEX3 

81 81 
82 82 
83 83 
84 84 
85 85 
as 86 
67 87 
86 88 
89 89 
SA SA 
8B 88 
6C 8C 
80 80 
SE 8E 
SF 8F 
90 90 
91 91 
92 92 
93 93 
94 94 
95 95 
96 96 
97 97 
98 98 
99 99 
9A 9A 

Same 

as 

Unshifted 



INTERytEW 7000 Se'1!8 Advanced .Pro(Irammfna.· ATLo-107~951-108 

Table D1-11 (continued) 

UNSHIFTED SHIFTED CONTROL 
KEY CHAR HEX CHAR HEX CHAR HEX 

= .< BO '" AB FE FE 
\.4 IJ DC FC FC EO EO 
[ 0 DB FB FB FF FF 
J :J DO FO FO 9B 9B 

+j BB :J BA 80 80 ,. A7 r A2 90 90 
... AC :,t BC 9E 9E 
31 AE 1:! BE 9F 9F 

I !!.I AF 'J BF 9C 9C 
Space AD AD AD AO AD AD 

4Enter the hex value for the IJ character. 

01-14 



Appendix D2 Code Charts: Hex-to-Display Trans/ation 

Appendix 02: Hex-to-Display Translation 

The left-hand column in the following table (labeled "INPUT HEX") is the hex value 
presented on the Run-mode data screen when HEX display is turned on. 

The remaining columns show the character that is presented for each hex value in each of the 
available code sets when hex display is turned off. Where no character in the code set 
corresponds to the hex value received. hex display is always used. 

The bit in the "input hex" value that was received first by the INTERVIEW's receivers will 
vary with the code. In the column heading for each code we have placed a small arrow next 
to the rightmost or leftmost bit to indicate which was the first bit received. In IPARS, for 
example, the leftmost bit is the first bit received. 

We have tried also to indicate the significance of each bit. In EBen, the third bit from the 
left in the hex value is the least significant (:1) bit. while the rightmost bit is the most 
significant (=32). This means that the first ten hex values in this code set are not really 00 
through 09. Rather they are 00, 20, 10, 30, 08, 28, 18. 38, 04 and 24-corresponding to the 
characters SPACE, 1, 2. 3, 4, 5, 6, 7. 8, and 9, and corresponding also to the following 
binary series, which increments from left to right: 

00000000 
00100000 
00010000 
00110000 
00001000 
00101000 
00011000 
00111000 
00000100 
00100100 
etc. 

02-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

02-2 



Table 02-1 
Hex-to-Oisplay Translation 

INPUT ASCII' EBCDIC' EBCO' XS-3 ' IPARS! REve8co3 BAUDOT' SELECTRIC' JIS7' JISS' 

HEX {I"f\~"84211 ..... \\84211 (1')1248\.\1 (IWll84211 1l.!\.8421 f1248'f~(" 'e8421t (1')1248\\1 {I"f\\~8421 • \\\\.84211 
LOWER UPPER LOWER UPPER LETTERS FIGURES LOWER UPPER LOWER UPPER 

00 NU NU space space space hex space space hex hex SP SP NU NU NU 
01 SH SH dash di"sh } 1 1 '" E 3 hex SH SH SH 
02 SX SX @ hex dash 2 2 <; LF LF t T SX SX SX 
03 ex EX & t 0 3 3 A J J EX EX EX 
04 ET hex 8 • 1 4 4 space hex 4 $ ET ST ST 
05 EO HT q 0 2 5 5 % S hex 0 0 EO EO EO 
06 AI< hex y Y 3 6 6 I 8 I L AK AI< AI< 
07 BL pad h H 4 7 7 > U 7 I ? aL BL Bt 
08 as hex 4 5 8 8 CR CR 5 % as BS as 
09 HT hex m M 6 9 9 ( 0 $ HT HT HT 
OA LF hex u U 7 0 0 ) R 4 e E LF LF LF 
oa VT VT d 0 8 # . J p P VT VT VT 

0 OC FF FF 02 P2 9 CR ( J N hex hex FF FF FF 
N 00 CR CR hex hex \ hex FF FF F hex hex CR CR CR 
I OE SO SO hex hex = C hex hex SO SO so (..) 

OF SI SI D4 D4 hex ET ET K hex hex SI SI SI 

10 OL oL 2. <; + hex @ hex T 5 2 @ oL oL oL 
11 01 01 k K hex I ? Z hex 01 01 01 
12 02 02 $ S S s S L ) n N 02 02 02 
13 03 03 b B ? T t T W 2 "" + 03 03 03 
14 04 hex 0 ) A U u U H # z Z 04 04 04 
15 NK hex hex hex B V v V Y 6 hex hex NK NI< NI< 
16 BY as hex C W w W p 0 hex hex SY SY SY 
17 Ee hex hex hex 0 X x X 0 1 hex hex SB EB EB 
18 CN CN 6 E Y Y Y 0 9 6 hex CN CN CN 
19 EM EM 0 0 F Z z Z B ? I I EM EM EM 
1A sa hex w W a dash hex hex G & k I< SB se SB 
1B EC hex f F H /I . hex q 0 EC EC EC 
1C FS hex I space } { M ~ FS FS FS 
10 as as BS BS = hex LF LF X BS BS as as as 
1E AS hex EB EB <; ( SB EB V ; Ea EB RS RS RS 
1F US US \ \ # hex hex \ \ \ \ US US US 

'Select Bit Order/Polarity; NORMAL 
2Se lect Bil Order/Polarity: REV-INVERT 

3Se lec t Bit Order/Polarity: REVERSE-NORM 



Table 02·1 (continued) 

INPUT AseD EBCDIC EeCD XS-3 IPARS REV EBCD BAUDOT SELECTRIC JlS7 JlS8 

HEX LOWER UPPER LOWER UPPER LETTERS FIGURES LOWERU~R LOWER UPPER 

20 space hex 1 :: @ @ dash dash hex hex 1 [ space space space 
21 , hex j J * J j J hex hex m M I I • 
22 FS I ? $ K k K hex hex x X r • 
23 # hex a A ! L L hex hex g G /I J /I 
24 $ hex 9 G J M m M hex hex 0 J $ $ 
25 % LF r R K N n N hex hex s S % % 
26 & EB z Z L 0 0 0 hex hex h H & 3 & 
27 EC I I M P P P hex hex 'I y l' 
28 hex 5 % N Q q Q hex hex 7 & .f 
29 hex n N 0 R r R hex hex r R .., 
2A hex v V P hex hex hex hex d 0 • I • 
2B t hex e E 0 < $ I hex hex + ;t t 

2C hex RS RS R + hex hex hex hex RS RS l' 
0 20 EO CR CR % hex CR CR hex hex CR CR dash .::l dash 
I\) 

2E AK LF LF ) BS BS hex hex LF LF 1.. :3 

2F I Bl HT HT ( hex hex hex hex HT HT I ~ I 

30 0 hex 3 underline $ & + hex hex 3 /I 0 0 
31 1 hex L A a A hex hex v V 1 l' 1 
32 2 SY t T B b B hex hex u U 2 .( 2 
33 3 hex c C & C c C hex hex f F 3 ., 3 
34 4 hex # I 0 d D hex hex 9 ( 4 I 4 
35 5 RS $ S' E e E hex hex w W 5 ;;t 5 
36 6 hex hex T F f F hex hex b B 6 1; 6 
37 7 ET hex U G g G hex hex 7 * 7 -
38 8 hex 7 > V H h H hex hex 8 • 8 1) 8 
39 9 hex p p W I I hex hex a A 9 ;- 9 
3A hex x X X ? hex hex hex hex c C :J 
3B hex g G y hex hex hex +J 
3C < 04 ET ET Z % hex hex ET ET < :,. < 
3D .. NK SY SY ) hex HT HT hex hex hex hex = ;:( = 
3E > hex SH SH > \ \ hex hex hex hex > ~ > 
3F ? S8 pad pad hex pad pad hex hex pad pad ? ') ? 

'SYNC " even parity S (3511,), 



Table 02-1 (continued) 

INPUT ASCII EBCDIC EBCD XS-3 IPARS REV EBCD BAUDOT SELECTRIC JIS7 JlSS 
HEX LOWER UPPER LOWER UPPER LETTERS FIGURES LOWER UPPER LOWER UPPER 

40 @ space space space space hex space space hex hex SP SP @ 51 @ 

41 A hex ) hex 1 = hex hex ! hex A f A - -
~? 8 hex @ hex dish hex 2 < hex hex t T 8 1)1 8 
43 C hex & + 0 hex 3 hex hex J J C "f C 
44 0 hex 8 * t hex 4 hex hex 4 $ D ~ 0 
45 E hex q 0 2 hex 5 % hex hex 0 0 E '7 E 
46 F hex y y 3 hex 6 hex hex I l F ~ 
47 G hex h H 4 hex 7 > hex hex I ? G ~ G 
4a H hex 4 5 hex 8 * hex hex 5 % H ~ H 
49 1 hex m M 6 hex 9 hex hex I ) I 
4A J hex u U 7 hex 0 hex hex e E J J\ J 
48 K d 0 8 hex II hex hex p P K !:: K 
4C L < 04 02 9 hex [ J hex hex hex hex L J L 

·0 40 M hex hex \ hex FF FF hex hex hex hex M " M N) 

J, 4E N + hex hex hex hex hex hex hex N t N 
4F 0 hex D4 Oil hex ET ET hex hex hex hex 0 "":.l 0 

50 P & 2 < + hex @ hex hex hex 2 @ P ~ P 
51 Q hex Ie I< hex I ? hex hex Q /:,. Q 
52 R hex s S hex s S hex hex n N R ;f- R 
53 S hex b B ? hex t T hex hex = + S t s 
54 T hex 0 ) A hex u U hex hex l Z T P T 
55 IJ hex hex hex a* hex v V hex hex hex hex IJ 2 U 
56 V hex hex hex C hex w W hex hex hex hex V 3 V 
57 W hex hex hex 0 hex x X hex hex hex hex W ., W 
58 X hex 6 E hex y y hex hex 6 hex X IJ X 
59 Y hex 0 0 F hex z Z hex hex I I y JIJ y 

SA Z , w W G hex hex hex hex hex k K Z " Z 
58 [ $ f F H hex hex hex hex q Q ( 0 [ 
SC \ hex } { hex hex ¥ IJ ¥ 
50 1 8S BS '" hex LF LF hex hex as as J :J J 
SE Ea EB < hex EB Ea hex hex fB EB It 

SF hex \ \ # hex hex hex hex hex \ \ underline underline -
"EOM = even parity B (55u,,). 



Table 02-1 (continued) 

INPUT ASe" EBCDIC EBCD XS-3 IPARS REV EBCD BAUDOT SELECTRIC JIS7 JISS 

HEX LOWER UPPER LOWER UPPER LEITERS FIGURES LOWER UPPER LOWER UPPER 

60 dash 1 ::: @ hex dash dash hex hex [ hex 
61 a I j J * hex j J hex hex m M a hex a 
62 b hex I ? $ hex k K hex hex x X b hex b 
63 c hex a A I hex I l hex hex 9 G c hex c 
64 d hex 9 ( J hex m M hex hex 0 ) d hex d 
65 e hex r A K hex n N hex hex 8 S e hex e 
66 f hex z Z L hex 0 0 hex hex h H f hex f 
67 9 hex I I M hex p P hex hex y y 9 hex 9 
68 h hex 5 % N hex q Q hex hex 7 & h hex h 
69 I hex n N 0 hex r A hex hex r RI I hex I 
6A J v V P hex hex hex hex hex d 0 J hex J 
68 Ie . e E Q hex $ I hex hex k hex k 
6C I % RS RS A hex hex hex hex hex AS RS I hex I 
60 m CR CR % hex CR CR hex hex CR CR m hex m -

0 6E n > LF LF hex BS BS hex hex LF IF n hex n 
I\l 6F 0 ? HT HT hex hex hex hex hex HT HT 0 hex 0 
I 
en 

70 hex 3 hex & hex hex 3 # P hex p p ; + 
71 q hex I l { hex a A hex hex v V q hex q 
72 r hex t T . hex b B hex hex u U r hex r 
13 s hex " C & hex c C hex hex f F s hex s 
14 t hex # I hex d 0 hex hex q ( t hex t 
75 u hex $ I S hex e E hex hex w W u hex u 
76 v hex hex T hex f F hex hex b B v hex v 
77 w hex hex U hex 9 G hex hex dash un~rllne W hex w 
18 x hex 1 > V hex h H hex hex 8 • x hex x 
19 V P P W hex I I hex hex a A y hex y 
7A z x X X hex hex hex hex hex c C z hex z 
18 { # 9 G y hex hex hex hex . . { hex { 
7C , 

@ ET ET Z hex hex hex ET ET hex , 
I , 

70 SY SY ) hex HT HT hex hex hex hex hex 
1E = SH SH > hex \ \ hex hex hex hex hex 
1F pad pad pad hex pad pad hex hex pad pad pad hex pad 



Table 02-1 (continued) 

INPUT ASCII EBCDIC EBCD XS-3 IPARS REV EeCD BAUDOT SELECTRIC JlS7 JIS8 

HEX LOWER UPPER LOWER UPPER LETTERS FIGURES LOWER UPPER LOWER UPPER 

80 NU hex hex hex NU NU hex 
81 SH a hex hex SH SH hex 
82 SX b hex hex SX SX hex 
63 EX 0 hex hex EX EX hex 
84 ET d hex hex ET ET hex 
85 EO e hex hex EO EO hex 
86 AK f hex hex AK AK hex 
87 Bt g hex hex Bl Bl hex 
88 85 h hex hex as BS hex 
89 HT I hex hex HT HT hex 
8A LF hex hex hex IF LF hex 
8a VT /rex hex hex VT VT hex 
8C FF hex hex hex FF FF hex 
80 CR hex hex hex CR CR hex 

2 
SE SO hex hex hex SO SO hex 
SF 81 hex hex hex SI SI /rex , ..., 
90 Ol hex hex hex OL OL hex 
91 01 1 hex hex 01 01 hex 
92 02 k hex hex 02 02 hex 
93 03 I hex hex 03 03 hex 
94 04 m hex hex 04 04 hex 
95 NK n hex hex NK NK hex 
96 SY 0 hex hex Sy Sy hex 
97 EB p hex hex EB EB hex 
98 CN q hex hex CN CN hex 
99 EM r hex hex EM EM hex 
SA SB hex hex hex sa SB hex 
9B EC hex hex hex EC EC hex 
9C FS hex hex hex FS FS hex 
90 as hex hex hex as GS hex 
9E RS hex hex hex RS RS hex 
9F US hex hex hex US US hex 



Table 02-1 (continued) 

INPUT ASC" EBCDtC EBCD XS-3 IPARS REV EBeD BAUDOT SELECTRIC JIS7 JlSS 

HEX LOWER UPPER LOWER UPPER LETTERS FIGURES LOWER UPPER LOWER UPPER 

AO space hex hex hex space space hex 
At I hex hex I • • 
A2 * s hex hex r r 

A3 # t hex hex # J J 
A4 $ u hex hex $ , 
A5 % v hex hex % 

I AS & w hex hex & 3 3 , A7 x hex hex l' l' 
A8 Y hex hex ..( ..( 

I 
A9 z hex hex ., ., 
AA • hex hex hex I I 
AB + hex hex hex + ?t :t 

t 
AC hex hex hex 1> 1> 

0 AD dash hex hex hex dash :l. :l. I\) 
I AE hex hex hex ::lI :3 

I 
0) 

AF I hex hex hex I !.If !.If 

BO 0 hex hex hex 0 

! Bt 1 hex hex hex 1 -p -p 
B2 2 hex hex hex 2 ,( ,( 
B3 3 hex hex hex 3 ? ? 
84 4 hex hex hex 4 I I 
85 5 hex hex hex 5 ;;t :t 
B6 6 hex hex hex 6 1J 1J 
B7 7 hex hex hex 7 '* '* 88 8 hex hex hex 8 1J 1J 
89 9 hex hex hex 9 ". ". 
BA hex hex hex :J :J 
BB hex hex hex fj fj 
Be < hex hex hex < :,t :,t 
BD = hex hex hex = ::< ::< 
BE > hex hex hex > t? t? 
BF ? hex hex hex ? ') ') 



Table 02-1 (continued) 

INPUT ASCII EBCDIC EeCD XS-3 IPARS REV EeCD BAUDOT SELECTRIC JIS7 JIBS 
HEX LOWER UPPER LOWER UPPER LETTERS FIGURES LOWER UPPER LOWER UPPER 

CO @ { hex hex @ 9 9 
C1 A A hex hex A f f 
C2 B B hex hex B \}I '}I 
C3 C C hex hex C T T 
C4 0 0 hex hex 0 ~ f. 
C5 E E hex hex E 1" 1" 
C6 F F hex hex F 
C1 G G hex hex G X X 
C8 H H hex hex H * ~ 
C9 I hex hex I ) ) 
CA J hex hex hex J J\ J\ 
CB K hex hex hex K I:: I::: 
CC L hex hex hex L ") ") 

2 co M hex hex hex M "- "-
I CE N hex hex hex N t it to 

CF 0 hex hex hex 0 '71 '71 

00 p } hex hex P ~ S 
"" 01 Q J hex hex Q 6- 6-

02 R K hex hex R j. 1-
03 S L hex hex S 1: 't: 
04 T M hex hex T -p -p 
05 U N hex hex U :2 :2 
06 V 0 hex hex V 3 3 
07 W P hex hex W :;, , 
08 X Q hex hex X IJ IJ 
09 Y R hex hex Y Jb JIJ 
OA Z hex hex hex Z It It 
DB [ hex hex hex [ 0 0 
DC \ hex hex hex ¥ IJ IJ 
DO ) hex hex hex 1 ::J ::J 
DE hex hex hex II )j 

OF hex hex hex underline + 



Table 02-1 (continued) 

INPUT ASCII EBCDIC EBCD XS-3 IPARS REV ESCD BAUOOT SELECTRIC JIS7 JlS8 

HEX LOWER UPPER LOWER UPPER LETTERS FIGURES LOWER UPPER LOWER UPPER 
I 
I 
II 

{ hex hex il EO hex hex 
l' E1 a hex hex hex a hex hex ,I; 

I E2 b S hex hex b hex hex 
E3 0 T hex hex c hex hex 

! E4 d U hex hex d hex hex 
E5 e V hex hex e hex hex 

I E6 f W hex hex f hex hex 
E7 g X hex hex g hex hex 

1i E6 h Y hex hex h hex hex 

~ 
E9 I Z hex hex I hex hex 
EA I hex hex hex J hex hex 

I 
ES k hex hex hex k hex hex 
EC I hex hex hex I hex hex 
EO m hex hex hex m hex hex 

0 EE n hex hex hex n hex hex 
I I'>.) EF 0 hex hex hex 0 hex hex 

I 

~ ...... 
0 FO p 0 hex hex p hex hex 

I F1 q 1 hex hex q hex hex ! F2 r 2 hex hex r hex hex 
F3 s 3 hex hex s hex hex 
F4 t 4 hex hex t hex hex 
F5 u 5 hex hex u hex hex 
FB v 6 hex hex v hex hex 
F7 w 7 hex hex w hex hex 
F8 x 8 hex hex x hex hex 
F9 y 9 hex hex y hex hex 
FA z hex hex hex z hex hex 
FB { hex hex hex { hex hex 
FC I hex hex hex • hex hex , I 

FD hex hex hex hex hex 
FE hex hex hex hex hex 
FF pad hex hex hex pad hex hex 



Appenr:l1x .03 Code Charts: User-Defined Codes 

Appendix 03: User-Defined Codes 

The character set shown in Table D3·1 can be used to adapt existing code sets or to create 
customized codes. Follow the steps in the example below to create a new code set. 

As an example. we'll change the standard ASCII code set to one which includes the ¥ (yen) 
symbol. 

L l)etermine hex values.F~,wewill detetminewbich hexadecimal value or values we want 
to have generate the ¥ symbol. one for space parity and one for mark parity. In our 
example. the values will be hexadecimal SC and DC. 

2. Read existing code file to spreadsheet. Whether adapting an existing code set or creating a 
new one, use an existing code file as a template. (Some files include shifted and unshifted 
coding.) Go to the Protocol Spreadsheet and press [!E], BLOCK (1fIJ), IN/OUT (lEI). 
READ/U (trn). Enter the name of the fUe when prompted. The absolute pathname of the 
standard ASCn code file is HRDlsyslcodeslASCll. Press~. Do not use the Load 
command on the File Maintenance screen to access the file. 

The ASCII code set will be displayed on the Protocol Spreadsheet, as in Figure D3,.L 
Initially, the file is highlighted on the Protocol Spreadsheet in reverse video. ~You may 
clear the highlighting by pressing E3. lEID. Since you will be writing your revised code set 
back to a file, however. you may want to retain the highlighting. Then you will not have 
to identify the block again before writing. 

3. Locate position. Positions in the code proceed sequentially, beginning with hexadecimal 00 
and ending with FF. Each row in the code table contains eight elements. The first two 
rows. for example. correspond to hex 00 through OF. The next two rows contain elements 
in positions 10 through 1F, and so on. Move the cursor to position 5C. 

03-1 

---.--.-~--------... ---.-... -----.. -.-.. ----.. --



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

eet ** Name of file: 
/ 
/ Code for ASCII 
/ 

Version: 3; 

Name: "ASCII"; 

To 

nu 
bs 
dl 
en , , 
,. ( ,. 

Graphic: 

sh sx l!"X l!"t l!"q ak bl 
ht If vt ff cr so si 
dl d2 d3 d4 nk s~ l!"b 
l!"m sb l!"C fs ~~, rs us 
, I , lUI '#' '$' '&' , , , . , ) ,. '*' '+' , , '-' , , '/' , . 

Figure D3-1 When the standard ASCII code file is written to the Protocol Spreadsheet, a code 
table appears with 32 rows of eight elements per row, corresponding to 256 possible hex values. 

4. Enter new code. Replace the entry with a new value. Refer to Table D3-1. All values 
under " Code-Table Entry" are three-digit hexadecimals. A leading zero identifies an 
entry as a numerical value and guarantees accurate translation. Notice in Figure D3-1 that 
there is special notation for ASCII control characters. A dl entry. for example. translates 
as the ASCII control character D1 • Entered as Od] (or ODl). the meaning is ilL Values 
which begin with a digit in the range 0-9. 80 for example, do not strictly require the 
leading zero. Also notice in Figure D3-1 and Figure D3-2 that alphanumerics may be 
entered as character constants. A set of single quotation marks surrounds a character 
constant. an alternative way of entering ASCII keyboard characters. 

In our example, replace '\' with 080. Figure D3-2 shows the set after the first 
replacement. Next, locate and edit position DC. 

03-2 



Appendix 03 Code Charts; User-Defined COdes 

** otoco eet ** 
Name of f i 1 e: HRD/s~s/codes/ASCI 
Name: "ASCII" ; 

To 

nu 
s 

dl 
en , 
, ( . 
'0 ' 
'8 ' 
'@ , 

'H" 
'p' 
"X I' 

Graphic: 

sh sx ex et eO( ak bl 
ht if vt ff cr so si 
dl d2 d3 d4 nk s~ eb 
em sb ec fs 9 S rs us 
, I I' , H , ":1j:" '$' '%' '&' , , , . 
, ) J1 '*' '+' , , _ 1 , '/' , . 
, l' '2' '3' '4' "5' '6' '7' 
'9' ..... .. . , , < ' , =' .. ) .. '?' . , 
'A' , B' , C' 'D" 'E' 'F' 'G' 
, I ' 'J' 'K' 'L' 'M' 'N' "0 ' 
'Q" 'R' '5' JlT' 'u' 'V' '<W' 
'y' 'Z' I' ( , 080 I J ' lA' , 1 

Figure D3-2 On the bottom line of the spreadsheet, the entry 080 has replaced the previous entry. 
On Table D3-1. 080 corresponds to the yen symbol. 

5. Write file to disk. If you cleared the highlighting. mark the file via the BLOCK, BEGIN. and 
END softkey selections. Use the BLOCK, IN/OUT. and WRITE/U commands to write your code 
to the disk. Give the file a different name to prevent an existing file from being 
overwritten. 

6. Reboot. Tum the INTERVIEW off. When you turn the unit back on, it will reboot and 
automatically load in the new (or edited) code set. The first seven characters in the name 
of the code file will be displayed as a softkey selection for the Code field on the Line 
Setup screen. 

NOTE: If your code contains an error-a hexadecimal value 
does not begin with a digit, for example-it will not be loaded 
into the INTERVIEW's memory. even if it appears as a Code 

selection on the Line Setup menu. Usually, the standard ASCII 
code will be used instead. 

03-3 



INTERVIEW 7000 Series Advanced Programming; ATLC-107-951-10B 

Table 03·1 
Code-Set Characters 

Character Code-Table Entry Character Code-Table Entry 

"tIJ 000 £,; 01b 

~ 001 "'s 010 

~ 002 l\; Old 

f'x 003 
"s 01e 

~ 004 
"s 01f 

en 005 
(space) 020 

Ik 006 
021 

II .. 007 
022 

'\ 008 
:# 023 

'" 009 

'1:- OOa 
$ 024 

'<- OOb '% 025 

FF OOe & 026 

'R OOd 027 

!b OOe 028 

Sr OOf 029 

°L 010 
* 02a 

°1 011 + 02b 

~ 012 
02c 

~ 013 
02d 

~ 014 
02e 

"k 015 
/ 02f 

!\- 016 
0 030 

If9 017 

CN 018 1 031 

1M 019 2 032 

Sa 01a 3 033 

03-4 



Ap.pendlx D3 COde' Charts: '. User-Defined Codes 

Tabl.03-1 (continu.d) 

Character Code-Table Entry Character Code-Table Entry 

4 034 P 050 

5 035 Q 051 

6 036 R 052 

7 037 5 053 

8 038 
T 054 

9 039 
U 055 

03a 
V 056 

03b 
W 057 

< 03e 
X 056 

03d 

> 03e 
y 059 

? 03f Z 05a 

@ 040 [ OSb 

A 041 "- 05c 

B 042 ] 05d 

C 043 A 05e 

D 044 05f 

E 045 
060 

F 046 
a 061 

G 047 
b 062 

H 048 
c 063 

I 049 
d 064 

J 04a 

K 04b e 065 

L 04e f 066 

M 04d 9 067 

N O4e h 068 

0 O4f 069 

03-5 

-----------_._--' 



INTERVIEW 7000 Series Advanced Proaramming: ATLC-107-951-108 

Table 03·1 (continued) 

Character Code-Table Entry Character Code-Table Entry 

j 06a 3 086 

k 06b l' 087 

06c .. 088 

m 06d ., 089 
n 06e 

1: 08a 
0 OSf 

;:t- 08b 
p 070 

1> 08e 
q 071 

072 
::l 08d 

r 

s 073 :a 08e 

t 074 !!J 08f 

u 075 090 

v 076 'Y 091 

1IJ 077 -r 092 

x 078 ., 093 

~ 079 I 094 

z 07a 
;:t- 095 

07b 
1; 096 

07e 

'* 097 
) 07d 

1) 098 
07e 

7 099 
% 07f 

¥ 080 ::l 09a 

081 
4j 09b 

a 

r 082 
:,. 0ge 

083 ::< 09d 
J 

084 t; 0ge 

085 ') 09f 

D3-6 



Appendix 03 CodeCh~rts: User-Defined Codes 

Tabl.03-1 (continued) 

Character Code-Table Entry Character Code-Table Entry 

51 OaO 0 Obb 

1- Oa1 'J Obe 

\}1 Oa2 :J Obd 

T Oa3 .... Obe 

~ Oa4 
Obf 

-; Oa5 
<; OeO 

- OaS -
U Oe1 

X Oa7 
e 002 

:i Oa8 

) 
a Oe3 

Oa9 

J\ Oaa a 004 

t:: Oab a 005 

") Oae a. 006 

'" Oad C 007 

1l Oae e 008 

~ Oaf e Oe9 

~ ObO E- Oca 

b Ob1 'i Oob 
j. Ob2 

i Oee 
;: Ob3 

i Oed 
1:> Ob4 

A Oce 
:2. ObS 

A Ocf 
3 ObS 

'.5 Ob7 
It OdO 

IJ Ob8 ce Od1 

JIJ Ob9 IE Od2 

I" Oba 6 OdS 

03-7 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Table D3-1 (continued) 

Character Code-Table Entry Character Code-Table Entry 

0 Od4 U Oe3 

6 OdS Pi 0&4 

U. Od6 N Oe5 

U Od7 g Oe6 

9 OdS Q Oe7 

(:) Od9 6 Oe8 

U Oda ,.. Oe9 

ct Odb ..... Oea 

£ Ode ~ Oeb 

B Odd ~ Oee 

R Ode Oed 

j Odt Gee 

a OeO § Oet 

i Oe1 .. 
Of 0 t 

6 Oe2 

t Values Of1-Off are undefined. 

03-8 



ADDENDUM 

Appendix E OgmmunlAAtions with the AR Divis/on Factory 

Appendix E: Communications with the 
AR Division Factory 

All communications with the factory of the AR Division of Telenex Corporation begin with a 
call to Customer Service: 

Customers outside theWashlngton D.C. 1-800-368-3261 
Greater Metropolitan Area and Virgiriia 

In Virginia 1-703-644-9190 

Local customers 644-9190 

If necessary. Customer Service will direct your call to the appropriate department. 

E.1 Returning an INTERVIEW or Subassemblies for Repair 

(Al Authorization 

1. The first step is always to call AR Division Customer Service in Springfield. 
Virginia. 

2. Customer Service will issue a RETURN AUTHORIZATION (RA) number. 
This number shoWd be posted on the outside of the package of all 
equipment returned for repair. The RA number, as wen as a description of 
the problem. should be cited in all documentation. written correspondence, 
or telephone conversations concerning the specific repair. 

WARNING: Special RA numbers are issued for customers who 
have purchased a Maintenance Agreement plan (or plans) from 
AR Division. Since these numbers identify equipment under 
maintenance, you lJ:1UI:t. posl this RA number on the outside of the 
package in order for AR DJvisi()n .to Mnor the terms of the 
Maintenance Agreement. 

MAY 1990 PAGEE-1 



ADDENDUM 

INTERYlEW7000 Series Adv.rgq froqrammlna: ATLC-107-951-108 

3. Turnaround time for repairs is usually two weeks in addition to 
transportation time. Customer Service can arrange to furnish a rental unit if 
it is not practical for you to be without the equipment for that length of 
time. We can either include the rental fee on the repair bill or bill the 
rental fee separately. 

NOTE: AR Division offers expedited service Maintenance 
Agreement plans. Under these plans. the customer chooses 
between expedited .repair (72-hour factory turnaround) or a 
loaner unit for the duration of the repair. Contact Customer 
Service for complete details. 

(8) Shipping 

1. Always include with the shipment a detailed description of the problem to be 
corrected. Put the assigned RA number on this document. 

2. If the item is out of warranty, you should either 

a. provide a purchase order for the repair. or 

b. request an estimate of the amount of the repair. 

3. Select suitable packing materials for electronic equipment containing a 
cathode ray tube. and packtheINTmtVIBWWlth care. If possible. the 
. carton and foam packing material in which you received the equipment 
should be used for returning it for repairs. 

4. Write the .return authorization number on the outside of the shipment: 
.. A TIN RA number." 

S. International customers should address the shipment to 

Teleriex Corporation, AR Division 
AITN RA number 
clo Bmery Customs Brokers 
101A Bxecutive Drive 
Sterling, Virginia 22170 
U.S.A. 

NOTE: Por .customs purposes, international customers MUST 
identify the cOuntry of orip (usually the U.S.A.) for returned 
equipment· on· the· prD /orrn.tJ .invoice. When returning an 
individual part, use the country of. orip listed on the part. 

MAY 1990 PAGE E-2 



ADDENDUM 

Appendix E CommunICatIons . with the . Aft Division Factory 

6. Domestic customers should address the shipment to 

Customer Service 
Telenex Corporation 
AR Division 
A TIN RA number 
7401 Boston Boulevard 
Springfield. Virginia 22153 
U.S.A. 

7. Ship PREPAID even if you have a Maintenance Agreement with AR Division. 
No collect shipments will be accepted unless previously authorized by 
Customer Service. 

8. Most repairs will be completed within two weeks. not including transportation . ~ 

tune. 

E.2 Ordering Replacement Parts or Assemblies 
To obtain price quotations or to order spare or replacement parts. contact Customer 
Service. Customer Service will need to know the model deSignation of the unit. its 
serial number and software version, and what options are installed. 

E.3 PC Board or Subassembly Exchanges 

The AR Division's repair replacement policy applies to the exchange of PC Boards or 
Subassemblies that need repair. Please contact Customer Service. 

E.4 For Analysis of Problems 
For applications, troubleshooting. or repair problems requiring technical assistance, 
call Customer Service. 

E.S Warranties 
There is a standard warranty on all AR Division equipment. This warranty is for 12 
months. 

Extended andlor Expedited Service Agreements are available for INTERVIEW 7000 
Series equipment. Operating system software maintenance is also offered. Please 
contact Customer Service. 

E.6 Loaner Units 
Loaner units are available under some hardware Maintenance Agreement plans. 
ContaCt Customer Service for additional information. 

MAV 1990 PAGE E-3 



ADDENDUM 

INTERVIEW 70QO S,rles Advanc§d Proarammlng: ATLC-107-951-108 

MAY 1990 PAGE E-4 



Appendix F Packing and Shipping 

Appendix F: Packing and Shipping 
Instructions 

The INTERVIEW is usually shipped either as baggage or as freight. The basic difference, of 
course, is in quantity and quality of handling to which the unit is subjected. It follows that 
different packing methods are called for. 

When a unit is shipped as baggage, it will probably be subjected to much less severe treatment 
than when it is shipped by freight. The AR Division of Telenex Corporation offers its 
INTERVIEW Soft Pack Travel Bag. Option No. OPT-9S1-99-1. for this purpose. This bag 
has two inches of high-density foam protecting all surfaces of the INTERVIEW. It is yellow 
for easy identification among other luggage. An identification card case, FRAGILE 
markings, and leather appointments are standard features. On the oUtside is a large pocket 
for carrying notes, manuals, and so forth. 

Before packing the INTERVIEW in the carrying bag. remove any diskettes from the 
micro diskette drives. To protect the heads during transit, insert the two yellow plastic shipping 
diskettes that were delivered with the unit, one in each drive. The manual should go in the 
front (center) pocket of the travel bag. There is an inside pocket for the power cord and 
other cables. 

Put the INTERVIEW in the bag with its handle up (as in Figure F-l). Then close and 
secure the bag cover with its velcro closing. 

CAUTION: The bag is considered to be reasonable protection for 
the INTERVIEW when it is shipped as baggage. However, it 
should never be used for freight shipment. The AR Division of 
Telenex Corporation can assume no liability for damage to units 
shipped this way, owing to circumstances beyond our control. 

For freight shipment, the INTERVIEW should be packed in molded polyurethane foam and a 
heavy-duty outer cardboard carton, as delivered by AR Division. An manuals and accessories 
should be packe41 in a separate box within the carton. This packing system has been designed 
to give maximum reasonable protection to the INTERVIEW and ensure its safe arrival. 
However, damages due to mishandling must be the responsibility of the carrier. 

F-l 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

Figure F-l Soft Pack Travel Bag, Option 99. 

F-2 



~, 
;. I 

i 

Appendix F Packing and Shipping 

Figure F-2 Hard Shell Travel Case. Option 95. 

For freight shipment. we also recommend the hard-shell travel case (OPT-951-95-1). See 
Figure F-2. This is a wheeled suitcase made of high-impact plastic, steel and rubber. It is 
designed for use with all AR test equipment. Because it has built-in wheels and an extension 
handle, the hard-shell travel case is especially useful for frequent hand-toting of the 
instrument. 

NOTE: Please do not return any unit to the AR Division without 
prior authorization (see Appendix E). 

F-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

F-4 



App!ndlx G Rack Mount 

AppendlxG: Ra$kcc·JVtount (OPT-951-98-1) 

G-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Figure G-1 Rack mount for INTERVIEW 700017 500. 

G-2 



~, Appendix G Rack Mount 
i 

Appendix G: Rack Mount (OPT -951-98-1) 

A Rack Mount Kit (OPT-9S1-98-1) allows the INTERVIEW to be installed in a standard 
19-inch wide equipment rack. 

G.1 General Description 

The Kit will fit either standard vertical high-boy or sloped front-panel. low-boy 
racks. Please note that. for proper installation. the rack must be equipped with a 
horizontal writing shelf. 

The Rack Mount Kit offers the user slide-in/out mounting with a sloped keyboard 
position. 

Physical specifications are as follows: 

Height: 10.5 inches 
Width: 19 inches 
Depth: 18 inches 
Weight: approximately 5.5 pounds 

G.2 Installation 

1. Install the rack mount into the front of the cabinet directly above the writing 
shelf. Secure the rack mount with the eight sets of included black panel screws 
(ARD #33689) and nut clips (ARD #33686). 

2. Slide the INTERVIEW about three-quarters of the way into the opening. DO 
NOT SLIDE THE UNIT IN FURTHER AT THIS TIME. 

3. Open the front pane} and rest the keyboard on the writing shelf by sliding back 
the top two blue latches. At this point the hooks of the latches are exposed out 
the front of the unit. Press down slightly on the recessed circle of these latches 
and continue to slide the latches inside the unit until they stop. The indented 
circle should be almost centered in the sliding area and the hooks of the latches 
are no longer visible from the front of the unit. These latches must be properly 
placed or they will/ock the keyboard shut if it is accidentally closed. 

4. Car~fully slide the unit into the rack mount, with the keyboard lying open. until 
the front blue rubber bumpers on the right side of the unit are behind the face of 
the rack mount. You will have approximately one inch of the unit exposed out 
the front of the cabinet. The INTERVIEW is now in proper position for 
operation. 

G-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

5. Notice the rack mount has two electrical wires connecting to a switch mounted on 
the right front of the rack. Plug the female connector of the top wire into the 
power connector. located at the bottom left of the rear panel of the unit. It is a 
standard three-wire grounded male connector. 

6. The bottom wire of the rack mount is now the power connector for your unit._ 
Plug this male connector into a standard outlet. Check the voltage selection; see 
Section l.S(B). Turn on the power switch. located on the left side of the rear 
panel of the unit. This permits the ON/OFF switch on the rack mount to 
become the power switch for your unit. 

7. To complete the connections on your unit, refer to Section 1, Hardware. 

G-4 



ARPfIDdiX H Optional Codes J/S71J/S8 

Appendix H: Optional Codes JIS7/JIS8 

TIS7. and J1S8 Katakana character sets are contained in files named JIS7 and 11S8 in the 
/syslcodes directory of DSK-9S1-02S-1. the floppy diskette that comprises software option 
OPT-951-22-1.The files should be copied into the /syslcodes directory on the boot-up disk. 
When the unit is rebooted. the new codes will be available as Code selections on the Line 
Setup menu. 

H.1 Accessing the Directory Containing JIS7 and JIS8 Flies 

Insert the disk containing the optional codes into Floppy Drive 1 (FD 1). With the 
unit powered on and booted, pressS, FMAINT to access the File Maintenance 
screen. Press CHNGOIR and FLOPPY1, then enter the following 'pathname in the Name 

field: IsysJcodes. The first two lines of your File Maintenance should look like the 
screen in Figure H-1. 

Press §) to access the directory containing the 1lS7 and lIS8 files. 

** ntenance ** 

112 12/17/88 09:21 

• 
Figure 8-1 To see tbe JIS7 and JIS8 files in the File Maintenance listings. 

you must change to the FDJlsyslcodes direclory. 

H-1 



INTERVIEW 7000 Series Advanced Proarammlng: ATLC-107-951-.10B 

H.2 Copying JIS7 and JIS8 Files into /sys/codes Directory 

Press COPY. Leave the source pathname on the From line blank: we will make the 
From selections via the 8 key in the body of the current directory listings 
themselves. Press the ill key to move the cursor to the To field. 

On the To line. select the boot disk-drive. This may be the hard (HRD) drive; or 
you may install the boot-up diskette in Floppy Drive 2 (FD2). If your unit has only a 
single disk drive, you will use Floppy Drive 1 (FD1) to house first the source disk 
and then the destination (boot-up) diskette. In that case, select To: MiW, 

In the Name data-entry field, type Isyslcodes. Be sure to type a slash (I) both before 
and after the sys entry. 

Now move the cursor into the directory listings. With the blinking cursor positioned 
over the filename lIS7. press 8. Move the cursor down over lIS8 and mark this file 
as weiL 

Your screen should resemble the screen drawn in Figure H-2. Press ~ to copy the 
lIS7 and JIS8 files to the Isyslcodes directory on the boot disk. 

If you are using a single-drive unit. prompts will "walk" you through the exchange of 
disks in the single drive. 

- = Aa • M.M 

Figure H-2 You may usa the MARK key t(} select bothnS mes for cocpyingmto the 
tsyslcodes directory on the boot disk. 

H-2 



rff"" , ! 

H.3 

Ap~ndix H Optional COdes JIS71JISB 

Selecting ~!S7 or JIS8 Code 

Once me JIS files are copied into the Isys/codes directory, reboot the unit as follows: 
tum the unit off. wait ten seconds. then turn the power switch on again. 

Figure B-3 Files loaded into the Isys/codes directory are selectable 
in the Code field on the Une Setup menu. 

After bootup, press Sf SETUP, LINE. to access the Line Setup menu. Move the 
cursor down to the Cod. field. Press {Ill or IIID to rotate the selections in this field 
until you have verified that _WtJtrt~~i; and.m~*¥~t are available as new code 
selections. Figure H-3 shows a line setup with ~%jtt;lf; selected in the Code field. 

H.4 Testing with JIS7/JIS8 

In your line setup, be sure to change Mode: i;@~t!,i; to l:;:@M~~;~%: or to one 
of the emulate modes. The Automonitor sequence will not configure the unit to run 
with JIS7/JIS8 code. and it will usually change th.e code selection to ~1::::::ltL 

Figure H-4 shows a screen display for JIS7. a shifted code. Note that the messages 
with Katakana text begin with Shift Out (\l, hex °E). 

When you type monitor/receive strings or transmit strings into your program, the 
characters displayed on the trigger menus or on the Protocol Spreadsheet will always 
be ASCII. Use the JIS7 and JISS charts in Appendix E to correlate your ASCII 
data-entries with the actual JIS7/JIS8 characters that will be searched for or 
transmitted. 

H-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

*MON/DISK/FD1* . 
J IS7/8/NONE/BOp· 
\: .. -::@lr:.;,';';.:~::'t. ~\}IlbJ\O..., •.. :Jv j\" GSs:Jt-.:J'il5 ~ ?:fll?") .. 1::3-, T':< t-j' 

i~~:~~~'~;'~~::~:~:~~:~:~:~~:;~:~~~;~~~~~~;:~:~:~~~~~:B~.i;~~~i:tt~ 
0,-~D~J\O-a:J II J\, I):.s:n,::JIJ5" '"'* s,",") "I:J- ~.T;Z kr";(. tR "'@.".~:. 
0., .th isisao<ecf'\o HtestfromWash i ngtonPCt 
.h~.rL:-1~~-~j1.it21~s-~r!t.!i~{~~;it·iL.;;;i{tLit~'~;':""i.i2..h~~i+~j.1Lh.~ri~tLrLn~'ii~J~,:nn.n~rij-i:~~~it~~.h.~~ .. tt 
-!',., m:~i~.JJ;~':~1~~'.fL~-:-~it·~r~~~l1.~~~n~~~~~'1.~1~~;~1~~~~~~~i.5:~;~~~~~~~~~~+:~J1;1}~,~~~!"~n. 
~~~2&t:~(~tl~~.AtA~t\~;\~2~~aEl1~:g;;~:~~;r§$~~~j~ 
~~~:~~~mt~:;::~:!;~~=~~:~~~;;.~:~~~!;;;!;~~:!~;~:~~~~:~~~:;.~~~ 
ir~{ @lh;.nf"x~'t.Il:;'s!\'J'O-~ ·:l1,.J.\~IJ'D ~9;''' ~"'.i.,'),I::r..,.·,...:< 1-;" 

••••.. ·HWJ .. :.:.:.: .... : -­STATS .... 

Figure H-4 JIS? is a shifted code, with an upshift character (SO) preceding Katakana 
conversion and a downshift character (Sf) preceding ASCII conversion. 

H-4 



Appendix I Interface Specifications 

Appendix I: Interface Specifications 

1-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Pin No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Table 1-1 
Remote Connector 

13 

25 14 

(08-25, female) 

Pin Name Signal Description 

Frame Ground Ground 
TO RS-2321V.24 Output 
RD RS-2321V.24 Input 
RTS RS-2321V .24 Output 
CTS RS-2321V .24 Input 

Signal Ground Ground 
CD RS-2321V.24 Input 

SCT RS-2321V .24 Input 

SCR RS-2321V.24 Input 

OTR RS-2321V.24 Output 

1-2 



Pin No. 

1 
2 
3 
4 
5 
S 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

13 

Table 1-2 
Printer CQnnector 

Appendix I Interface Specifications 

1 

25 14 

(08-25, male) 

Pin Name Signal Description 

Frame Ground Ground 
TO RS-2321V .24 Input 
RD RS-2321V .24 Output 
RTS RS-2321V.24 Input 
CTS RS-2321V.24 Output 
DSR RS-2321V.24 Output 
Signal Ground Ground 
CO RS-2321V.24 Output 

SCT RS-2321V.24 Input 

seR RS-2321V.24 Input 

DTR RS-232/V.24 input 

1-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

Table 1-3 
Auxiliary Connector 

13 

14 

(16-pin Bi-directional TTL Input/Output, OB-25. female) 

Pin No. Pin Name 

1 PM 
2 PBO 
3 PAl 
4 PB1 
5 PA2 
6 PB2 
7 PA3 
8 PB3 
9 PA4 
10 PB4 
11 PA5 
12 PBS 
13 PAS 
14 PB6 
15 PA7 
16 PB7 
17 Signal Ground 
18 Reserved 
19 Signal Ground 
20 Reserved 
21 Signal Ground 
22 Reserved 
23 Signal Ground 
24 Reserved 
25 Signal Ground 

1-4 



~ 
f i. , 

Table 1-4 
RGS Monitor 

APPencflx f Interface Specifications 

5 1 

~o 0 0 0 0 0 ° 0 0» 
9 6 

Pin No. 

1 
2 
3 
4 
5 
6 
7 
6 
9 

(OB-9. female) 

1-5 

Pin Name 

SIgnal Ground 
Signal Ground 
REId 
Green 
Blue 
Brightness 
Ruerved 
Horizontal Sync 
V&rtlca! Sync 



iNTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

RS-232/V.24 INTERFACE MODULE 
13 

FEMALE 

0 0000000000000 o TODTE 
000000000000 

25 14 

EMUl..ATE 
DOE 

4 0 RTS lOS 
/.\ 0 CTS 106 
2 0 0 TO 103 
8 0 0 CD 109 
3 0 0 AD 104 
6 0 0 DBA 107 

20 0 0 DTA 108.2 
15 0 0 SCT 114 
17 0 0 SOA 115 
24 0 0 SCTE 113 

22 0 0 RI 125 ~ ~ • 21 0 0 SQ 110 • 19 0 0 BRTS 120 
13 0 0 SCTS 121 UtA 
14 0 0 STD 118 '-- 0 

12 0 0 SCD 122 0 +12 
16 0 0 SRD 119 0 -12 
23 0 0 RATE 111 0 GND 
18 0 0 LL 141 0 GND 
25 0 0 TI 142 0 AUXO 

~[I]~ 
0 AUX 1 

9 0 AUX2 
10 0 AUX3 11 0 FRAME 

EMUl..ATE 
DTE 

13 

MALE 

0 0000000000000 o TODCE 
000000000000 

14 25 

Figure 1-1 RS-2321V.24 Interface Module. 

\-6 



Pin No. Pin Name 

1 Frame Ground 
2 TO 
3 RD 
4 RTS 
5 CTS 
6 DSR 
7 Signa! Ground 
8 CO 
9 
10 
11 
12 SCD 
13 SCTS 
14 STD 
15 SCT 
16 SRO 
17 SCR 
18 LL 
19 SRTS 
20 DTR 
21 SO 
22 RI 
23 DSRS 
24 SCTe 
25 TI 

Appendix I Interlace Specifications 

Table 1-5 
RS-232 Test Interface Module 

Monitor Mode 

Frame Ground 
High Impedanoe Input 
High Impedance Input 
High Impedanoe Input 
High Impedance Input 
High Impedance Input 
SIgnal Ground 
High Impedance Input 
Test Point 
Test Point 
Test Point 
Test Point 
Test Point 
Test Point 
High Impedanoe Input 
Test Point 
High Impedance Input 
Test Point 
Test Point 
High Impedance Input 
Test Point 
Test Point 
Test Point 
High IMpedance Input 
Test Point 

1-7 

Signal Description 

To OCE 
(Em OTE) 

(DB-25. male) 

Frame Ground 
RS-2321V.24 Output 
RS-2321V .24 Input 
RS-2321V .24 Output 
RS-2321V .24 Input 
RS-2321V .24 Input 
Signal Ground 
RS-2321V .24 Input 
Test Point 
Test Point 
Test Point 
Test Point 
Test Point 
Test POint 
RS-2321V .24 Input 
Test Point 
RS-232IV .24 Input 
Test Point 
Test Point 
RS-2321V .24 OUtput 
Test Point 
Test Point 
Test POint 
RS-2321V.24 Output 
Test Point 

To DTE 
(Em OCE) 

(OB-25, female) 

Frame Ground 
RS-2321V.24 Input 
RS-2321V.24 Output 
RS-2321V.24 Input 
RS-2321V .24 Output 
RS-2321V.24 Output 
Signal Ground 
RS-232IV .24 Output 
Test Point 
Test Point 
Test Point 
Test Point 
Test Point 
Test Point 
RS-2321V .24 Output 
Test Point 
RS-2321V .24 Output 
Test Point 
Test Point 
RS-232/v .24 Input 
Test Point 
Test Point 
Test Point 
RS-2321V.24 Input 
Test Point 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

V.35 INTERFACE MODULE 

EMULATE~ ... ____ ..JI 
oce T OPEN THRU 

c: ; ~ lJbJ ~ 
c ~ ~ CD ~ 
C~~ CD ~ 
c:~ ~ CD ~ 
c ~ ~ CD ~ 

C 
D 
F 
H 
E 
J 

.-HH 
'- KK c: JJ 

u.. 

JTD 

JAO 

103 

104 

JSCTE 113 

JSCT 114 

JSCR 115 

TO DTE 

EM!: 
o AJ- U/A o B 
o .. 5 
o - 5 

~ :::r GND 
o AUXO 
o AUX 1 
o AUX2A 
o AUX 28 
o FRAME 
o L 
~ 

TO DeE 

Figure 1-2 V.35 Interface Module. 

1-8 



~~"~ 
Appendix I interface Specifications ~,; t 

i 

Table 1-6 
V.35 Test Interface Module 

Pin No. Circuit Signal Monitor Mode To ore To oCE 
(Em peE) (Em OTE) 

,34-pln, female) (34-pin, female) 

A 101 Frame Ground Fram$ Ground Frame Ground Frame Ground 
B 102 Signal Ground Signal Ground Signal Ground Signal Ground 
C 105 RTS High Impedance Input V.SS Input V.3S Output 
0 106 eTS High Impedance Input V.SS Output V.SS Input 
E 107 oSR High Imp$dance Input V.S5 Output V.3S Input 
F 109 CO High Impedance Input V.S5 Output V.S5 Input 
H 108 OTR High Impedance Input V.35 Input V.35 Output 
J 125 RI Test Point Test Point Test Point 

R 104A RO High Impedance Input V.SS Output V.SS Input 
T 104B 

V 115A SCR High Impedance Input V.S5 Output V.3S Input 
X 115B 

Y 114A SCT HIOh Impedanoe Input V.SS Output V.S5 Input 
AA 114B 

t!", P 10SA TO High Impedance Input V.35 Input V.SS Output 
S 10SB 

U 11SA SCTE High Impedance Input V.35 Input V.SS Output 
W 113B 

K F1 
M F1 

L F2 Test Point Test Point Test Point Test Point 
N F2 

Z FS 
BB F3 

CC F4 
EE F4 

DO FS 
FF F5 

HH Nt { Test Point Test Point Test Point Test Point 
KK Nl Test Point Test Point Test Point Test Point 

JJ N2 { Test Point Test Point Test Point Test Point 
LL N2 Test POint Test Point Test Point Test Point 

MM F 
NN F 

~ :. I . 
I 

1-9 



INTERVIEW 7000 Series Advanced PrOgramming: ATLC-107-951-108 

X.21 
INTERFACE 

C T 

• • • 

X.21 INTERFACE MODULE 

@TODTE 

EMULATE 
DCE . .-L:::":"':::~':"'::':::::""" 

0[ffi]0 t~o 
t~2 

o 0 

~ IT] ~ 

o 0 t~ 
t~1 

0[ffi]0 
~ IT] ~ ~J. UtA 

t~3 
t;4 

+5V 
- 5V 

1.-.===-.,-1 

@JTO DeE 

15 9 

Figure 1-3 X.21 Interface Module. 

R 

• 
s 

• 
B 

• 
Figure 1-4 X.21 LED Overlay. 

1-10 

GND 

I INTERVIEW I UtA 
REMOTE FREEZE 

•• • 



~, 
1';< • , 

fWpendix I Interface Specifications 

Table 1-7 
X.21 Test Interface Module 

Signal Description 

Pin No. Circuit Pin 10 Pin Name Monitor Mode To DCE To DTE 
(Em DTE) (Em DCE) 
(15 Pin. male) (15 Pin, female) 

1 Shield ShIeld Frame Ground Frame Ground Frame Ground 
2,9 103 T Transmit Data High Impedance Input X.21 Output X.21 Input 
3,10 105 C Control High Impedance Input X.21 Output X.21 Input 
4.11 104 R Receive Data High Imped~e Input X.21 Input X.21 Output 
5.12 109 I Indiestor High Impedance Input X.21 Input X.21 Output 
6,13 114 S Signal Timing High lmPedanee Input X.21 Input X.21 Output 
7,14 B Byte Strobe High ImpedanCe Input X.21 Input X.21 Output 
15 Test Point Test Point Test Point 

Patch Panel: U/AA.B* High Impedance High Impedanoe High Impedance 
Differential Input . DIfferential Input Differential Input 

+5V Output Output Output 
-5V OUtput OUtput Output 
GND Ground Ground Ground Ground 

UA A and B can be used for balanced or unbalanced signals. (Do not connect B when you are looking at 
unbalanced signals.J 

1-11 

-------.------"-."----.".-~---.-"-".--- .. - ..... " .. - ................... . 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

RS-485 INTERFACE MODULE 

@ 

OPEN '4 ~ THRU 

@ 

A BUS FEM 

seus FEM 

A BUS MALE 

B BUS MALE 

AUTO TEFIMN • EMULATE 

A BUS FEM a A BUS EN 
BBUSFEM .. 
ABUSMALE • 
B BUS MALE B BUS EN 

_MESSAGE 

Figure 1-5 RS-485 Interface Module. 

1-12 



~; 

~, , , 

Pin No. Circuit 

1 
2 103 
9 103 
3.10 
4 104 
11 104 
5,12 
6.13 
7.14 
15 

----_ .. _._--,--"----,.- ,---, 

Pin 10 

Shield 
A 8us + 
A Bus-

8 Bus + 
8 8us-

Af)f)endix I Interface Specifications 

Table 1-8 
RS-485 Test Interface Module 

Signal Description 

Monitor Mode 15 Pin, Male 15 Pin, Female 

Frame Ground Frame Ground Frame Ground 
High frnp(ldance Input RS-485 Output RS-485 Input 
High Impedance Input RS-485 Output RS-485 Input 

High Impedance Input RS-485 Input RS-485 Output 
High Impedance Input R8-485 Input RS-485 Output 

1-13 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

RS-449 

INTERFACE 

RS-449JV.36/V.37 INTERFACE MODULE 
19 

7 
25 

9 0 
27 0 

4 0 

22 0 

13 0 

31 0 

6 0 

24 0 

11 0 S 
29 0 

M 12 0 
30 0 

5 0 

23 0 

8 0 
26 0 0 
17 0 0 
35 0 0 GND 

0 ~JAUX 0 15 0 0 Ie 0 
33 0 0 so 0 AUX 1 
14 0 0 RL 0 AUX2 
10 0 0 LL 
18 0 0 TM 
32 0 0 SS 0 SC 
36 0 0 S8 EMULATE 

0 RC 
16 0 0 SF/SR OTE 0 NS 
2 0 0 81 • 0 ~JN 28 0 c 18 0 

TO DeE 0 SHIELD 

Figure 1-6 RS-449/V.36/V.37 Interface Module. 

RS CS so RR RD OM TR ST RT TT 

• • • • • • • • • • 
IC SO 

• • 
RL LL TM SS S8 

••••• 
Figure 1-7 RS-449/V.36/V.37 LED Overlay. 

1-14 

I INTERVIEW I UlA 
REMOTE FREEZE 

•• • 



Appe:ndix I Interface Specifications 

Table 1-9 
AS-449/V.36/V.37 Test Interface Module 

PIn No. Pin 10 Pin Name 

2 51 Signalling Rate Indicator 
4,22 SO Send Data 
5,23 ST Send Timing 
6.24 RD Receive Data 
7.25 RS Request to Send 
8,26 RT Receive Timing 
9.27 CS Clear to'Send 
10 LL Local Loopbaok 
11,29 OM Data Mode 
12,30 TR Terminal Ready 
13,31 RR Receiver Ready 
14 RL Remote Loopback 
15 IC Incoming Call 
16 SF/SR Select Frequency I 

Signaling Rate Selector 
17,35 TT Terminal Timing 
18 TM Test Mode 
19 SG Signal Ground 
28 IS In Service 
32 SS Select Standby 
33 SQ Signal Quality 
36 SB Standby -Indloator 

AUXiliary Patch Panel: 
UAA,B Unassigned Input 
+5 +5 Volts 
-5 -5 Volts 

19 GND Ground 
AUXO A.B Auxiliary 
AUX1 Auxiliary 
AUX2 Auxiliary 

37 SC Send Common 
20 RC Receive Common 
34 NS New Signal 
3.21 N A,B National A. B 
1 SHIELD Shield 

Monitor Mode 

Test Point 
High Impedance Input 
High impedance Jnput 
High Impedanoe Input 
High Impedance Input 
High Impedanoe Input 
High Impedance Input 
High Impedance Input 
High Impedal'tCelnput 
High Impedance Input 
High Impedance Input 
High Impedance Input 
High Impedance Input 
Test Point 

High Impedanoe Input 
High Impedance Input 
Signal Ground 
Test Point 
HIgh Impedance Input 
High Impedance Input 
High Impedance Input 

High Impedance Input 
Output 
Output 
Signal Ground 
Output 
Output 
Output 
Send Common 
Receive Common 
Test Point 
Reserved 
Frame Ground 

1-15 

Signal Description 

To DCE 
(Em OTE) 

(36 PIn. male) 

Test Point 
RS-449 Output 
RS-449 Input 
RS-449 Input 
RS-449 Output 
RS-449 Input 
RS-449 Input 
Test Point 
RS-449 Input 
RS-449 Output 
RS-449- Input 
HIgh Impedance Input 
High Impedance Input 
Test Point 

RS-449 Output 
High Impedance Input 
Signal Ground 
Test Point 
High Impedance Input 
High Impedance Input 
High Impedance Input 

High Impedance Input 
Output 
Output 
Signal Ground 
Output 
Output 
Output 
Send Common 
Receive Common 
Test Point 
Reserved 
Frame Ground 

To DTE 
(Em DCE) 

(36 Pin, female) 

Test Point 
RS-449 Input 
RS-449 Output 
RS-449 Output 
RS-449 Input 
RS-449 Output 
RS-449 Output 
Test Point 
RS-449 Output 
RS-449 Input 
RS-449 Output 
High Impedance Input 
High Impedance Input 
Test Point 

RS-449 Input 
High Impedance Input 
Signal Ground 
Test Point 
High Impedance Input 
High Impedance Input 
High Impedance Input 

High Impedance Input 
Output 
Output 
Signal Ground 
Output 
Output 
Output 
Send Common 
Receive Common 
Test Point 
Reserved 
Frame Ground 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

COMMON 

BREAK 

MAKE 

DTE 
THRU 

T1 INTERFACE MODULE 

o 

0000 

8 1 

00000000 
0000000 

15 9 

o TO DTE 

E@EytTEI 

@ RX 
(DTE) 

OPEN t----I @ ItCEI 

@~EI 

DCE 
0000 

5 613 

o 

EMULATE DTE 
8 1 

00000000 
0000000 

15 9 

o TO DCE 

Figure 1-8 Tl Interface Module. 

1-16 



Pin No. 

1 
2 
3 
5 
6 
9 
11 
13 

ApPMdix f Interface Specifications 

Table 1-10 
T -1 Test Interface SpecJfications t 

Pin Name 

Send Data Tip 
Frame Ground 
Receive Data TIP 
Remote Test Mlike 
Remote Test Steak 
Send Data RIotJ 
Receive Data Ring 
Remote Test Common 

MoNtor 

High I~oe Input 
Ground 
High Imp$danae Input 
High Impedanoelnput 
High Impedance Input 
High ImpfHi1ancelnput 
Hlgh·lmp~c. Input 
HIgh 1mpe4;Jnoe Input 

Signal Description 

To DCE To OTE 
(Em OTE) (Em DCE) 

Output Input 
Ground Ground 
Input Output 
Test Point Test Point 
Test Point Test Point 
Output Input 
Input Output 
Test Point Test Point 

(1) Unlisted connectors are wired 1-for-1 through the two connectors; Test points are connected to switches and 
test pOints only. 

1-17 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

. . . . . . .. ....... . 

.......... 
: .. : ..... : .. ::",' . 

. : .. ::,:':: ".:.":':;'''' 

•.• 120 .. · .. · •.. 
···OH·M····S··· ::" . :::'. 
,.,.. ". . . 

Figure 1-9 0.703 Interface Module. 

1-18 



APPfmdix I Interlace Specifications 

Table 1-11 
G.703 Test Interface Specifications ' 

Signal Description 

Pin No. Pin Name Monltor To DCE To DTE 
(Em DTE) (Em DeE) 

Pin No. Pin Name Monitor To DCE To DTE 
(Em DTEI (Em DeE) 

1 Receive Data Tip High ImPecktnce Input Input Output 
2 Frame Ground GrOl4TlQ Ground Ground 
5 Send Data Tip Hlgh.tmpe~e Input Output Input 
6 Receive Data Ring High ~I)e~e Input Input Output 
9 Send Data Ring High ~be Input Output Input 

(1) Unlisted connectors are wired 1-for-1 througt, the two connectors. 

1-19 



INTERVIEW 7000 Sarias Advanced Programming: ATLC-107-951-10B 

ISDN BASIC RATE 
INTERFACE MODULE 

TOTE 

TO NT 

Figure 1-10 ISDN Interface Module. 

ISIIN 1145 It lit T£ SIT INTur ACE 

Figure 1-11 ISDN LED overlay. 

1-20 



Appendix J Interface Specifications 

Table 1-12 
ISDN Test Interface Specifications ' 

Signal Description 

Pin No. Pin Name Monitor To DCE To DTE 
(Em DTE) (Em DeE) 

3 Send Data Tip High Impedence Input Output Input 
4 Rece!ve Data Tip High Impedence Input Input Output 
5 ReceIve Data Ring High Impedence Input Input Output 
6 Send Data Ring High Impedence Input Output Input 
7 l! - voltage Output Output Output 
8 2 + voltage Output Output Output 

(1) Unlisted connectors are wired 1-for-1 through the two connectors. 

(2) Pins 7 and 8 have a voltage differential of 400 volts; see ISO 8817 (1987-08-15) and CCITT 1.430. 

1-21 

.. "'~>I'" 'l ... :.: _____ w ___ ...... __ ... 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

1-22 



Appendix J Field Service 

Appendix J: Field Service on the 
INTERVIEW 7000 Series 

This appendix is to guide you in proper removal, handling. and installation of logic boards 
and other components in the INTERVIEW 7000 Series. 

• J 1 alerts you to the problem of static electricity. 

• J2 covers the removal of logic cards. 

• J3 discusses the installation of logic cards. 

• J4 covers the installation of the optional multiplexer boards. 

• J5 discusses the replacement of firmware on the CPM board. 

• J6 covers the installation of a hard disk drive in the INTERVIEW 7000 and 7200 
TURBO, option OPT-9S1-01-1. 

• J7 covers other components requiring attention. 

J-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

J-2 



~ e, f , I 
i 

Appendix J1 Field Service: Eliminating Static Electricity 

ApPflDdix Jl: ElIminating Static Electricity 

tf', 
, : 

·.~I '\ ,. 
I 

J1-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

1 Meg Ohm Resister 

Figure Jl-1 Illustration of grounded workstation. Note grounded wrist strap and table mat. 

J1-2 



. fT' • f 

I 

Appendix J1 FigldSlJrvice.: EliminatingStatfc Electricity 

Appendix J1: Eliminating Static Electricity 

STATIC ELECTRICITY CAN DAMAGE THE UNIT WHEN THE COVER IS REMOVED. 
Before you begin to remove the cover, be certain you have taken appropriate anti-static 
precautions. 

J1.1 Take Precautions 

As a minimum precaution, a grounded wrist strap should be used in conjunction with 
an anti-static work surface mat. Without these precautions. walking {or just shifting 
your feet) on a carpet or tile floor. shifting your position in a chair. or simply rolling 
a chair as little as a foot or two can generate sufficient static electricity to damage 
circuitry. See Figure J1-1 for an example of a static-free workstation for working 
with sensitive parts and assemblies. 

Place unit on anti-static mat with power OFF. Then put on a grounded wrist strap 
and proceed. 

J1.2 Use of Anti-Static Packing 

When returning any boards to the AR Division factory, reuse any bags and anti-static 
packaging from boards sent by the AR Division previously. Pack the parts tightly to 
prevent motion which could generate static. If you did not save the packaging, you 
must obtain special anti-static packing before you begin or you will damage the 
components on the board . 

J1-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

J1-4 



t,..'\ 
! 

Appendix J2 Fie'" SeMce: Removing Logic Boards 

Appendix J2: Removing Logic Boards 

J2-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107 951-108 

Hard 
Disk --~.H~--~~ 
Drive 

Area behind 
LED Display 
(DANGER) 

Mechanical 
Fan 

(DANGER) 

Slot 2: GBM Board 
Slot 3: CPM Board 
Slot 4: PCM Board 
Slot 5: FEB Board 
Slots 7,8 & 9: MPM Boards 

Figure J2-1 Viewing interior components of the INTERVIEW 7000 Series. 

J2-2 



Appendix J2 Field Sgrvice: Removing Logic Boards 

Appendix J2: R,emoving Logic Boards 

CAUTION: STATIC ELECTRICITY CAN DAMAGE THE UNIT 
WHEN THE COVER IS REMOVED. Before you begin this 
section, you nw.tt take. the proper anti-static precautions given in 
Appendix J 1. 

J2.1 Remove the Cover 

To remove the cover of your unit. first unplug all connecting cords on the back of 
the INTERVIEW. Place the unit on its back and remove the six long screws 
recessed in the base. 

Place the unit in its working position. tying on its base. Open the front panel, sliding 
the top two blue latches back. At this point the hooks of the latches are exposed 
out the front of the unit. Press down slightly on the recessed circle of these latches 
and continue to slide the latches inside the unit until they stop. The indented circle 
should be almost centered in the sliding area and the hooks of the latches are no 
longer visible from the front of th.e unit. These latches must be properly placed or 
they will break when you remove the cover. 

Keeping an eye on the position of the latches. grasp the sides of the cover and 
remove it. The handle on the left side and rubber bumper feet on the right side can 
help to give you some leverage. You may have to rock the cover slightly back and 
forth to free it. Replace the handle in its slot on the base. 

J2.2 View the Interior Layout 

(A) Anticipate Potential Hazards· 

The ins~de of your INTERVIEW reveals three. potentially hazardous areas. DO 
NOTTOUCH THESE AR.EAS OR INJURY MAY R.ESULT! These three 

I 

danger. areas include the mechanical fan at the center back of the unit (physical 
ha~rdh the power supply-at the back right side of the unit (230V shock 
ha2lard). and the area directlybebind the LED display (190V shock hazard). 
See Figure 12-1 for their locations. 

J2-3 

._----------_.-



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B 

Take care as you remove the boards not to make contact with any of these 
three areas:' 

(8) View Interior Components of the INTERVIEW 7000 and 7200 TURBO 

In addition to these three potentially hazardous components, on the left near the 
front of your unit is a bracket for a Winchester hard disk drive. The standard 
INTERVIEW 7000 does not have a hard drive. but the bracket to hold it is in 
position for the option of adding a hard drive. If your INTERVIEW 7000 has 
been upgraded with this option, you will have two cables running up the side of 
your hard drive and over it. connecting it to the PCM board. 

Immediately behind the hard disk drive is the TIM (Test Interface Module) 
holder. The dual floppy disk drives are on the right near the front. with a cable 
connecting them to the PCM board. In the center of the unit are the nine slots 
which house your boards. 

Reading from left to right. the slots contain the following boards: 

• slot I-empty (unless upgraded with optional multiplexer board) 

• slot 2-GBM, Global Bus Module Board 

• slot 3-CPM. 68K Processor Board 

• slot 4-PCM. 68K Peripheral Board 

• slot 5-FEB, Front End Buffer Board 

• slot 6-reserved for XDRAM board (OPT-951-23-1) 

• slot 7-empty (unless upgraded with optional MPM board) 

• slot 8-empty (unless upgraded with optional MPM board) 

• slot 9-MPM. 286 Processor Board 

There is one cable connecting the LED display to the GBM board. 
Additionally. there are two jumper cables; one connecting the FEB and GBM 
boards and a smaller one connecting the CPM and PCM boards. 

(C) View Interior Components of the INTERVIEW 7500 and nOD TURBO 

In addition to these three potentially hazardous components, on the left near the 
front of your unit is the Winchester hard disk drive. It has two cables running 
up its side and over it, connecting it to the PCM board. 

Immediately behind the hard disk drive is the TIM (Test Interface Module) 
holder. The dual floppy disk drives are on the right near the front. with a cable 
connecting them to thePCM board. . In the center of the unit are the nine slots 
which house your boards. 

J2-4 



Appendix J2 Field Service: Removing Logic Boards 

Reading fr~m left to right. the slots contain the following boards: 

• slot 1-empty (unless upgraded with optional multiplexer board) 

• slot 2-GBM. Global Bus Module Board 

• slot 3-CPM, 68K Processor Board 

• slot 4-PCM. 68K Peripheral Board 

• slot 5-FEB, Front End Buffer Board 

• slot 6-reserved for XDRAM board (OPT-951-23-1) 

• slot 7-MPM. 286 Processor Board 

• slot 8-MPM, 286 Processor Board 

• slot 9-MPM. 286 Processor Board 

There is one cable connecting fueLED display to the GBM board. 
Additionally. there are two jumper cables; one connecting the FEB and GBM 
boards and a smaller one connecting the CPM and PCM boards. 

J2.3 Remove the Boards 

As stated previously in Section J1.2. if you have bags and packaging from boards sent 
by the AR Division previously. reuse those anti-static materials for packing. If you 
did not,s8ve the packaging. you must obtain a special anti-static packing before you 
begin or you will damage the components on the board. 

(A) Disconnect the Cables 

Make certain the unit is on an anti-static mat and you are wearing your 
grounded wrist strap. 

You may wish to record where each cable was attached for reference when your 
replacement boards arrive. Refer back to Figure 12·1. Your upgraded 
replacement boards will be sent as soon as possible. 

Notice that several of the connectors are "keyed" for easy, correct alignment. 
Those that are not "keyed" need to have special care taken to line up the pins 
with the· proper connecting holes when they are reconnected. 

Disconnect the cables carefully. They may be easily removed with an IC clip 
holder. Lift the connector straight up. holding onto its edges. DO NOT PULL 
ON THE CABLE; you could break it or damage the connectors. If you do not 
have an IC clip holder, a blade screwdriver will also work. 

CAUTION: If you use a screwdriver, use the top of the black 
mounting rack (which secures the ends of the boards) as your 
leverage point. Avoid using the edges of the boards or other 
components to pry the connector loose. 

J2-5 



INTERVIEW 7000 $sr/es Advanced Prgarammfna: ATLC-l07-951-108 

(B) Remove the Boards 

CAUTION: Do not hold any board by its gold edge connector. 
Hold it by the sidel, NEVER touching the components. 

It is probably easiest to remove the boards from left to right. To do so, grasp 
the board by its top comer edges, and gently pull it straight up and out. Then, 
holding the board by its side edges, place it immediately into an anti-static bag 
and close the bag. Repeat the process with each board to be removed. 

J2.4 Replace the Cover 

If you are not going to replace any boards at this time, continue with this section to 
replace the cover to protect the remaining components. If you are ready to replace 
boards, proceed down to Section 12.5, Package the Boards, and then on to Section 
J3. Installing Logic Boards. 

Grasp the cover with the latch area to the front facing you. Make certain the latches 
are recessed as far as they can go into the cover and their hooks are not beyond the 
edge of the cover. Slide the cover down. For the INTERVIEW 7500 and 7700 
TURBO-and those INTERVIEW 7000s and 7200 TURBOs having the optional hard 
drive-take care that the two cables to the Winchester hard disk drive (on your left, 
directly behind the handle) are not being pinched or damaged by the cover. (Some 
models may contain a small. removable. protective plastic sheet to help shield the 
cables from the cover.) 

Place the unit on its back once again and replace the six screws to hold the cover 
secure. 

J2.S Package the Boards 

In preparation for storage or shipping. package each board removed from the 
INTERVIEW in its own anti-static bag. If shipping, wrap it further in anti-static 
packing material and place it securely in a shipping box. You may package several 
boards in a single box. as long as each board is wrapped individually in an 
anti-static bag. When returning a board. please reference the return authorization 
number from your original packing list. For shipping information, see Appendix E, 
Communications with the AR Division ·Factory. 

J2-6 



~~, 
, I 1PBem:lix J3 FieJa Servioe: Installing Logic. SaBras 

i 

Appendix J3: Installing Logic Boards 

J3-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Figure J3-1 Some connectors are Ukeyed" for correct alignment. 

J3-2 



Appendix J3 Field Service: Installing Logic Boards 

Appendix J3: Installing Logic Boards 

Observe the properhandiing of the boards: refer to Appendix 11 and 12 for using proper 
anti-static precautions and removing the boards. 

Figure J2-1 gave you visual locations of the components in the INTERVIEW 7000 Series. 
For a detailed lisdngof board placement in the slots. see Section J2.2. Each board is labeled 
in its upper left cprner. The motherboard (on the floor of the unit) is labeled with the 
corresponding na~e of the board by the slot into which that particular board is set. 

J3.1 INTERVIEW 7000 Series Hardware Architecture 

In troubleshooting any malfunction. it is important to know which board contains the 
compone:nt that controls the particular function. 

The INTERVIEW contains six types of board which are connected to the 
motherbqard and which can be easily removed and replaced. (See Appendix J2 and 
J4 for board removal information.) These boards are: 

• MUX Multiplexer Board (if upgraded with option) 

• GBM Global Bus Modt.de 

• CPM Control Processor Module 

• PCM Peripheral Control Module 

• FEB Front-End Buffer 

• MPM Main Processor Module 

A seventh type of board is installed in the Test Interface Module. 

Figure J3-2 is a block diagram showing the components on aU of these boards. The 
figure aI$O shows how the components are interconnected in the unit. Following the 
figure is a descriptive listing of the components. 

NOTE: The symbol IB in the diagram represents a 
hi-directional buffer. 

J3-3 



L ____ _ 

--

r------------.. ----

I Ill: 

Gl08Al_ 

Figure H-2 Block diagram of INTERVIEW 
7000 Series hardware architecture. 



Artpe,ndlx J3 Field Seodee: Installing Logic Boards 

(A) MUX (Multiplexer Board) 

This board provides whatever additional processing is needed for special data 
formats such as Tl. G.703, ISDN. etc. 

The mux board clocks-in data from transmitter channel A on the GBM. Once 
at ~e mux board, the data is processed as required and then sent back to the 
GBM to be transmitted over the line. 

(B) GBM (Global Bus Module) 

1. Mux. The muxes multiplex various signals to be transmitted. received, or 
monitored depending upon which mode of operation is being used. 

2. Transmitter channel A. The transmitter generates the data stream to be sent 
out when the lNTERVIEWis in emulate DTE mode. The data can either be 
sent out directly to the TIM or sent to the mux board for further processing. 

3. Beep control. The beep control does just that-it controls the beep. There 
are two types of beeps defined by their length-one second and one-half 
second. Only the half-second beep is currently in use. 

4. Baud rate generator. The baud rate generator generates the clock for the 
transmit data when in emulate DTE mode. 

S.Gbus arbitor ·control. This arbitrates requests by the GBM to obtain the 
. gl(>bal bus. When the bus is idle and the GBM has top priority over all other 
requests. this logic will enable the GBM to access the global bus. 

6. Power on reset. This circuitry generates the proper timing for reset signals 
:ror the INTERVIEW unit from a power-up situation. 

7. 10 MHz clock generator. This generates the global bus clock. 

8. Lead control port. The INTERVIEW writes to this port in order to send out 
the proper control signals for the data interface. These control signals are 
c;iependent upon the emulate mode for which the unit is configured. 

9. Lead sensor port. The INTBRVIEWreads the lead sensor port in order to 
monitor incoming control signals from the data interface. 

10. TIM control port. The INTERVIEW writes to this port in order to setup the 
TIM to the desired mode of operation. 

11. Real time clock. This circuitry keeps track of current time and date. This 
information can be displayed on the screen for the user and can also be 

. used to ~mp the. incoming data. 

12, Transmitter channel B. This is a second transmit channel used to send data 
out into the data stream through the mux board. 

J3-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

13. Mux control port. The INTERVIEW software writes to this port to set up 
the muxes for the proper data flow through the GBM, depending upon the 
mode of operation. 

14.2 channel DMA. In order for the INTERVIEW to transmit data in emulate 
mode. the DMA controller requests a byte of data from memory on an 
MPM. When this byte is obtained, the DMA controller then sends it out 
through one of the transmitter channels. 

(C) CPM (Control Processor Module) 

The CPM board controls most of the operations of the INTERVIEW unit. 

1. Disk control circuitry. The disk controller is the 9580B. In record mode, 
the disk controller sends a block of data through the PCM to one of the 
disk drives. When in playback, the disk controller reads one of the drives 
through the PCM so that the CPM can send recorded receive data to the 
FEB. The 9580 controls up to three disk drives-one Winchester hard drive 
and two floppy drives. 

2. 8 MHz clock generator. This circuitry generates the clock that is used by 
the 68010 CPU and the peripherals on the CPM. 

3. Global bus interrupt port. This port can be written to by any board that has 
access to the global bus. There are four global interrupts that can be set, 
each of which-will cause an interrupt of the 68010 processor. Thus, any 
board that is connected to the global bus has the ability to interrupt the 
68010. 

4. Global bus arbitor. This circuitry queues requests by the CPM for access 
to the global bus and waits until priority is obtained before enabling the CPM 
onto the global bus. Control bits are set to determine the mode of operation 
of the arbitor. One mode causes the CPM to always release the bus after an 
access. Another mode causes the CPM to hold onto the global bus until it is 
requested by another board. 

5. 4 channel DMA. The CPM currently uses only two of the available four 
DMA channels. Channel zero is used for recording data and channel one is 
used for playback of data. When recording data, the FEB interrupts the 
CPM to signify that a byte of receive data is available. The DMA then reads 
the byte from the FEB into memory on the CPM. When enough bytes have 
been accumulated to form a block. the disk controller will send the block to 
the specified disk drive. When in playback mode, the DMA sends out bytes 
of receive data to the FEB. This is data that has been moved into CPM 
memory by the disk controller. In addition. the DMA circuitry allows for any 
memory-to-memory transfers necessary between the CPM and other boards. 

6. Software reset logiC. The CPM board contains logic which enables the 
68010 to generate a software reset to the rest of the unit. The reset signal is 

J3-6 



Appendix J3 Field Service: Installing Loalc Boards 

generated by executing a RESET instruction in the 68010. This will cause 
the software reset to be generated without disturbing any of the registers 
within the 68010. 

7. Interrupt controUers. The three interrupt controllers monitor interrupts from 
the disk controller. time-out logic, and global bus. These interrupt 
controllers generate the appropriate vectors for the CPU's interrupt vector 
table. 

8. Channel timer. This function is carried out by the 9513A. a chip used to 
generate output signals that are used as CPU interrupts. The time intervals 
for these interrupts are user-programmable. . 

9. 32 bit counter. This circuitry counts a 1 MHz clock. The CPU can latch 
this value at any time and then read the lower 16 bits of the count. as well 
QS the upper 16 bits if they are needed. The 32 (or less) -bit count is used 
by the software to determine specific time intervals necessary for execution 
'Of certain routines. 

10. ltPROM. The EPROM contains the power-up software and initialization 
routines. When the power is turned on, the 68010 processor begins 
execution by fetching from the EPROM. 

11. Wait/timer logic. This logic generates an error interrupt to the CPU if an 
instruction causes the board to hang up. If the processor does not receive an 
acknowledgment within approximately .33 milliseconds after it has begun a 
cycle. an interrupt will be generated. 

12. P bus arbitor. The P bus (CPM bus on block diagram) connects the CPM 
directly to the PCMand the FEB. Thus. the CPM can directly read and 
write to ports on any of these boards without acceSsing the global bus. The 
arbitor is simply a pair of pals which decode the address from the CPU. If 
the address is one of .the ports on the PCM or FEB. and an 
;acknowledgment has been received from the appropriate board. the data 
.buffers are enabled. 

13. 'DRAM. The DRAM is 2 Mbyte of memory space that contains the 
operating software for the INTERVIEW unit. At power up. this software is 
loaded into the DRAM from either the hard or floppy disks. In addition, 
any programs that are compiled for run mode are stored in the DRAM. 

14.68010 processor. This processor is the brain of the INTERVIEW unit. It 
;controls virtually every operation of the box. The 68010 processor operates 
:using the software stored in the DRAM on the CPM. 

J3-7 



INTERVIEW 7000 Series Advanced Proarammlng: ATLC-107-951-10B 

(D) PCM (Peripheral Control Module) 

The PCM board provides the interface to all the major peripherals in the 
INTERVIEW unit. as well as external peripherals attached to the unit. 

1. Dotclock generator. The dotclock is generated by buffering a 23.9114 MHz 
oscillator and then dividing it by two. This gives a dotclock frequency of 
11.9557 MHz. 

2. Aux controller. The aux control function is performed by the 8536 chip on 
the PCM. (This chip is also known as a CIO.) This pan enables the unit to 
read or write to other nodes through a DB-25 connector located on the 
back of the unit. The 8536 has two 8-bit ports, and each line may be 
configured as an input or an output. When configured as an input, the 8536 
can be programmed to look for a specific condition on one bit or search for 
an entire word, and then generate an interrupt. 

3. Remote/printer controller. The control functions for the remote port and 
the printer port are performed by the 8530A chip on the PCM. (TIris chip is 
also known as the SIO.) The SIO provides a serial interface between the 
INTERVIEW unit and other nodes. It receives serial data from external 
sources, strips off any flags or block-check characters. and causes an 
interrupt when it has an 8-bit word of data to be read out of it. On the 
transmit side. the SIO takes a word of data from the processor on the CPM. 
adds the necessary flags and block-check characters, and sends out the data 
over the serial interface. 

The SIO has two available ports on the PCM-one is used for the printer 
interface and the other is used for the remote interface. For the printer 
interface. the SIO acts as a DeE. It accepts TO as an input an~ generates 
RD as an output. It also generates the appropriate RS-232 handshake 
control signals. For the remote interface, the SIO acts as a DTE, sending out 
TO data to the remote port and receiving RD data from the remote port. 
The remote port is used to control the INTERVIEW unit from a remote 
terminal instead of from the keyboard. 

4. Display timing controlJer. The display timing control functions are 
performed by the Signetics 2674 chip. During initialization, the CPM 
programs this chip with information about the display device, _including the 
size of each character in dots. the number of characters per line, the 
number of lines per screen, and the size of the horizontal and vertical 
blanking intervals and sync pulses. Also programmed into the chip is the 
initial location and block size of the character data block in RAM. When 
the 2674 runs, it automatically generates the proper timing of character data, 
blanking intervals. and sync pulses. In addition, it also generates control 
signals which allow for overline. underline. and strikethrough. 

5. Attribute RAM and mux. The attn'bute RAM takes a 12 bit address and 
generates 16 bits of output which define all attributes of a particular 

J3-8 



ApP!ncllx J3 Field S'$rvice: Installing Logic Boards 

character. The 12 bit address can come from two possible sources. When 
the display is scanning. data is being read from the attribute RAM and the 
address comes from a buffer attached to the output of the display controller. 
When writing to the display, data is being written into the attribute RAM 
and the address comes from a latch which stores the desired write location 
as output from the processor on the CPM. Attributes of a character include 
underline. overline. strikethrough. reverse image, blinking, blanking. low 
intensity (monochrome only). background color, foreground color. and data 
type (hex or ASCII). 

6. Data RAM. The data RAM takes the same 12 bit address as the attribute 
RAM and generates 12 bits of output which provide character mapping 
information. The address is multiplexed from either the display controller 
(read) or the address latch (write) as described for the attribute RAM. One 
bit of each output word is dedicated as a flag to designate that a particular 
character may not be displayed in hex format. (These are usually flags. 
block-check, or control characters.) Three bits of the output represent 8 
possible character formats (i.e, ASCII. EBCDIC, hex, etc,) The other eight 
bits represent 256 posSlble characters within each character format. 

7. Mapping RAM and mux. The mapping RAM takes a 10 bit address and 
generates 10 bits of output which provide the location of a specific character 
dot pattern in the font RAM. The 10 bit address is multiplexed from two 
sources. When the display is scanning (read). the address comes from the 
outpUt of the data RAM. When writing mapping information to the mapping 
RAM. the address comes from a latch which stores the desired write address 
!rom the processor on the CPM. The address input defines a specific 
character and a specific data format. The mapping RAM takes this 
information and generates an output which points to the location in font 
RAM where the actual dot pattern is stored. 

8. Font RAM and mux. The font RAM takes a 14 bit address and generates 9 
bits of actual display dot information. The 14 bit address is multiplexed from 
two sources. When the display is scanning (read), the lower 4 address bits 
come from a latch connected to the display controller chip and the upper 10 
bits come from the mapping RAM. When writing font information to the 
font RAM. the address comes from a latch which stores the desired write 
address from the processor on the CPM. Each character on the screen is 9 
dots wide by 12 dots high. The lower 4 address bits decode the specific row 
.within the character and the upper 10 bits decode to a possible 1024 actual 
character dot patterns. The. output is a 9-bit word which gives the actual 
,on-off pattern of dots. in a particular row of a given character. 

9. Overline, strikethrough and latch. This circuitry actually generates the 
.strikethrough and overline attributes by overriding dot information from the 
·font RAM in specific rows of a character. Finally t the resulting dot data is 

J3-9 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

latched and processed by the video attribute controllers. (Underline is done 
internally by the attribute controller.) 

10. Monochrome attributes controller. This function is performed by a 2675 
that has been programmed to operate in monochrome mode. The 2675 
creates a character clock from the dot clock. such that one character clock 
is generated for every nine dot clocks. (Each character is nine dots wide.) 
For each character to be output to the video monitor, the 2675 takes the 
nine bits of processed dot data. along with control signals for blanking. 
blinking. underlining. cursor position, and reverse imaging, and creates the 
serial stream of dot data called monochrome video. This data stream is then 
sent on through a buffer to the plasma display or through driving transistors 
to the RS-170 port that can be connected to a CRT. 

11. Color attributes controller. This function is performed by a 2675 that has 
been programmed to operate in color mode. For each character to be output 
to a color monitor. the 2675 takes the nine bits of processed dot data-along 
with control signals for blanking. blinking, underlining, cursor position. 
foreground color. and background color-and creates four serial streams of 
data which will generate the color video. The four different data streams 
represent red. blue. green, and luminescence. This data passes through a 
buffer before being sent out to the color monitor through a port in the rear 
of the unit. 

12. Keyboard controller. The keyboard controller is an 8051 microcontroller 
programmed to function like an INTEL 8278. (The 8278 is a keyboard 
controller that was used until it was obsoleted by the manufacturer.) The 
controller continually writes out a sequence of addresses that are decoded to 
represent rows and columns of the main keyboard and function keyboard. 
The scanning process continues until the controller finds a key depress or 
key release condition. The controller then interrupts the 68010 processor on 
the CPM which reads the key value out of the controller. 

13. Key encoder. The key encoder is simply a combination of buffers and 
decoders which take the scan address from the keyboard controller and 
convert it into row and column select signals that go directly to the main 
keyboard and function keyboard. Each scan address decodes to a unique 
row and column combination on one of the keyboards. 

14. Interrupt control. The interrupt control10gic combines interrupts from 
several sources into one interrupt signal that is sent to the CPM board. The 
CPM then reads a 3-bit code generated by the interrupt logic to determine 
the source of the interrupt on the PCM. Interrupts from the PCM are 
caused by key press, key release. break detect on receive data. or interrupts 
from the 8536 chip (aux controller). 

15. Phase locked loop/disk control logic. The disk control logic simply takes the 
disk control signals from the CPM and sends them out to the selected drive. 

J3-10 



Apeendlx J3F/,/tJ Service,' Installing LogJc Boards 

:either floppy or hard. It also buff~rs control signals from the disk drives and 
sends them back to the dislt controller on. the CPM. The 9582 data disk 
separator recovers clock from a stream of data coming from a disk drive and 
sends it back to the CPM. The 9582 separator has a built-in phase-locked 
loop that is used for this clock recovery. 

16. Mode CQntfol. This is simply a latch that is loaded from the CPM. The 
various bits of this latch control certain aspects of the display. By 
programming certain bits ofthis latch. one can force the display to hex 
format. control the cursor. choose half or full duplex, or program the display 
controller for operation from. a SO Hz. power .. supply. 

(E) FE.· (Front-End Buffer)' 

The Front End 13uffer.· provides the. necessary. pre-processing for data in the 
rec~ive path. There are thr~patbs that the data may take through the FEB. In 
run mode. raw data passes through the FEB to the receiver and gets read by an 
MPM. The data can also be stored in~f.'l form on one of the disk drives 
by the disk controller on the .. CP~. In playback mode. data does not come from 
an external device. but from a selected disk drive. In this mode. data from the 
disk controller is multiplexed into· the receive path. 

1. Idle suppress. When selected. this circuitry removes the idle characters from 
the receive data stream. 

2. Data encoder. This circuitry takes the receive data and encodes it in a 
format that enables easy storale. The encOded format includes data and 
control lead information along with time ticks. 

3. 10248 fifo (small). The small fifo ("jirst in. first out") stores the encoded 
da~ until it can be read by the DMA controller on the CPM board. This 
path is used when the INTERVIEW is in record mode. 

4. Ftjolmux control~ Th;e~p~.writes to this port to set the appropriate control 
bits for the fifos and to configure the mux for the proper mode of operation. 

5. Mux. The mux multiplexes b~ween real-time data and playback data in the 
receive path. 

6.64K fifo {big);. The bi~ fifo acts as a "rubber band" between the FEB and 
; the MPM-it "stretches or .shrinks" with the amount of data received and 
. sends it out at the proper l'J~. The PEBputs data into the fifo as it receives 
'it and waits for the receiver on the FEB to request a byte. 

7. . Data decoder. The data decoder puts the data back into raw form as it 
. appeared before entering the data encoder. The raw data is then passed on 
to the receiver to be sent out to the MPM. Control lead information is also 
.output from the d~oder and sent to the lead port. 

J3-11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

8. Lead port. The MPM reads this port on the GBM to obtain information on 
the status of the control leads. 

9. Encoder/decoder control. The MPM writes to this port on the GBM to set 
the control bits for the data encoder and data decoder on the board. 

10. Receiver. When a byte of data has been processed through the decoder, it 
passes on to the receiver circuitry. The MPM continuously polls the receiver 
to check, for the presence of a byte of data. and if there is data present, the 
MPM reads it from the receiver into its memory. 

(F) MPM (Main Processor Module) 

The MPM does all the higher level processing of the receive data. This board' 
also generates the transmit data to be sent out when in emulate mode. If the 
XDRAM board is present, see Table J3-1 for propet switch settings for switch S 1 
on the MPM's for specific allocations of memory space. 

1. Clock generator. This circuitry generates the clock that runs the 80286 CPU 
and peripherals on this board. 

2. Global bus arbitor control. This circuitry queues requests for the global bus. 
It then grants access to the global bus when the global bus is idle and this 
board has the highest priority of all requesting boards. This function is 
performed by the bus arbitor chip. 

3. Bank. address register. The CPU writes to this register to set the upper 
address bits for the 80286 when it is operating in real mode. In real mode, 
the CPU does not drive address bits 19 through 23, so these bits must be set 
in this register if the CPU is running in real mode. 

4. Address buffer latch. This circuitry simply latches the address bits from the 
processor in order to guarantee that the address is stable throughout the 
entire CPU cycle. 

S. Mux. This multiplexer simply chooses whether to take the upper address 
bits directly from the processor t or from the bank address register described 
above. The register is used when the CPU is in real mode. because the CPU 
will only drive these bits in protected mode. 

6. 80286 CPU. This processor controls the operation of the MPM. The 
processor operates on software located in the DRAM on the MPM. This 
software is compiled by the CPM and loaded into the MPM. The software 
'Will tell the MPM how to process the data. and what trigger conditions to 
look for in the data stream. The CPMcontinually polls the MPM to see if 
data is available to be sent to any of the user interfaces: printer, plasma 
display. and remote port. 

7. DRAM. The DRAM on each MPM is dedicated to storage of receive data. 
In addition, the DRAM contains the operating software for the MPM. This 

J3-12 



Agefrn"Jix J3 Fillcf SSJ\1lq!:. Instelli'!fJ LogiC Boards 

memory is dual-ported~ this means that the DRAM can be accessed by 
~ither the local MPM bus from the 80286 processor or by the global bus. 
Operation of the DRAM and arbitration of requests from the two ports is 
controlled by the DRAM controller ehip. This chip also generates refreshes 
for the DRAM at the proper intervals. 

8. Wait/timer logic. This circuitry generates the proper amount of wait states 
for some local cycles. It also monitors the operation of the MPM to check 
for a condition where the CPU gets hung up. The timer logic will generate a 
non:"maskable interrupt to the 80286 processor if a cycle begins and no 
acknowledge is received \\fithln approximately 7 milliseconds. 

9. Reset controllogic. The MPM can be reset in several ways. A global 
software reset will cause me MPM to go into a reset state. The CPM may 
also cause a reset on the MPMby writing to a specific global port. Once the 
MPM has been reliet. it will remain in the reset state until the reset is 
released by the CPMwriq."g to another dedicated global pon. Thus, when 
the unit is first powered up. the CPM can execute its initialization routines, 
and load the MPM software into the MPM DRAM while the MPM is still in 
the reset state. 

10. 32 bit counter. The 32 bit c()tlDter.is made up of four 74LS590's in series 
which count a 1 MHz clock. These counters are used to determine elapsed 
time between certain events in the data stream. The count is latched by 
writing to a dedicated local port. The count is read 16 bits at a time. by 
reading one of two local ~. The count may be cleared to zero by writing 
to another d~ted local port. 

11. 5 channel timer. The 5 channel timer is the 9S13A. a chip that uses six 
¢lock sources as inputs. The user programs the chip to count one of the 
clock sources and aenerate an output when the tetminal count is reached. 
The outpUt can be a high .orlowpulse. or simply a tOggle of the output line. 
Each condition may beelteeute<l once or repeate(l1y. There are five separate 
outputs. one for each channel. Each channel is independent and may be 
programmed diffenmtly~ The 9513A is used on the MPM ·to generate 
"timeout" interrupts at speCific intervals as required by the user program. 

12. interrupt control. The interrupt control circuitry on the MPM consists of 
three 8259A clrlps cascaded to allow for a maximum of 22 interrupts to the 
80286 processor. Five interrupts come from the 9S13A timer logic. Ten 
interrupts come directly from the global bus. These global interrupts are 
initiated by peripherals on the global bus. Four other interrupts are software 
driven interrupts that are caused by another processor writing to dedicated 
memory-mapped 1/0 ports on the MPM. Two interrupts come from the 
FEB, but only one is used. 



INTERVIEW 7000 Series Agranced Programming: ATLC-107-951-108 

(G) TIM (Test Interface Module) 

The test interface module (TIM) is the interface between the external data path 
and the INTERVIEW unit. Data enters the unit at the place marked DTE and 
exits the unit at the place marked DCE. 

1. Mode control. The mode control circuitry determines the operating mode of 
the unit. There are three operating modes: monitor. emulate DTE, and 
emulate DCE. When in monitor mode. the mode control circuitry configures 
the relays on the TIM so that data may pass through from the DTE to the 
DCE while being monitored by the INTERVIEW unit. When in emulate 
DTE mode. the mode control circuitry configures the relays so that the 
connection to the DTE is broken and data generated by the INTERVIEW 
unit is transmitted out to the DCE. When in emulate DCE mode, the mode 
control circuitry configures the relays so that data generated by the DTE is 
received by the INTERVIEW unit and the connection to the DCE is broken. 
In addition. when in either emulate mode. the mode control circuitry sets 
the relays to enable the INTERVIEW to send or receive the appropriate 
control signals depending on the emulate mode selected. 

2. Patch panel. The patch panel is simply a row of switches and headers 
which enable the user to selectively connect and break individual signals on 
the back of the test interface module. 

J3.2 Install a Board 

Remove the new board from its static-proof bag. Remember to handle the board by 
its edges, not touching its components or the gold edge-connector. Grasping the 
board by the two top comers, slide it gently into the correct slot. seating it properly 
in the connector. 

Check the settings for switch S 1 on each MPM board to make certain that they are 
correct. Check that the proper MPM board will be in its correct slot. For the 
INTERVIEW 7500 and 7700 TURBO they should read as shown in Table J3-1. 

For the INTERVIEW 7000 and 7200 TURBO, place your MPM board in slot 9, with 
the settings the same as those referenced for that board in Table J3-1 also. 

J3-14 



MPM 

Pin 1 

Table J3-1 
51-Switoh Sattin9s fQr NlPNI Boards 

In ttla INTEf\VlEW 1000 :6eries 

Slot 7 Stot 8 

2 3 1 2 3 

Slot 9 

1 2 3 

Units with 3 M~; 

Normalt ON OFF ON 

Hlgh-Speedtt OFF OFF ON 

Unils with 2 M~; 
Normalt 

High-Speedtt 

Units With 1 Mati 
Normalt 

High-Speedtt 

OFF ON ON 

ON OFF ON 

OFF ON ON 

OFF OFF ON 

ON ON ON 

ON ON ON 

ON ON ON 

ON ON ON 

ON ON ON 

ON ON ON 

t These are the normal MPM 8Wltcf'nettlt'lQ$. Chen;JInQ these settings Will affect Object 
program·compatibIIIty wtthother·~. 

tt These MPM awitdt settings ~e the .. of·hIgh-apeed record RAM when the file 
IsyslxdramJcFd reeides on thee bC!llt-UP disk dI.Irfng power-up. 

J3.3 Reconnect the Cable. 

Reconneet the cables in the reverse order that you removed them. Remember. the 
smallest jumper cable connects the CPM and PCM boards and the larger jumper 
cable connects the FEB and GBM boards. Of the other cables. one connects the 
LED display to the GBM board and another connects the dual floppy disk drives to 
the PCM board. Additionally, there are two cables connecting the Winchester hard 
drive to the PCM board in the INTERVIEW 7500 and 7700 TURBO (and those 
INTERViEW 7000s and 7200 TURBOs containing the optional hard drive). 

Recall that several of the connectors are "keyed" for easy, correct alignment. Those 
that are not "keyed" need to have special care taken to line up the pins with the 
proper connecting holes. See Figure J3-1. 

J3.4 Test the Unit 

Before you completely secure the cover, it is suggested that you test your unit to 
make certain that it functions after this board exchange. First. replace the cover. 

J3,..15 



INTERVlpW 7000 Series Advancad Programming: A TLC-1 07-951-108 

Grasp the cover with the latch area to the front facing you. Make cettain the latches 
are recessed as far as they can go into the cover and their hooks are not beyond the 
edge of the cover. Slide the cover down. For the INTERVIEW 7500 and 7700 
TURBO-and those INTERVIEW 7000s and 7200 TURBOs with the optional hard 
drive-take care that the two cables to the Winchester hard disk drlve(on your left, 
directly behind the handle) are not being pinched or damaged by the cover. (Some 
models may contain a small, removable. protective plastic sheet to help shield the 
cables from the cover .) 

Now you can safely test the unit. For this test you must power the unit. Reconnect 
your power cable, turn on the unit, and check for the system self-tests. 

The words "System RAM test now accessing all RAM :CPMaMOMIM2f' appear on 
your screen, indicating that the first self test for the system is be.ing performed. 
Following this first test are the tests for the rest of the system. The INTERVIEW 
prompts the user as each test is passed: RAM. timer, DMA, all MPMs, and 32-bit 
timer. 

The statement "The unit has passed ALL system tests" should appear after these 
tests. The screen repaints as illustrated in Figure J3-3 for the INTERVIEW 7500 and 
Figure J3-4 for the INTERVIEW 7000. 

If the self test produces an error, try reinstalling the new boards. Go to the 
beginning of this section and carefully follow the same pr.ecautionsand instructions 
given. Replace the cover and power uptbe unit again so it can perform the self test 
once more. If the self test still gives errol'S. call Cust()mer Service. 

If the start-up screen is blank or the front-panel LEDs are not red or green (except 
for the REMOTE and FREEZE LEDs), the connectors may not be attached 
properly. Try reconnecting them again. 

J3-1S 



~. , I 
\ 

** IN 7S00 ** 
DISKS: 

PROCESSORS: I 
SELF TEST ERRORS: 111M 

Press: 
(PROGRAMJ to enter the menu page 
[RUNJ to run the de-rault program 

So-rtware VerSion: 7.00 
Firmware Version: 5.00 

OPTIONS: 

TIM: RS-232/V.24 

1989 

Figure J3-3 INTERVIEW 7500 screen after self test. 

Figure J3-4 IN'l'BRVIEW 7000 screen after self test. 

J3.5 Secure the Cover 

Place the unit on its back once again and replace the six screws to hold the cover 
secure. 

J3--17 



.. INTERVIEW .7000 Series Ad .... ncedProgrammlno: ATLC-107-951-108 

J3-18 



It~ ARMJ,ndix J4 FJeld ServfC!.: Inftaillng Muftle/exer Bo,rd 
, 

Appendix J4: Install,IASlMultlplexer Board 

CAUTION: STA:tlCIiJ;,SCTIUCITY CANfJAMAGE THE UNIT 
WHEN THE COv:i1J;IS'JMO:~D.·1!('!~f'(1~ begm this 
section. yoU ~t.~e:t~.proril.r 4f1,t1~#f#Jc:,fea_tions. atvm . in 

'-', , " " -" ' , '. '" ~ 

Appendix J 1. 

Observe the proper hancUing of the boards: re~er to Sections Jland J2 on pro~ .ami ... sta.tic 
precautions. 

(A) Locate the Slot 

Read Appendix J2 for lnstrilctiOfl$·OD:·~~'the cover aneLfor information on 
the interior layout of the INTBtt~~ ',.senes. Then refetto' Figure J4-1. 
The\optional multiplexer (mux.) board will··be inSt~ned in the first slot. which is 
likely to be . empty . 

J4-1 



INTERVIEW 7000 Series Advanced Programming: ATLG-107-9S1-108 

Connectors to 
be detached; see 

instructions for 
board being in­

stalled. 

Hard 
Disk 
Drive 

Mechanica! 
Fan 

(DANGER) 

1: Mux Board 
Slot 2: GBM Board 
Slot 3: CPM Board 
Slot 4: PCM Board 
Slot 5: FEB Board 
Slots 7,8 & 9: MPM Boards 

Area behind 
LEO Display 
(DANGER) 

Figure J 4-1 Three cable connections are detached to install the mux board in slot 1. 

J4-2 



~ 
~ I .'; . 

(B) Detach Surrounding Cables 

Make certain the unit is on an anti-static mat and you are wearing a grounded 
wrist. strap. 

Di.M~the ~le~~,QIlection8 careftilly. They may be easily removed with 
an ~~ h~~L.·;'thtj·c~or straight up. holding onto its edges. DO 
NOT{'U~t ON THa<;~t.Ijf~cOQld break. it or damage the connectors. If 
Y<l\li.dCl .t!).()t. baveante;e,JipJ~Q1d~ ... a blade screwdriver will also work. 

QAtJ;'1'IQN:11 ~~~~lcr~wd1frf!r,UStthe top of the black 
7tWrmtilfg rM~(~bi~~~~~f$ tit. ends {)J tke beards) as your 
l«vtr~~ JH1iru:".ll~~I~~;~~'lhe ed,es ·00thebO(/lrds or otMr 
,C(1~ ... ·1Jtft_tt!~:,tJf~},ti1 •• ctf1rs' IQuse. 

, .,.", ,'.' ,,',, .,' " ,"> ',' ,,' , ,,' ,"~' " • 

~f~r.,to. Fi~.J4-t;J€lh~';t~, ~ .•. cable~tcton to be 4etacbed .... two 
froriteables~~ f~~·.~i:~~~e~ 01\e from. a.uble aua.ched 
to the· ba~ of 'tije •. ~'~~l'~ ,'1)etwo ~;the .hant disk. drive' are. attached 
to ~e PCM bOatdm:~';4i '~.~; eab1eiila.ttache~to the GUM board in 
slot 2. Removetllese ~:~_~aAdfQltitbec.bles back. out of the way. 

CAUTION: Do .. "thold any bOlJrd by its gold edge connector. 
Hold it by the sides. NEVER touching the components. 

Refer to Figure J4-1. If yware replacing the mux board, locate it in slot 1. 
Remove the board bYlfasping the top comer edges. Gently pull it straight up 
and out, and holding the board by ~ side edges. ~ce it on the anti-static mat. 

If requeste,d to do 801 p~age, and ret\lm the old m\lX board.to the AR 
Di\Ilsion. InstructiOns fO'fproper packing andshippfug may be found in 
Ap;endixSeWon J2 .. 5. 

.J4-3 



INTERVIEW 7000 Series Advanced Programming: ATI..C-107-951-108 

Microprocessor with internal PROM 
Single large chip 

T1 Transoeivers 

Filure J4-l All PROMs are factory installed on the Tl mux board, represented above by the most 
prominent components. 

J4.2 Replace the Board 

(A) Install the Board In the Appropriate Slot 
Install the mux board (Tl mux board represented in Figure 14-2) in slot 1. in 
the same manner in which you removed it. Take care to hold it only by the 
edges. Gently slide it into its connector. 

(8) Reconnect the Cables 
The cables should be reconnected in the reverse order in which you 
disconnected them. 

First, replace the jumper cable running from the back of the LED display to the 
GBM board (in slot 2). Then reconnect the two cables from the hard disk drive 
to the PCM board (in slot 4). 

J4-4 



J4.3 

J4.4 

Test the Unit 

Before r~lacing the cover, review your work to be certain you have followed all the 
instructions correctly. Follow proc~dures in Section J3.4 to replace the cover (as a 
safety measure before you test the unit) as well as to test the new firmware in a 
power-up before you secure the cover .. 

The mux board option should be listed on the power-up screen in the OPTIONS: 
field. If there are any errors listed on the SELF TEST eAROFlS~ line. repeat the 
procedures from the beginning of this section and try reseating the mux board. 
Replace the cover and power up the unit again so it can perform the self test once 
more. If self test errors persist. contact Customer Service. 

Secure the Cover 

When the SELF TEST ERRORS: line shows NONE. place the unit on its back and 
replace the six screws to hold the cover secure. 

J4-5 



INTERVIEW 7000S.rjesAdva!?ged fZoarammlna: ATLC-107-951-108 

J4-6 



Appendix J5: Replacing Firmware on the 
CPM:Boa1rd 

, ' 

CAUTION: S1'A1'it;~~CTJUClTt C;;''tJ~'f:JB. tHE UNIT 
," WHaN THECO,~.i:~~»~.(}~,,~~/tJ~''1(>u hegin ·this 
section, y~_t~':'~fi"eFqfX!t'-tt4(trt~ti:pre¢"tlons given in 
ApperJdix J 1. " 

From timetc):;~~~may beaP{tQ~,c~~ to.up~e the boards in the INTERVIEW. 
Correct proe~~s1<)f ellcanging a 'Pa()~aT~~ted ift,'thi$ section. 

J5.1 

Wheal reptoving or installing PRO¥s, ~e car~' to~~Oid .generating static electricity. 
bending,.,r breaking pins. and making impr~.~Meetions. 

~e~ntingstatieelectrieity is.~ntial and is covered in Appendix J1. Taking 
~~~r precautioosgiven, in dmt section will protect the sensitive components. 

fll):_ftt,~8rQ" Pil1_ 
In~Yid.t.d.pins . qn~r~r or PROM can easily bend or break. Attaching 
or.tacmg.~· • .s ..• ~canY as possible and aligning them properly will 
a.lp: p~Wht ~P t.6th;e·pins. 

CC) Improper ConneoI,,.$ 
Improper connections can,cause system self-test errors as well as damage to the 
components. You can avoid improper connections with proper alignment of the 
pinsl Be certain each indiYidual pin is secure in its corresponding socket. 

Always align the PROM with its notched end above the notched end of the 
sodiet. See Figure 35-2. 

J5-1 



INTERVIEW 7000 Ssr/esAdvanoed Programming: ATLC-107-951-108 

Hard 
Disk 
Drive 

Mechanioal 
Fan 

(DANGER) 

Slot 2: GBM Board 
Slot 3: CPM SOard 
Slot 4: PCM ~rd 
Slot 5: FEB Board 
Slots 7.8 & 9: MPM Boards 

Area behind 
LED Display 
(DANGER) 

Figure J5-1 Four cable connections are detached 10 remOVe the CPM board from slot 3. 

J5-2 



J5.2 Remove the CPM ,Board 

(A) Locate the Board 

Read ~dix J2 for instructions on removing the cover and for information on 
the.4tterior ~yout of ~e, INTERVIEW. Refer to Figure lS-1. The CPM board 
is in; the,tllkd $lot from~,Jeft. , . ~ , ' , ., ' , 

(8) ",~ •. ~rourJ~t~"~ 
~:. ~lUin the umti&O~!:"'\~~t,ie mat .and you are wearing a grounded 
~mjp ... ,' '" ....>. 

Tot.~vetbe cpM.l'~~ij:~~t1love(he caJl~.~"'oun,dingit and attached 
toitl:pisco~·tlle\~~:: ·'i.~:~/~:~tl~;~~·;rQY .beeasUy removed 
Withl;~ .Ie clip hol.i:~~ . ..~l\ . ' ,.t/~diu, onto its. edges. 
fJQN0'J7PULLi~N~,:;~~~~~~~ ............ < jt~~ the 
<»Il~r&,;lf ~d()~.~.~,~lCc;iiP hGld~.·al)~$creW~wUl :also ·worK.· '.. " ',.,'" '" .... " . 

CArnION:. l/",,~~~~~~rl~('t~ ,t~:t.f)f tkeblatk 
mo"nting.I:f!~k . '~'~~~ut"k ,the ~~. (j!!~l!;~q(I~fb) as your 
leveragepimt. .A,~:fJifw~'r.ae~.$qJtli,,;f!p'f,fF(Jsot other 
components to pry'i'lie.'C#rileClf8S i.e; " . 

Refer to Figure J5-1 to locate the four connectors to be detached-two from 
cables extending from the hard disk drive and one each from two small jumper 
cabl,s~ The two Uosn·tbeJw:d disk dri'ie ar~Ulttach.cto the PCM board in slot 
4. One jumper cable if attacbed to the GBM board in slot 2 and the other is 
attaC::hed to the CPM board in slot 3. Remove these four connectors and fold 
the cables back out of the way. 

(e) Remove the Board 

C.AflTION; .Ilo. notltold 4Ilyboar4by its.golde4ge connector. 
Hold it by the sI~:s, N~VBR,tqqching the components. 

'. , "., " '/' f' 

bf~ningto PijureJS-l.loeatetbe.,CPM boardw.slot :; and remove it by 
crasPtnl me .top~\e~ .. <(t'ftlJypu1lit straigllt up and out. and holding 
the board by itS side ed&~. pla~ it on the aaU-static mat. 

J5-3 



IryTERVJEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Fiaure J5-2 PROM GA and PROM OB are located on the upper left side of the CPM 
board. 

JS.3 Exchange the PROMs on the CPM Board 

(A) Locate the PROMs 

The PROMs to be changed are located in the upper left-hand comer of the 
CPM board. one above the other. Refer to Figure J5-2. In the INTERVIEW 
7000 and 7200 TUkBO, they are identified as 9,SiGA-IOIX and 951GB-102X; 
in the INTERVIEW 7500 and 7700 TURBO. they are identified as 9S1GA-IIIX 
and 95JGB-112X. (The X refers to the present release level and this last letter 
will change for each new PROM~) Note that the PROM with GA in its 
identification number is always in the upper soeket and the PROM with GB in its 
num~r is always in the lower one. 

J5-4 



(B) Remove the PROMs 
The ,PROMs may be removed with an IC clil' holder. grasping the ends of the 
PROM and liftlngitas ittaight up as possible. If an Ie clip is unavailable. a 
blade screwdriver may be used. Do not use any component on the board to pry 
up the PROM with the screwdriver. Place the screwdriver under the smaller 
edge, of the PROM and gently maneuver the blade in a rocking. semi-circular 
motion to loosen the PROM pins as evenly as possible. 

Place the old PROM in the packing material in which the replacement PROM 
was sent for its retUrn to the AR. Division. (See Appendix F. Packing and 
Shipping Instructions.) 

(C) Install the New PROMs 
To ~stall each replacement PROM. refer to Figure J5-2. After examining the 
PROMs to make sure the two rows of PROM pins are parallel. notice that one 
end of each PROM has a notch in it. Bach notch has a corresponding one in 
that ,PROM's socket on the board. Align the notches as well as the pin.s and 
their corresponding holes. Again. the PROM with OA in its identification 
number goes into the upper socket and the PROM with OB in its number goes 
into the lower one. 

JS.4 Replaoe the Board 

(A) InstFlIl the Board In the Appropriate Slot 
Replace the board in slot 3 in the same manner in which you removed it. Take 
care to hold it ooly by the edges. Gently slide it into its connector. 

(8) Reconnect the Cables 
The cables should bereconneeted in the reverse order in which you 
disconnected them.. First. replace the smallest jumper cable from the PCM 
board to the CPM board. Next. replace· the larger jumper cable from the FEB 
board to the OBM board (in slot 2). Finally, reconnect the two cables from the 
hard disk drive to the PCMboard (in slot 4). 

JS.S Test tbe UnH 
Before replacing the cover. review your work to be certain you have followed all the 
instructions correctly- Follow procedures in Section J3.4 to replace the cover (as a 
safety m.sure before you test the unit) as well as to test the new firmware in a 
power-up belere you secure the cover. 

If the seU! TEST ERRORS: tine shows anything other than NONE and you are installing 
the CPM: board. try reinstalling the PROMs. 00 to the beginning of this section 
(AppencI.bc. J5) and carelully follow the same precautions and instructions given. 
Replace the cover and power up the unit again so it can perform the self test once 
more. If'the self test still gives errors, call Customer Service. 

JQ;..5 



INTERVIEW 7000 Series Advanc.d Programmlna: ATLG-1Q7 ... 951 ... 108 

JS.6 Secure the Cover 

When the SELF TEST ERRORS: line shows NONE, place the unit on its back and 
replace the six screws to hold the cover secure. 

J5-B 



~1 , I·· 

A.ppandix J6: Installin:g Hard Disk Drive 
(OPT -951-91-1) 

,- -, 

CAUfION: STATIC ELECTRICITY CAN DAMAGE THE UNIT 
WH~N THE COV1EJ(.1S RBMOYED~ C Bt/ore you begin this 
sectiM. you lDMM take the proper anti-siatic precautions 8iven in 
Appendix J 1. 

Refer to AppendiX Section 12.1 for wvetremovaI information and to Appendix Section J2.2 
for a description of the interlorlayout. 

NOTE: Your unit will not. have the. e~les.a~oss the top of the 
hard drive bracket~we win ~ the.si~later ~Nor will it nave 
MPM boards in slots 7 and S. as ~.J2~1 indicates, unleSs 
you have the optio~~~M boards fDstaned. 

OPT-9S 1-0 1-1.i Wmoaestrer.:2(f·;Me.~,~~ ~f' tsfbtlNTmtVIEW 7000 ana 7200 
TURBO units. Installation consists of four ~eps: remoVing. the empty hard disk bracket. 
securjns the. hardr'dfiy,t<inthe. tira.t.~~ the bradtet'andbatd·.drive in the unit, and 
eonne:ctktg :cables:>to the hard .$ive. 

J6.1 Remove the Har4 DiSkDri". Bracket 

LOQat:.e ·~e bard disk drive:brack.eultthe front of the 1eftsicle of the unit, ~s shown 
inFisur~12*1. 

There is an unattached power cable with a four pin female connector behind this 
bracket. This cable wiD &lye power to the hard drive once it is installed. For now. 
move it ~owards the back and outside of your unit. clear of the bracket. 

There ar, five screws holding this bracket in the unit-two small Phillips screws 
toward tlie front outside of the bracket and three standard-head captive screws 
holding, ~e bracket to the bottom of the unit. as shown in Figure J6~1. Remove the 

.• 1 



. INTERVIEW 7000'$!,/8$ Advanced ProgrammIng; ATLC-107-951-108 

two small screws and loosen the three captive screws on the base of the bracket-one 
is in the front and the other two are in the back. Then lift the bracket straight up 
and out of the unit. 

Phllllps..n.ad 
Screws 

Captive ./ 
Screw 0 - - .. .....-
(front) 

~ 
.. ' '~ . .. ' ......, .. "" , , . ' , 

Captive 
Sorews---
(bade) 

Figure J6-1 Hard disk drive bracket. Note placement of serews. 

J6.2Secure the Hard Disk Drive in the Bracket 

Remove. the . Winchester 20 Megabyte Hard Disk Drive from its packing material. 
Notice one side of the drive has exposed components. This side will remain exposed 
when you place it in the bracket. Slide the drive into the bracket with the 
component side of the drive facing out on the open side of the bracket, as shown in 
Figure J6-2. .. .' , 

'Use the ··four Phillips-head screws included.in your installation kit ,to mount your hard 
drive into the bracket. Insert and secure two of these mto. the top of the bracket 
and the other two into the bottom of the bracket. 

J6-2 



Appendix J6 Field Service: Installing Hard Disk Drive 

WInchester 
Hard Disk Drive 

(component side) 

~ 
Power 
Supply 

connector 

Wlnohester B 
PL-951-44-1-A 

oonnector 
t-... 

Winohester A 
PL-951-43-1 

oonnector 
t-... 

Phlll'lps-nead 
Screws 

(top and bottom) 

Figure J'*2 Slide the Winchester hard disk dtive into the bracket with the 
component side exposed and secure the drive in the bracket with the four 
Phillips-head screws provided. 

Phillips-head 
Sorews 

\~ 
- .1\& 

J6.3 Replace the Bracket with the Hard Drive into the Unit 

Place the hard drive and its bracket in the INTERVIEW 7000 or 7200 TURBO by 
sliding it down vertically in the same position that the empty bracket had occupied. 
The exposed side of the bracket and hard drive should face into the unit. Secure 
the same· five screws you released in removing the bracket: three captive screws to 
the base ·of the unit and two Phi1Ups screws on the outside of the bracket. 

J6.4 Connect the Cables 

There are three cables to be connected: the power cable already in your unit and 
the two qables provided in the installation kit. See Figure J6-2 for the locations of 
the male connectors on the back of the hard drive. 

J6-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

Locate the power cable (with the four pin female connector) behind the hard drive. 
With the white wire on top and the red wire toward the bottom, plug the connector 
into the back near the top of the hard drive. 

The two cables provided in the installation kit will connect the hard drive with the 
PCM board in slot 4 as shown in Figure J2-1. First. note the cables are folded for a 
proper fit. Next. examine the connections on the cables. In each case the end near 
the fold is a female slot connector (which connects to the back of the hard drive) 
and the other end is a female pin connector (which connects to the PCM board). 

Attach the smaller of the two cables. labeled "WINCHESTER B. PL-951-44-1," to 
the smaller male slot connector on the top of the back of the hard drive. Connect 
the other end of this cable to the smaller male pin connector on the top of the PCM 
board, taking care the align the pins in their proper holes. In the same manner, 
attach the other cable. labeled "WINCHESTER A, PL-951-43-1," to the larger 
male slot connector on the lower back of the hard drive. Connect the other end of 
this cable to the larger male pin connector on the top of the PCM board. 

Your installation of OPT-9S1-01-1 is complete. It is recommended that you test 
your unit after installing your hard disk before you begin operations again. 

J6.5 Test the Unit 

Before you completely secure the cover. it is suggested that you test your unit to 
make certain that it functions after this installation of the hard disk drive. First, 
replace the cover. 

Grasp the cover with the latch area to the front facing you. Make certain the la~ches 
are recessed as far as they can go into the cover and their hooks are not beyond the 
edge of the cover. Slide the cover down. Take care that the two cables to the hard 
disk drive are not being pinched or damaged by the cover. (Some models may 
contain a small. removable, protective plastic sheet to help shield the cables from the 
cover.) 

Now you can safely test the unit. For this test you must power the unit. Reconnect 
your power cable. tum on the unit. and check for the system self-tests. 

The words "System RAM test now accessing all RAM :CPMaMOMIM21" appear on 
your screen. indicating that the first self test for the system is being performed. 
Following this frrst test are the tests for the rest of the system. The INTERVIEW 
prompts the user as each test is passed: RAM. timer. DMA. all MPMs, and 32-bit 
timer. 

J6-4 



Apoendix J6 Field Service: Installing Hard Disk Drive 

The statement "The unit has passed ALL system tests" should appear after these 
tests. The screen repaints as illustrated in Figure J6-3. 

The SELF TEST ERRORS: line should show NONE and the OPTIONS: line should display 
01-1 as shown in the figure. If the self test produces an error, try reinstalling the 
hard drive. Go to the beginning of this section and carefully follow the same 
precautions and instructions given. Replace the cover and power up the unit again so 
it can perform the self test once more. If the self test still gives errors, call Customer 
Service. 

If the start-up screen is blank or the front-panel LEDs are not red or green (except 
for the REMOTE and FREEZE LEDs), the connectors may not be attached 
properly. Try reconnecting them again. 

** INTERVIEW 7000 ** 
DISKS: 

PROCESSORS: I 
SELF TEST ERRORS: .... 

Press: 
[PROGRAM) to enter the menu page 
[RUN] to run the default program 

Software Version: 7.00 
Firmware Version: 5.00 

OPTIONS: 01-1 

TIM: RS-232/V.24 

Copyright (e) 1987, 1989 
Telenex Cor oration 

Figure J'-3 INTBRVIBW 7000 (with OPT-951-01-l) screen after self test. 

J6.6 Secure the Cover 

Place the unit on its back once again and replace the six screws to hold the cover 
secure. 

J6-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

J6-6 



~~. ,. I . 
i 

Aependix J7 Field Service: Servicing Other Components 

Appendix J7: Servicing Other 
Components 

Other components of the INTERVIEW 7000 Series may require changing or modifying. 
Those changes an~ modifications will be documented in this section. 

J7.1 Changing the Dual Floppy Disk Drive Bracket 

If either ~jection button of your floppy disk drives tends to stick when you operate 
the drive, you can eliminate the problem by changing the bracket for the dual floppy 
disk drives. While this is a simple operation, there are certain steps you must follow 
to insure proper installation. 

First you must prepare the drives for the exchange. Then. you will disconnect the 
power source from the drives and lift out the present bracket holding the drives. 
Next you will remove the cables, exchange brackets. and replace the cables. Finally. 
you will replace the disk drives into the unit and reconnect the power source cables. 

(A) Prepare the Drives 

To prepare the dual floppy disk drives for removal, remove any disks they 
contain. This secures the eject button inside the drive so it won't dislodge upon 
removal of the unit. Locate the cable which attaches the dual floppy disk drives 
to the PCM board. Detach the connector from the board. 

(B) Disconnect the Power Source from the Drives 

Locate the small round cables which connect each drive to the power supply. 
They are found at the lower back of the floppy disk drives. Disconnect them 
from the drives. 

(e) Lift. out the Present Bracket 

To prepare the present bracket for removal, locate the four captive screws which 
secutethe bracket to the chassis. Using a common blade screwdriver. loosen 
the~ four screws from their bosses. These screws will not come out; loosen 
them sufficiently to release the bracket from the chassis. 

J7-1 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

Grasp the sides of the bracket and slide it towards the back of the chassis. 
freeing the eject buttons and the drives from the front panel slots. Then lift the 
drive assembly up and out of the unit. 

(D) Remove the Cables 

The dual floppy disk drives have a common cable which you previously detached 
from the PCM board. Remove the cable from the back of the disk drives. 
taking care not to damage the cable. Lift the connectors straight off the 
connecting pins. For reference, this cable is labeled "PL-951-42-1-A." 

(E) Exchange the Brackets 

In this next step, mark the disk drives so that you are certain to keep them in 
the same positions in the new bracket as they presently sit in the old bracket. 

U sing a common blade screwdriver, unscrew the four small screws on the top of 
the bracket and the four small screws on the bottom of the bracket. Place both 
brackets upright next to each other. Slide out one disk drive and place it the 
same position in the new bracket. Similarly. place the second disk drive in the 
new bracket. 

At this pOint, you will replace the four top screws. turning them just enough to 
catch the drive in the bracket. One or two turns will suffice on each screw. 
Tum the assembly over and attach the four bottom screws in the same manner. 

Place the assembly upright once again. aligning it with the eject buttons to your 
right. The drives should still be moveable in the bracket. Grasp the drive 
closest to you and move it as far to the left and away from you as it will go. 
Tighten the top two mounting screws for that drive. Follow the same procedure 
for the drive farthest from you. 

Tum the assembly over, keeping the eject buttons on your right. Grasp the 
drive closest to you and pull it towards you. Tighten the bottom two mounting 
screws for this drive. Follow the same procedure for the drive farthest from 
you. 

(F) Replace the Cables 

Attach the cable to the back of the disk drives. Notice that these cables are 
"keyed." (Use Figure J3~1 as a reference.) With the eject buttons faCing you, 
wrap the cable around the drive so the cable fold is on the right side of the 
drive. 

(G) Replace the Dual Floppy Disk Drives into the Unit 

Check the four bosses which hold the captive screws securing the bracket. If 
the threaded insert is not· flush with or lower than the top of the boss, push it 
down inside the boss with the tip of a hot soldering iron. 

J7-2 



.... ~!.~ ~~ , 
; , 

APDe,ndix J7 Field Service: ServiCing Other Components 

Making sure the power cables you first disconnected are pushed out of the way. 
place the floppy drive assembly into the unit. Slide it forward. positioning the 
eject buttons and drive openings into the front panel slots. Tighten down the 
four captive screws and test the mechanical operation of each disk drive by 
inserting a floppy disk and then ejecting it. 

(H) Reconnect the Power Source Cables 

Locate the connecting pins for the power supply cables on the bottom of the 
rear of each floppy disk drive. Attach these cables to their connectors. 

J7.2 Secure the Cover 

Grasp the cover with the latch area to the front facing you. Make certain the latches 
are recessed as far as they can go into the cover and their hooks are not beyond the 
edge of the cover. Slide the cover down. For the INTERVIEW 7500 and 7700 
TURBO-and those INTERVIEW 7000s and 7200 TURBOs with the optional hard 
drive-take care that the two cables to the Winchester hard disk drive (on your left. 
directly behind the handle) are not being pinched or damaged by the cover. (Some 
models may contain a small, removable, protective plastic sheet to help shield the 
cables from the cover.) 

Place the unit on its back once again and replace the six screws to hold the cover 
secure. 

J7.3 Return Parts to AR Division Factory 

Any parts which need to be returned to the AR Division should be properly 
packaged. Contact Customer Service for a RETURN AUTHORIZATION (RA) 
number. 

Customers outside the Washington D.C. 1-800-368-3261 
Greater Metropolitan Area 

Local customers 644-9190 

The RAnumber should be posted on the outside of the package of all equipment 
returned. for repair. The RA number, as wen as a description of the problem, should 
be cited in all documentation, written correspondence, or telephone conversations 
concerning the specific repair. 

J7-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

International customers should address the shipment to 

Telenex Corporation, AR Division 
A TIN RA number 
clo Emery Customs Brokers 
lOlA Executive Drive 
Sterling. Virginia 22170 
U.S.A. 

NOTE: For customs purposes, international customers MUST 
identify the country of origin for returned equipment on the pro 
forma invoice. When returning an individual part. use the 
country of origin listed on the part. 

Domestic customers should address the shipment to 

Customer Service 
Telenex Corporation 
AR Division A TIN RA number 
7401 Boston Boulevard 
Springfield, Virginia 22153 
U.S.A. 

Consult Appendix E for additional information on returning parts to the AR Division 
Factory. 

J7-4 



~, { i ' 

Appendix K C Language Summary 

Appendix ·K-
, - C Language Summary 

[The following material is adapted from the appendixes of the Proposed C Standard (ANSI 
document X3111/86-098) with certain additions to describe the INTERVIEW implementation 
of C. The appendixes are not a part of the American National Standard. Information 
presented is collected from the Standard but is not necessarily complete.] 

[For more information on C language and syntax. consult Section C of the Proposed 
Standard.] 

K.1 LANGUAGE SYNTAX 

[Editorial comments which appear in this section but are not part of the proposed 
standard ·are enclosed in non-italicized square brackets.] 

In the syntax notation used in this section. syntactic categories (non-terminals) are 
indicated by italic type. and literal words and characters (terminals) by bold type. 
[These items have no sub-categories.] A colon following a non-terminal introduces 
its definition. Alternative definitions are listed on separate lines. except when 
prefaced by the words "one of." An optional symbol is indicated by the subscript 
opt [here, represented as [opt1 J. so that 

{ expression {opt] } 

indicates an optional expression enclosed in braces. 

K.1.1 Lexical Grammar 

K.l.1.1 Tokens 

A token is a minimal lexical element of the language. [Categories of tokens 
are given below. Each of these categories is further described in a separate 
sub-section. ] 

token: 
keyword 
identifier 
constant 
string-literal 

K-1 



INTERVIEW 7000 Series Advanced ProgramminQ: ATLC-107-951-10B 

operator 
punctuator 

K.l.l.2 Keywords 

[These words (entirely in lower-case) are reserved due to their special 
meanings.] 

keyword: one of 

auto double int struct 
break else long switch 
case enum register typedef 
char extern return union 
const float * short unsigned 
continue for signed void 
default goto sizeof volatile 
do if static while 

[* The reserved word float is not used in the INTERVIEW implementation 
of C.] 

[The following two words are reserved in the INTERVIEW implementation.1 

task waitfor-

K.l.1.3 Identifiers 

An identifier is a sequence of nondigit characters (including the underscore 
and upper-case letters) and digits. An identifier may not consist of the 
same sequence of characters as a keyword. [An identifier should also be 
distinct from user functions or library functions.] 

[Essentially. identifiers refer to variables, functions, labels, and various 
user-defined objects. J 
identifier: 

nondigit 
identifier nondigit 
identifier digit 

nondigit: one of 
abcdefghijklm 

nopqrstuvwxyz 
ABCDEFGHIJKLM 
N 0 P Q R STU V W X Y Z 

digit: one of 
o 123 4 S 678 9 

K-2 



AppendIx K C Language Summary 

K.1.1.4 Constants 

[Constants may be any of the basic allowable data types. Floating point 
constants are not supported.] 

constant: 
integer-constant 
enumeration-constant 
character-constant 

fractional-constant : 
digit-sequence [opt] . digit-sequence 
digit-sequence . 

exponent-part: 
e sign [opt] digit-sequence 
E sign [opt] digit-sequence 

sign: one of 

+ -

digit-sequence .­
digit 
digit-sequence digit 

integer-constant: 
decimal-constant integer-suffix [opt J 
octal-constant integer-suffIX (opt) 
hexadecimal-constant integer-suffix [opt] 

decimal-constant: 
nonzero-digit 
decimal-constant digit 

octal-constant: 
o 
octal-constant octal-digit 

hexadecimal-constant : 
Ox hexadecimal-digit 
OX hexadecimal-digit 
hexadecimal-constant hexadecimal-digit 

nonzero-digit: one of 
123456789 

octal-digit: one of 
o 123 4 5 6 7 

K-3 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

hexadecimal-digit: one of 
o 123 4 5 6 7 8 9 
abc d e f 
ABC D E F 

integer-suffix: 
unsigned-suffix long-suffix [opt} 
long-suffix unsigned-suffix [opt] 

unsigned-suffix: one of 
u U 

long-suffix: one of 
1 L 

enumeration-constant: 
identifier 

character-constant: 
'c-char-sequence' 

c-char-sequence: 
c-char 

c-char: 

c-char-sequence c-char 

any character in the source character set except 
the single-quote '. backslash \, or new-line character 
escape-sequence 

escape-sequence: one of 
\' \" \? \\ 
\0 \00 \000 

xh \xhh \xhhh 
\a \b \f \n \r \t \v 

K.1.1.S String literals 

A string literal is a sequence of zero or more characters enclosed in double 
quotes. as in "xyz". 

A double quote within a string literal is represented by the escape sequence 
\". 

string-literal: 
«s-char-sequence [opt)" 

s-char-sequence: 
s-char 
s-char-sequence s-char 

K-4 



~, 
. I 

l 

s-char: 

N'P,endlx K C Language Summary 

any character in the source character set except 
the double-quote ", backslash \, or new-line character 
escape-sequence 

K.1.1. 6 Operators 

An operator specifies an operation to be performed that yields a value. 

[An operator is a symbol that tells the compiler to perform specific 
mathematical or lOgical manipulations. J 
operator: one of 

[ ] ( ) .-> 
++ -- & ... + ... - ! sizeof 
I "A> « » < > <= >= == 1= A I && II 
? 
= *= 1= %= += -= «= »= &= A= 1= 
, # ## 

K.1.1. 7 Punctuators 

K.1.2 

A punctuator is a symbol that has independent syntactic and semantic 
significance but does not speclfy an operation ... that yields a value. 

Depending on context. the same symbol may also represent an operator or 
part of an operator. 

punctuator: one of 
[1 () {} til.: =; ..• 1 

Phrase structure grammar 

K.1. 2.1 Expressions 

An expression is a sequence of operators and operands [variables and 
constants 1 that specifies how to compute a value or (in the case of a void 
expression) how to generate side effects. 

primary-expression: 
identifier 
constant 
string-Uteral 
( expression ) 

post/ix-expressJon: 
primary-expression 
postfIX-expression [expression J 
postfix-expression (argument-expression-list [opt]) 

K-5 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

postfix-expression . identifier 
postfix-expression -> identifier 
postfix-expression ++ 
postfix-expression 

argument-expression-!ist: 
assignment-expression 
argument-expression-Jist , assignment-expression 

unary-expression: 
postfix-expression 
++ unary-expression 
-- unary-expression 
unary-operator cast-expression 
sizeof unary-expression 
sizeof ( type-name ) 

unary-operator: one of 

& • + 

cast-expression: 
unary-expression 
( type-name) cast-expression 

multiplicative-expression: 
cast-expression 
multiplicative-expression * cast-expression 
multiplicative-expression I cast-expression 
multiplicative-expression % cast-expression 

additive-expression: 
multiplicative-expression 
additive-expression + multiplicative-expression 
additive-expression - multiplicative-expression 

shift-expression: 
additive-expression 
shift-expression « additive-expression 
shift-expression » additive-expression 

relational-expression: 
shift-expression 
relational-expression < shift-expression 
relational-expression > shift-expression 
relational-expression <= shift-expression 
relational-expression >= shift-expression 

K-6 



~. 
I 

Appendix K C Language Summary 

equality-expression: 

relational-expression 
equality-expression == relational-expression 
equality-expression != relational:"'expression 

AND-expression: 

equality-expression 
AND-expression &. equality-expression 

exclusive-OR-expression: 

AND-expression 
exclusive-OR-expression A AND-expression 

inclusive-OR-expression: 

exclusive-OR-expression 
inclusive-OR-expression I exclusive-OR-expression 

logical-AND-expression: 

inclusive-OR-expression 
logical-AND-expression &.& inclusive-OR-expression 

logical-OR-expression: 

logical-AND-expression 
logical-OR-expression II logical-AND-expression 

conditional expression: 

logical-OR-expression 
logical-OR-expression ? expression 

assignment-expression: 

conditional-expression 

conditional-expression 

unary-expression assignment-operator assignment-expression 

assignment-operator: one of 
= *= 1= %= += -= «= »= &= A= 1= 

expression: 

assignment-expression 
expression , assignment-expression 

constant-expression: 

conditional-expression 

K-7 

--_._-----_._---------_ .. _--_._---



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B 

K.1. 2. 2 Declarations 

A declaration specifies the interpretation and attributes of a set of identifiers_ 
A declaration that also causes storage to be reserved for an object or 
function named by an identifier is a definition. 

declaration: 
declaration-specifiers init-declarator-list [opt]; 

declaration-specifiers: 
storage-class-specifier declaration-specifiers [opt] 
type-specifier declaration-specifiers [opt] 

init-declarator-list: 
init-declarator 
init-decLarator-list , imt-declarator 

init-declarator: 
declarator 
declarator = initializer 

storage-class-specifier: 
typedef 
extern 
static 
auto 
register 

type-specifier: 
char 
short 
int 
long 
signed 
[float not supported] 
unsigned 
double 
const 
volatile 
void 
struct-or-union-specifier 
enum-specifier 
typedef-name 
task-specifier 

[The last type-specifier in the list above. task-specifier, is specific to the 
INTERVIEW implementation and is not standard C.] 

K-8 



'I' Appendix K C Language Summary 

,~ , I 
; , , 

struct-or-union-specifier: 
struct-or-union identifier {opt] { struct-declaration-list } 
struct-or-union identifier 

struct-or-union: 
struct 
union 

struct-declaration-iist: 
struct-declaration 
struct-declaration-list struct-declaration 

struct-declaration: 
type-specifier-list struct-declarator-list,' 

struct-declarator-list: 
struct-declarator 
struct-declarator-list j struct-declarator 

struct-declarator: 
declarator 
declarator [opt] constant-expression 

enum-specijier: 
enum identifier {opt] { enumerator-list } 
enum identifier 

enumerator-list: 
enumerator 
enumerator-list , enumerator 

enumerator: 
enumeration-constant 
enumeration-constant = constant-expression 

declarator: 
pointer [opt] dec1arator2 

declarator2 : 
identifier 

pointer: 

( declarator ) 
declarator2 [ constant-expression {opt] ] 
declarator2 ( parameler-type..,./ist ) 
declarator2 ( identifier-list [opt]) 

,. type-specijier-list lopt J 
,. type-specifier-list [opt} pointer 

K-9 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108 

type-specifier-list: 
type-specijier 
type-specIfier-list type-specifier 

parameter-type-list: 
parameter-list 
parameter-list I ....... 

parameter-list: 
parameter-declaration 
parameter-list , parameter-declaration 

parameter-declaration: 
declaration-specijiers declarator 
type-name 

identifier-list: 
identifier 
identifier-list I identifier 

type-name: 
type-specifier-list abstract-declarator [opt] 

abstract-declarator: 
pointer 
pointer [opt] abstract-declarator2 

abstract-declarator2 : 
( abstract-declarator ) 
abstract-declarator2 [opt} f constant-expression {opt] 1 
abstract-declarator2 {opt] ( parameter-type-list (opt]) 

typedef-name: 
identifier 

init ializer: 
assignment-expression 
{ initializer-list } 
{ initializer-list , } 

initializer-list: 
initializer 
initializer-list • initializer 

task-specifier: 
task-identifier { task-body} 
task { task-body} 
task-identifier 

K-10 



f1t\ f i " 

task-body: 

external-definition 
layer-declaration 
task-body external-definition 
task-body layer-declaration 

layer-declaration: 

Appendix K C Language Summary 

#pragma layer integer-constant 

K.1. 2. 3 Statements 

A statement specifies an action to be performed. 

statement: 
labeled-statement 
compoUlld-statement 
expression-statement 
selection-statement 
iteration-statement 
ju~-statement 

wait/or-statement 

[The last statement in the list above. wait/or-statement, is specific to the 
INTERVIEW implementation and is not standard C.] 

labeled-statement: 
identifier : statement 
case constant-expression 
default : statement 

compound-statement: 

statement 

{ declaration...,list {opt} statement-list [opt] } 

declaration-list: 
declaration 
declaration-list declaration 

statement-list: 
statement 
statement-list statement 

expression-statement: 
expression [opt} ; 

selection-statement: 
if ( expression ) statement 
if ( expression ) statement else statement 
switch ( expression ) statement 

K-"11 



INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 

iteration-statement : 
while ( expression ) statement 
do statement while ( expression ) ; 
for ( expression [opt} ; expression [opt} 

statement 

jump-statement: 

goto identifier ; 
continue ; 
break 
return expression [opt] ; 

waitfor-statement: 
waitfor { } 
waitfor { waitfor_list } 

waitfor-list: 
expression : statement 
waitfor _list expression: statement 

expression [opt}) 

K.1. 2.4 External definitions 

K.1.3 

file: 
external-definition 
file external-definition 

external-definition: 
function-definition 
declaration 

function-definition: 
declaration-specifiers {opt} declarator function-body 

function-body: 
declaration-list [opt] compound-statement 

Preprocessing directives 
[These are instructions to the compiler included in source code.] 

The implementation can include sections of program text. conditionally 
include other source files. and replace macro's. 

preprocessing-file: 
group 
preprocessing-file group 

group: 
group-part 
group group-part 

K-12 



~" Appendix K C Language Summary 
, 

~, 
Ii !' , 

j 

group-part : 

tokens: 

tokens [opt] new-line 
if-section 
control-line 

tolcen 
tokens token 

if-section: 

if-group: 

if-group eli/-groups [opt] else-group [opt] endif-tine 

1/ if constant-expression new-line group [opt] 
1/ ifdef identifier new-line group lopt} 
1/ ifndef identifier new-line group {opt 1 

eli/-groups: 
eli/-group 
elif-groups elif-group 

elif-group: 
1/ elif constant-expression new-line group {opt] 

else-group: 
1/ else new-line group {opt] 

endif-line: 
1/ endif new-line 

control-line: 
1/ include <x-char-sequence> new-line 
1/ include «x-char-sequence" new-line 
1/ define identifier tokens [opt] new-line 
1/ define identifier lparen identifier-list [opt]) tokens {opt] 

new-line 
1/ under identifier new-line 
1/ line digit-sequence string-literal [opt} new-line 
1/ pragma x-char-sequence new-line 
:# new-line 

x-char-sequence: 
x-char 

x-char: 

x-char-sequence x-char 

any character in the source character set except the 
new-line character 

K-13 



INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-951-108 

lparen: 

the left-parenthesis character without preceding white space 

new-line: 

the new-line character 

K.1.3.1 AR pragmas 

#pragma hook hookjype hook_text 

hook_type: decimal-constant 

hook_text: string-constant 

#pragma layer integer-constant 

#pragma nowarn 

#pragma object objectJile_name 
objectJile_name: string constant 

#pragma tracebuf trace_buffer _declaration_list {opt] 

trace_buffer _declaration_list: 

trace_buffer _declaration 
trace _buffer _declaration_list trace _buffer_declaration 

trace _buffer _declaration: 

decimal-constant decimal-constant 
* decimal-constant 

K-14 



ADDENDUM 

Index To ADD-951-10 

A 
Allocating disk space, 12-3 

AUX 110, connector, 1-9 

AUX leads. 1-9 

Auxiliary TTL connector" 1-9 

B 
Back panel, 1-7 

fan. 1-8 
fan filter. clean to prevent overheating. 1-9 
frequency selection, 1-8 
Input/Output connectors. 1-9 

AUXILIARY TIL. 1-9 
CRTIRGB. 1-9 
internal MODEM, 1-:9 
PRINTER. 1-9 
REMOTE RS-232, 1-9 
RS-170 composite video. 1-10 

onloff (power) switch. 1-8 
power connector. 1-7 
voltage selection. 1-7 

BCC Setup. overview of screen, 2-11 

BERT Setup. overview of: screen, 2-11 

Boot-up 
creating a user interface. HRD/usr/user_intrf. 

2-4 
running default prograUl, lusr/default. 2-5 
system disk, 2-3 

c 
Capture Memory. field on Record Setup menu. 

12-9 . 

Character buffer. Storage :capacity, 1-12 

Clock 
signal. 1-13 

See also Speed 
time-of-day, 1-14 

See also DatelTime Setup 

Compilation 
error diaenostics. 2-15 
fields that can be modified without causing 

recompile. 2-16 
rerun without recompiling. 2-15 
seven phases. 2-14 

Conditions. EIA. fails to come true. 2-19 

Connectors 
back panel, 1-7 
power. back panel. 1-7 
Test Interface Module. 1-10-1-16 

Control leads. playback. 2-17 
of bit-image data. 2-17 
of character data. 2-17 

CRT/ROB connector f 1-9 

D 
Data acquisition tracks. 12-3 

Data capture. 2-17 
See also Playback; Recording data 
RAM. data storage. 1-12 

Data plus leads, failure of leads to transition. 
2-20 

Data source, connection to. 1-16 

Data Transfer. Disk Maintenance. menu 
selection. 12-7 

Data transfer, INTERVIEW S, 10. 15 PLUS 
data. 12 .... 10-12-16 

Default menus. how to change. 2-6 

Directories 
lusr. 2-4 
lusr/default. 2-5 

MAY 1990 



ADDENDUM 

Disk drives. 1-5 
drive references and priority, 12-3 
microfloppies 

compatibility. 1-5 
write protection, 1-5 

microfloppy disks, storage capacity, 1-5 
Winchester hard disk, 1-7 

Disk Maintenance, 12-3-12-16 
allocating disk space. 12-3 
command 

Data Transfer. 12-7 
Disk Summary, 12-7 
Duplicate Disk, 12-10 
Format Disk. 12-5 
INT 10, 12-10-12-16 

data acquisition tracks. 12-3 
description of disks. 12-3 
initializing system. INTERVIEW 7000, 2-3 
installing new system software. 2-7 
menu selections. 12-2. 12-4-12-16 
overview, 2-14 

Disk Name, subfield on Disk Maintenance 
menu, 12-5 

Disk Number. subfield on Disk Maintenance 
menu. 12-5 

Disk Summary. Disk Maintenance. menu 
selection. 12-7 

Display. plasma. 1-3 

Display Setup, traces, 2-20 

Display Setup screen, overview. 2-11 

Drive Type, subfield on Disk Maintenance 
menu, 12-6 

Duplicate Disk 
Disk Maintenance, menu selection. 12-10 
installing new system software via the 

DUPDISK command. 2-7 

E 
EIA. trigger conditions, fails to come true, 2-19 

EIA leads. storage of, 1-12 

Emulation, connectors used, 1-10 

Errors, recoverable, 2-16 

External monitors 
ROB color video connector, 1-9 
RS-170 video connector, 1-10 

F 
Fan 

back panel, 1-8 
clean filter to prevent overheating, 1-9 

FEB Setup, overview of screen, 2-11 

File Maintenance, File Maintenance screen, 
overview, 2-13 

Format Disk, Disk Maintenance, menu 
selection. 12-5 

Freeze LED, front panel, 1-5 

Frequency selection. back panel, 1-8 

From. subfield on Disk Maintenance menu. 
12-8 

From Disk Number, subfield on Disk 
Maintenance menu. 12-10 

Front end buffer 
applies to playback of bit-image data. 2-17 
Idle Suppress field, does not apply to 

playback of bit-image data. 2-17 
on playback path of bit-image data. 2-17 
time ticks and EIA leads. storage of. 1-12, 

2-17 

Front panel, 1-3 
function keys, 1-4 
LED overlay, 1-5 
LED's, 1-4. 2-17 

UIA, 1-11 
plasma display. 1-3 

Function keys. 1-4 

G 
General operation. 

boot-up program, creating a user interface. 
2-4 

changing default menus. 2-6 
common problems. 2-19-2-21 
data capture. 2-17 

front end buffer, 2-17 
front end buffer, on playback path of 

bit-image data. 2-17 
initializing system. INTERVIEW 7000. 2-3 
installing new system software. 2-7 
overview of menus. 2-9-2-14 
power up, 1-16. 2-1 
rerunning a test program, 2-15 
running a test program, 2-14 
running default program. 2-5 

MAY 1990 



ADDENDUM 

H 
Hardware, 1-3-1-16 

back panel. 1-7 
clock, 1-13 
disk drives. 1-5 
front panel, 1-3 
keyboard. 1-3 
operating environment, 1-14 
operating positions, 1-14 
physical dimensions. 1-3 
power up. 1-14 
storage capacity, 1-12 

High speed, optimizing performance, 2-2:2 

HRD/usr/user _intrf 
affect on Start Up screen. :2-:2 
boot-up program. creating a user interface. 

2-4 

I 
Idle Suppress, field on Front-End Buffer Setup 

screen. does not applY'during playback, 
2-17 

Initializing system software, INTERVIEW 7000, 
2-3 

Input/output connectors, back panel. 1-9 
AUXILIARY TIL. 1-9 
CRT/ROB. 1-9. 1-10 
internal MODEM. 1-9 
PRINTER. 1-9 
REMOTE RS-232, 1-9 
RS-170 composite video. 1 ... 10 

Installing new system software. on hard disk. 
2-7 

INT 10, ·Disk Maintenance selection. 
12-14-12-16 . 

INTERVIBW transfer, IN'tERVIEW 5. 10. 15. 
PLUS data. transfer ftom Disk Maintenance 
screen. 12-10-12-16 

lnstrun'lent. menu field on Disk Maintenance 
screen. for INTERVIEW lO·ttanafer. 12~14 

Internal MODEM connec~or. 1-9 

K 
Keyboard. 1-3 

See also ASCII keys: eljltry under each special 
key , 

function keys. 1-4 

L 
Layer Setup screen. overview. 2-13 
Layers, passing data between. 2-20 
LED's 

front panel. 1-4, 1-5, 2-17 
INTERVIEW status, 1-5 
interface status. 1-4 
U/A. 1-5, 1-11 

Test Interface Module. 1-11 
Line data. data capture, 2-17 
Line Setup screen, overview. 2-10 

M 
Maximum data rates 

data analysis. 1-13 
data recording. 1-13 

Memory. capa(;ity. 1-12 
Menus. overview, 2-9-2-14 

See also Separate listing. each menu name 
configuring menus, 2-10 
Program Menu. 2-9 

Microfloppy disks 
compatibility. 1-5 
storage capacity. 1-12 
write protection, 1-5 

Miscellaneous Utilities. overview. 2-14 
Mode. test mode fleld on Line Setup menu. 

1-11 
Modem connector 

external. 1-9 
internal. 1-.9 

MPM errors, 2-16 

o 
Object code. rerunning object version of 

program. 2-15 
OnIoff (power) switch. back panel. 1-8 
Operating environment. 1-14 
Operating positions, 1-14 
Overlay. Test Interface Module, 1-5 

p 
Physical dimensions. size and weight. 1-3 
Playback 

control leads. 2-17 
disk data. 2-17 
EtA leads. storage. 1-12 
time ticks. 2-17 

MAY 1990 



ADDENDUM 

Power connector. 1-7 

Power switch. back panel. 1-8 

Power up. 1-14, 2-1 
self tests. 2-1 

Printer connector. 1-9 

Program key. 2-4 
unit unexpectedly enters Run mode, 2-19 

Protocol Spreadsheet 
increasing the size of, 2-13 
overview, 2-12 
syntax errors. 2-15 
unexplained strike-through's. 2-19 

R 
RAM. data storage, 1-12 

REMOTE RS-232 connector, 1-9 

Recording data 
maximum rate. 1-13 
with EIA lead transitions, 1-12 

Record Setup. overview of screen, 2-11 

Remote LED, front panel, 1-5 

Resolution. display, 1-3 

RGB video connector, 1-9 

RS-170 video connector, 1-10 

RS-232. connector, REMOTE. 1-9 

RS-232N.24, test connector, 1-10 

Run mode. unit fails to enter, 2-19 

s 
Screen buffer, storage capacity. 1-12 

Self tests. 2-1 

Setup menus 
Bee Setup. overview. 2-11' 
BERT Setup. overview. 2-11 
Display Setup screen, overview, 2-11 
FEB Setup. overview, 2-11 
Line Setup, overview. 2-10 
overview, 2-10 

See also Separate entry under name of each 
menu 

Record Setup, overview, 2-11 

Speed, optimizing high-speed performance, 
2-22 

Stan At Block, subfield on Disk Maintenance 
menu. 12-9 

Stan up screen, 2-2 

Statistics menus. overview, 2-13 

Strike-through's. Protocol Spreadsheet, 2-19 
Syntax errors, Protocol Spreadsheet, 2-1S 

Isys/fiftLhertz, file name, 1-8 
System disk. boot-up. 2-3 

T 
Temperature, operating, 1-14 
Test connectors 

software control, 1-11 
Test Interface Module. back panel, 

1-10-1-16 
TO DCE, 1-11 
TO DTE, 1-11 

Test Interface Module 
installation, 1-14 
LED overlay, 1-5 

installation, 1-15 
LED's, back panel, 1-11 
software control. 1-11 
test connectors, 1-10-1-16 

Time ticks 
playback, 2-17 

of bit-image data. 2-17 
of character data. 2-17 

storage of, 1-12 

TimelDate Setup, overview, 2-14 

Timers, no values displayed. 2-20 

TO DCE. test connector. 1-11 
TO DTE. test connector, 1-11 

To Disk Number. subfield on Disk Maintenance 
menu, 12-10 

Transmit string. does not appear on display. 
2-20 

Trigger conditions. BIA. fails to come true. 
2-19 

Trigger Setup menus 
overview. 2-11 
transmit string. does not appear on screen. 

2-20 
Trouble-shooting 

data plus leads. failure of leads to transition, 
2-20 

data-plus-leads display, failure of leads to 
transition. 2-20 

layers. passing data between. 2-20 

MAY 1990 



overheating. 1-9, 2-21 
Program key. unit une~ctedly enters Run 

mode. 2-19 
Protocol Spreadsheet, unexplained 

strike-tbrough' s, 2 .... 19 
Run mode. unit fails to enter. 2-19 
timers. no values displayed, 2-20 
transmit string. does not appear on screen, 

2-20 
trigger conditions. BIA. fails to come true. 

2-19 

Type. subfield on Disk Maintenance menu. 
12-8 

u 
U/A. LED. 1-11 

Unresolved reference. error message. 2-19 

lusr/default 
affect on Start Up screen. 2-2 
boot-up menu configuration, 2-5 
default program, 2-5 

ADDENDUM 

lusr/user _intrf 
affect on Start Up screen, 2-2 
creating a user interface. 2-4 

Utilities menus. overview. 2-14 
See also Separate entry under name of each 

menu 

v 
V.35, test connector, 1-10 

Video connectors 
CRT/ROB. 1-9 
RS-170 composite video. 1-10 

Voltage selection. back panel. 1-7 

w 
Winchester hard disk 

installing new system software. 2-7 
storage capacity, 1-12 

Write protection. microfloppies, 1-5 

MAY 1990 

--_._----------_._-----------------------_. -------



ADDENDUM 

MAY 1990 



Index A 
Technical Manual Part I and Part II 

Symbols 
.. abort. overlay for BOP abort, 5-13 

e coding, 59-6 

• badbcc, overlay for bad Bee or FeS. 5-13 
e coding. 59~6 

IBl bit mask symbol. in Receive string condition, 
21-7 

)) close double parens symbol, 3-5, 22-4, 25-5 

-/ closing delimiter for comment. 24-13 

~ don't care symbol 
in Receive string condition. 21-7 
in spreadsheet string search, 33-35 

ta flag. 7E flag symbol, 5:-13 
e coding, 59-6 

@J goodbcc, overlay for good Bee or FeS. 5-13 
C coding, 59-6 

I highlighted plus symbol, indicates wrap in 
logical line. 26-3 

lEi not equal flag syinbol 
in Receive string condition, 21-7 
in spreadsheet string search. for beginning of 

frame, 33-35 

« open double parens symbol, 3-5, 22-4, 25-5 

,- opening delimiter for comment, 24-13 

* pad. in Outsync Char field, 4-8 

lID sync, sync symbol, 4-7. 5-13 
C coding, 59-6 

..... tilde symbol, 3-4, 24'""<3 

Zl. time-fill. 5-8 

I (root) directory. 13-4 

A 
A Bus En, indicator on RS-485 Test Interface 

Module, 47-5 

Abbreviations. glossary. B-1-B-I0 
Abort 

adjunct to monitor-frame condition 
LAPD, 39-13, 39-15 
SDLe, 35-14. 35-16 
X.25 Layer 2, 33-14, 33-15 

adjunct to send-frame action 
LAPD.39-25 
SDLe, 35-27 
X.25 Layer 2, 33-28 

adjunct to send-string action, Layer 1 (BOP), 
28-9 

appended to transmit string. 8-6 
defined for BOP, 8-6, 33-10. 34-14, 39-9. 

40-6. 42-6, 43-7 
field on Bee Setup menu, 8-12 
in e, 59-6 
monitor/receive condition, Layer 1 (BOP 

only). 28-4 
overlay. BOP only. 8-4 

Absolute pathnames. files and directories, 13-5 
Accumulate. layer-independent action. 27-15 
Accumulate action, 17-7 

may apply to current, last. minimum. or 
maximum values, 17-9 

not found on trigger menus. 17-8 
translated into C, 62-13 
used to log one hour per day over days or 

weeks. 17-10 
Accumulate counter, layer-independent action. 

27-15 
Accumulate timer. layer-independent action, 

27-15 
Accumulator 

created by being named in Accumulate action, 
27-15 

printing line of tabular statistics for. 27-16 
structures. accumulator _struct, 62-14 

Acronyms. glossary, B-I-B-10 

Index to Part I and Part II 



Actions 
capture memory on/off, 11-10 
Enhance. control of color display, 16-5 
in C. 53-12 
Layer 1, 28-6 

accessed via Done key, 28-6 
layer-independent, 27-8-27-13 
Protocol Spreadsheet, programming block, 

24-8 
comments in, 24-13 

record onloff, 11-10 

ADDR. address. trace column 
SDLC, 35-7 
X.25 Layer 2. 33-7 

Address 
adjunct to monitor/receive-frame condition 

SDLC, 35-13 
X.25 Layer 2, 33-14 

adjunct to send-frame action 
SDLC, 35-24 
X.25 Layer 2. 33-25 

trace field. SNA-SDLC, 36-6 

Affects, field on BCC Setup menu, 8-12 

Again. editor command. 26-9 

Aggregate 0.703 record, 50-5, 50-26 

Aggregate T1 Record. 49-5, 49-26 

Alarm 
field on Trigger Setup menu, 22-11 
layer-independent action. 27-13 
routines, sound_alarm, 69-16 

Allocating disk space, 12-3 

Alternate Mark Inversion. transmission 
technique, 48-4, 49-3 

AMI. See Alternate Mark Inversion 

ANSI format. SS#7 layer 3. 43-4 

Append. run-mode printer output to existing 
disk file. 14-7 

Array 
may be initialized by a string in C, 56-29. 

57-13 
name of array is 4-byte address in C, 58-2 
size. 56-20 

ASCII 
default BCC parameters~ 8-8 
hex-to-display conversion table. D2-3 
keyboard-to-ASCII conversion table. Dl-3 

ASCII keys, in programming menus and 
spreadsheet, 3-4 

Async 
data setup. 4-10 
sample Line Setup, 4-13 

Attributes 
format of 32-bit word same in Display 

Window and trace buffers. 61-14 
in character buffer. 59-6 
in Display Window 

color, 61-4 
current font. 61-4 
derived from the current window color and 

window_modifier values, 61-35 
enhancements. 61-4 
mapping of %m argument to attribute 

variables. illustrated. 61-33 
set via %m conversion specifier in format of 

displayf routine, 61-12 
stored in window color and 

window_modifier variables, 61-12 
three bytes of attributes to one byte of data. 

61-4 
in trace buffer 

mapping of %m argument to attribute 
variables, illustrated, 61-34 

updated by %m conversion in format of 
tracef routine, 61-27 

written via %m conversion specifier to 
trace_buf.hdr structure. 61-29 

less flexible set of attributes in character 
buffer than in Display Window, 59-15 

not available via displayyrompt routine. 61-3 

AUX Control. field on Interface Control menu, 
10-17 

AUX 1/0. connector, 1-9 

AUX leads. 1-9 

AUX outputs 
driven on/off by spreadsheet actions, 10-9 
driven on/off on Interface Control menu. 

10-17 
location on TIM. 10-8 
onloff, Layer 1 emulate-mode action. 28-10 

Auto Configure, screen in automonitor mode, 
5-3 

Auto Terrnn. DIP switch, on RS-485 Test 
Interface Module. 47-4 

Auto-indent, editor command. 26-9 

Automatic OSI primitives. See Primitives 

Automatic X.2S Layer 2. 33-36 

Automonitor mode 
setting up. 4-3 
stage in autoconfiguration displayed in Status 

field. 5-3 

Index to Part I and Part II 



updates Line Setup screen, 5-4 
with no dock, speed defaults to 168 kbps, 

5-4 

Autosync, subfield on Line Setup menu. 4-7, 
4-8 

Auxiliary connector, 1-4 

Auxiliary TTL connector. 1-9 
A UX port controlled by e program, 

68-3-68-11 

Average, column on Tabular Statistics screen, 
17-6. 17-11, 27-10 

accumulator struct. accumulator structute, 
62-13 -

defined. 62-14 

B 
B Bus En, indicator on RS-485 Test Interface 

Module. 47-5 

B channels. ISDN. 48-3, 48-4 

B8ZS. See Binary 8 Zero Suppression 

Back panel, 1-7 
fan. 1-8 
fan filter. clean to prevent overheating. 1-9 
frequency selection, 1-8 
Input/Output connector'S. 1-9 

AUXILIARY TIL. f-9 
CRT/RGB. 1-9 
internal MODEM. 1-9 
PRINTER. 1-9 
REMOTE RS-232. 1 ... 9 
RS-170 composite video, 1-10 

on/off (power) switch, 1-8 
power connector. 1-7 
vohage selection, 1-7 

Baekslash. entry of inside prompt message, 
27-12 

Backslash (\). escape character in C string. 
56-20 

Bad BCC 
adjunet to monitor-frame condition 

LAPD. 39-13, 39-15 
dce bad bee, C variable, 77-1 
dte -bad -bee. C variable, 77-1 

SDLC, 35:14. 35-16 
dee bad bee, C variable. 73-1 
dte..J>ad':-bcc. C variable. 73-1 

SS#7 Layer 2 
dee bad bee. C variable. 79-1 
dte':-bad':-bcc. C variable. 79-1 

X.2S Layer 2, 33-14, 33-15 
dee bad bee, C variable, 71-1 
dte':;bad':;bec, C variable. 71-1 

adjunct to send-frame action 
LAPD.39-25 
SDLe.35-27 
X.25 Layer 2, 33-28 

adjunct to send-string action, Layer 1. 28-9 
appended to transmit string. 8-5 
as condition, 8-5 
fevar bd bcc td and fevar bd bee rd, e 

events, 59-2 - - -
monitor/receive condition, Layer 1, 28-4 

operational only when Rev Blk Chk 
enabled. 28-4 

overlay. 8-3 

Basic Rate ISDN, 48-3 

Baud rate. defaUlt value for remote port. 6i ... 20 

Baudot 
hex-to-display conversion table. D2-3 
keyboard-to-Baudot conversion table, D1-9 
no default BeC parameters, 8-8 

Bee 
See also Block checking 
cross between a Layer 1 and Layer 2 

function. 28-4 
indicated by transmit tag in header of IL 

buffer, 55-7 
Layer 1 condition, 28-4 

operational only when Rev Blk Chk 
enabled. 28-4 

subfield on Trigger Setup menu, 8-5, 22-4 
traee column 

LAPD,39-9 
Q.931.40-6 
SDLC.35-10 
SNA-SDLC, 36-6 
SS#7 Layer 2. 42-6, 43-7 
X.2S Layer 2, 33-10 
X.25 Layer 3, 34-14 

BERT 
"force-loopback" programming example. 

9-21-9-22 
analyze-only mode, 9-18 
automatic error injection. 9-14 

enabling/disabling by softkey, 9-18 
status message. 9-21 

block size. 9-13 
G.703.9-42 
T1,9-29 

clearing counters. 9-6 
clearing the results screen, 9-18 
counters. 9-19 
five pseudorandom patterns. 9-3 

algorithms, 9-3 

I~x to Part I and Part II 



freeze mode, 9-17 
G.703. See T1. BERT 
G.703 BERT. run-time function key, 9-46 
half duplex. 9-6 

"receive and analyze" versus "generate" 
mode, 9-7 

initiating the send-receive cycle. 9-7 
invert. G.703, 9-41 
manual error injection. 9-18 
operating mode, selected on Line Setup 

menu, 9-5 
pattern, G.703. 9-41 
patterns, 9-7 
reinitializing a running test, 9-18 
relation of BERT Setup menu to Interface 

Control screen, 9-7 
relation of BERT Setup menu to Line Setup 

menu, 9-6, 9-15 
synchronous versus asynchronous. 9-15 
T1. See T1 t BERT 
T1 BERT, run-time function key, 9-34 
test length, 9-14 

G.703,9-42 
T1, 9-29 

BERT modes, setting up, 4-4 

Begin, editor command. 26-5 

Begin CAS MF w/frame containing frame align. 
signal, G.703. field on Interface Control 
menu, 50-24 

Binary, user-defined routine that displays binary 
value of byte. 58-5 

Binary 8 Zero Suppression 
Tl Interface Control screen, 49-26 
transmission technique. 49-4 

Binary,display. of cursor characters. 5-15 
in relation to order of transmission. 5-15 

Bipolar violations 
BPV's received 

G.703, statistics display, 50-28 
Tl statistics display. 49-29 

0.703 transmissions, 50-19 
T1 transmissions. 49-26 

Bisync 
CRC mode, 8-13 

advantage over selectable mode. 8-13 
field on BCC Setup menu. 8-11 
sample Line Setup. 4-13 

Bit errors 
G.703 BERT statistics. 9-44 
T1 BERT statistics, 9-31 

Bit Mask key, 3-6 

Bit mask 
in Protocol Spreadsheet strings, 29-3 
in Receive string condition. 21-7 
in Suppress field, 5-11 
masking bits in C variables, 57-8, 70-2 
to detect XON and XOFF only, 5-12 

Bit Order/Polarity, field on Line Setup menu, 
4-11. 9-16 

Significance in BERT testing. 9-16 

Bit order 
in relation to hexadecimal notation, 5-14 
in relation to pattern sync in BERT, 9-11 
normal versus reverse. 4-11 

Bit-image data, 11-3 
playback. 11-4 

Bit-robbing. T1 transmissions, 49-32 
Bits 

field on Line Setup menu, 4-6, 9-16 
in BERT testing. 9-15 
number of, in setup, 4-6 
per character, default value for remote port, 

67-20 

Bits In Error. BERT counter, 9-20 
Bitwise and (&), C operator, 57-8, 61-36, 70-2 

Blnk, sub field on Trigger Setup menu, 22-7 

Block 
component of BERT test. 9-13. 9-29, 9-42 
editor command, 26-5 

Block checking 
automatically on for BOP, 8-4 
distinction between transmitting and evaluating 

BeC.8-3 
enabling BCC overlays, 4-9, 8-3. 
for DDCMP 

automatically on. 37-2 
data BCC may be tested as event variable in 

C, 37-2 
header BCC only may be tested by trigger, 

37-2 
looking under BCC overlay, 8-4 
parameters defined on BCC Setup menu, 8-6 
result used as trigger condition. 8-5 

Block No. field on Line Setup menu, 4-5 

Block Size. field on BERT Setup menu. 9-13 
Blocks In Error 

BERT counter, 9-20 
G.703 BERT statistics. 9-44 
Tl BERT statistics, 9-31 

Blocks Received, BERT counter. 9-20 
Blocks received 

G.703 BERT statistics, 9-44 
Tl BERT statistics. 9-31 

Index to Part I and Part II 



Blocks Sent, BERT counter. 9-20 

Blocks sent 
0.703 BERT statistics, 9-44 
T1 BERT statistics, 9-31 

BNC. 0.703 connectors. 50-8. 50-9 

BOP, synchronization and BCC parameters 
always defined for. 4-:9, 8-4. 8-8 

Boards 
See also Field Service 
packaging and returning. See Field Service 

Boot-up 
creating a user interface. HRD/usr/user intrf, 

2-4 -
running default program. lusr/default, 2-5 
system disk, 2-3 

BPV's received 
0.703. statistics display, 50-28 
T1 statistics display, 49..:.29 

BPV-free seconds 
G.703, statistics display, 50-28 
T1 statistics display, 49-29 

BPVs. See Bipolar violations 

BREAK, T1 test access point. 49-10 

Break 
C statement, 53-6. 53-13, 56-2 

used to exit a waitfot. 53-3, 53-6. 53-9 
transmitting a break. set tcr b. C routine, 

59-14 - -

Break key. 26-5 

Breakout panel. on Test Interface Module, 10-5 
RS-449, 45-4 
RS-485, 47-3 
V.35.44-4 
X.21, 46-4 

Buffer Control Leads, field on Front-End 
Buffer Setup screen, 7-5 

Buffer Full 
condition, Trigger Setup menus. 21-11 
fevar rev buffer full, C event. 59-2 
layer:independent condition. 27-5 
rcv_buffer_full. C variable, 59-2 

c 
C, color, field on Graphical Statistics menu, 

18-7 

C language 
array. name of array is 4-byte address. 58-2 
care mask. 57-8, 60-1, 61-36. 70-2 

comments. 53-10 
condition clause. equivalent to trigger, 53-8 

may contain multiple expressions, 53-9 
constants 

character, 57-7 
decimal, 57-7 
hexadecimal, 57-7 
octal, 57-7 

conversion specifiers, 61-37 
O/C#U, hex character, 57-8 
%b,61-12 
%c.61-11 

character, 56-16, 57-8 
%d.61-11 

signed decimal. 56-14. 56-16. 57-8 
%H,61-11 
%i. 61-11 
%m, 61-12. 61-27, 61-30. 61-32 
%0, 61-11 

octal, 57-8 
%p.61-11 
%s. 61-11 
%u. 61-11 

unsigned decimal, 56-14, 56-16 
%X.61-11 
%x,61-11 

hex. 56-14, 56-16, 57-8 
data types. 56-13 

char, 56-13 
int, 56-13 
long, 56-13 

long routine returns a long. 58-3 
short, 56-13 

short routine returns a short. 58-3 
signed, 56-13 
unsigned, 56-13 
void. return statement invalid with this type, 

58-3 
declarations 

automatic. 53-14 
format. 53-14, 57-2 
positioning and grouping, 53-15 
scope, 52-Ifi, 53-17 

global, 53-17 
error messages. issued by compiler and 

preprocessor. A3-1-A3-16 
event variables 

may be created by user, 57-6 
one used by translator for every spreadsheet 

condition. 53-10 
programming rules. 53-11. 57-4, 57-6 

executable statements. location on 
spreadsheet, 53-17 

expressions. conditional 
nonzero always true, 53-12. 58-2 
zero always false, 53-12. 58-2 

Index to Part I and Part II 



initialization, variable must be static to pass 
initialized value into waitfor statement. 
53-17, 56-17 

introduction to AR version. 56-3-56-15 
variations from standard C, 56-3 

keywords 
label. equivalent to spreadsheet State, 53-2 
task, 56-3 

equivalent to spreadsheet Test, 53-1 
placed at highest level of source code. 

52-16 
locating compilation errors, 56-4 
main function 

created by translator, 52-1 
placed at highest level of source code, 

52-16 
nonevent variables 

checked when event is signalled, 57-5 
true in expressions with nonzero value, 

53-12 
operators 

++, 58-6 
->, 57-17 
bitwise and (&), 57-8, 61-36, 70-2 
precedence. 56-17 
right shift (»), has different effect on 

signed and unsigned variables. 56-15 
sizeof, 56-20, 71-13, 72-17. 73-13 

pointer 
always 32 bits no matter what the data type. 

57-11 
creating a pointer, 57-11 
incrementing pointers of various data types. 

57-12 
m.J)acket_infoytr. pointer to first data byte 

in X.25 packet, 72-8 
m..,ptr_to_call]ef. pointer to 0.931 

call-reference field, 78-4 
m.J)tr_to_info_element. pointer to 0.931 

info-element field, 78-4 
making a pointer to the data in a received 

frame. 71-8. 73-8, 77-8 
making a pointer to the data in an IL 

buffer, 57-10, 63-41 
pointing with subscripts, 57-12, 57-13 
rcvd.J)kt_infoJ)tr. pointer to first data byte 

in X.25 packet, 72-8 
rh.J)tr, pointer to first byte of SNA 

request/response header, 74-4 
ru.J)tr. pointer to first byte of SNA 

request/response unit, 74-4 
string. 56-19 
structure pointer, creating a structure 

pointer. 57-16 
thJ)tr. pointer to first byte of SNA 

transmission header. 74-4 

predeclared identifiers 
event. 56-4 
fast_event. 56-4 
label. 56-4 

preprocessor directives 
#define. 56-5, 61-40 

example. 67-15 
#include. 56-6. 61-23, 61-29. 61-30, 65-3 
#pragma, placed inside of task definition, 

52-16 
#pragma hook 

defining the hook text. 56-12 
format of. 56-11 
hook text added to top-level main 

function. 56-12 
in linkable-object files, 56-11 
system-generated during Compile 

spreadsheet. 56-11 
used to "force" a call to a routine. 56-11 
using multiple hooks, 56-12 

#pragma layer, used to declare a layer, 53-1 
#pragma nowarn, used to suppress compiler 

warnings, A3-1 
#pragma object 

(ormat of. 56-8 
placement of. 56-8 
used to combine routine definitions with 

spreadsheet program, 56-8 
#pragma tracebuf. used to configure size of 

trace-buffer arrays, 61-26 
program main. 52-1 
recommended sources. 56-22 
regions on spreadsheet 

actions. 53-12 
conditions. 53-7 
enter state. 53-3 
layer. 53-1 
next state, 53-4 
state. 53-2 
summary. 53-14 
test. 53-1 

routines. 58-1-58-6 
always followed by parentheses, 58-2 
most associated with specific spreadsheet 

condition or action. 58-1 
nonzero return makes conditional statement 

true, 58-6 
not usually necessary to declare, 58-1 
user-defined. 58-4-58-6 

display_binary, 58-5 
strcmp. 58-6 
temporary..,prompt, 58-4 

statements 
break. 53-6. 53-13. 56-2 

used to exit a waitfor, 53-3, 53-6, 53-9 

Index to Part I and Part II 



~" , I 

goto, 53-4, 53-5, 53-7. 53-13 
placed inside of state loop, 52-16 
used to move program control to a 

different state-label. 53-2. 53-4 
if. 57-4, 58-6 

nonzero expressions always true inside of 
if statement, 58-2 

routine that returns nonzero makes if 
statement true, 58-6 

used in Enter State conditions. 53-4 
return, 58-2 

breaks out of while loop, 58-6 
waitfor, 53-2. 53-4. 53-5, 53-6, 53-7, 

53-9, 53-13, 56-3, 57-4 
defines a set of interrupts (events). 54-1 
placed inside of state loop, 52-16 
variable must be static to pass value into 

waitfor, 53-17, 56-17 
while. 58-6 

nonzero expressions always true inside of 
while statement. 58-2 

status variables. See Nonevent variables 
storage classes, static, variable must be static 

to pass value into waitfor. 53-17. 56-17 
storage-class specifiers, . extern, cannot be 

declared below Test level. 53-15 
stream, 65-1 
strings, 56-19 

comparing strings. 57 .... 14. 58-6 
creating a string. 57-12 
non-literal characters inside strings', 56-21 
nonliteral characters inside set.J)rint_header 

strings. 64-8 
structure. accessing an element of a structure, 

57-15 
syntax summary, K-I-K-14 
third tier in programming hierarchy. 19-4 
translator 

creates automatic main function. 52-1 
levels of source code. 52-16 
uses external routines. 58-1 

variables, 57-1-57-17 

C translator, 52-1 
error messages. A2-1-A2-6 

C/R 
adjunct to monitor/receive-frame condition. 

LAPD.39-13 
adjunct to send-frame action. LAPD. 39-22 
Command/Response, trace column. LAPD, 

39-8 

CAL-REF-VAL, call reference value. trace 
column, Q.931, 40-5 

CALL, send action, X.25 Layer 3, 34-31 

CALL CONF, send action. X.2S Layer 3, 
34=31 

CALLED, field on X.25 Packet Level Setup 
screen, 34-6 

CALLING. field on X.2S Packet Level Setup 
screen, 34-6 

CAS MF resync criteria. G.703, field on 
Interface Control menu, 50-25 

CAS MF syn.c criteria. G.703. field on Interface 
Control menu, 50-25 

CAS multiframes, G.703 frame structures, 
50-31 

Cable length, Tl Interface Control screen, 
49-21 

Cable type. Tl Interface Control screen, 49-20 
Cables 

connection. See Field Service 
disconnection. See Field Service 
null-modem cable for remote port I/O. 67-24 

Call Confirm 
send-packet action, X.2S Layer 3. sending 

"short" version without addresses and 
facilities. 34-33 

sent down (as primitive) to Layer 2. 30-9 
Call Request 

as character data, 34-9 
as entry on X.2S Packet Level Setup screen, 

34-6 
as packet on trace display, 34-8 
send-packet action, X.25 Layer 3, 34-32 
sent up (as primitive) from Layer 2, 30-9 

Call Request user data, may be longer than ten 
character spaces, 34-7 

Call reference value 
adjunct to monitorlreceive-message condition, 

Q.931. 40-10 
monitor/receive condition. Q.931. 40-10 
trace column, 0.931, 40-5 

Called address, entered in CALLED field on 
X.2S Packet Level Setup screen, 34-6 

Calling address, entered in CALLING field on 
X.2S Packet Level Setup screen, 34-6 

Capture. field on Trigger Setup menu. 22-11, 
22-12 

Capture data to screen (on/off) 
ctl_capture_rd, C routine, 59-9 
ctl_capture_td. C routine, 59-8 
Layer 1 action. 28-14 

Capture Memory. field on Record Setup menu, 
11-4, 11-6, 11-10. 12-8 

Capture memory 
See also Data capture; Recording data 
Freeze key. 3-11 

Index to Part I and Part II 



Care mask, 60-1 
C device for isolating bits in a variable, 57-8 

masking for status of given ElA lead, 60-2 
masking to detect EIA lead change. 60-1 

Carriage Return. produced by operation of 
CTRL and M keys, 29-1 

Carrier losses. Tl statistics display, 49-31 

Cause byte 
adjunct to Restart, Reset, Clear, and Reg 

Confum actions. 34-36 
adjunct to Restart, Reset, Clear, and Reg 

Confirm conditions, 34-20 
listed for Reset, Clear, and Reg Confirm 

packets, 34-22 
listed for Restart packet, 34-21 
listed for Send Clear actions. 34-37 

CCrTT 
format, SS#7 layer 3, 43-4 
Open Systems· Interconnection model. 

20-5-20-8 
See also Layers 

CCSS#7. See SS#7 

CD 
available for triggering. 28-5 
field on Interface Control menu, 10-10, 

10-14, 10-15 
field on RS-232 Interface Control menu, 9-4, 

9-6 

CD on/off, Layer 1 Emulate DeE action, 28-10 

CD-off delay. 10-16 

CD-on delay, 10-16 

Chaining, of programs via Load Program action, 
27-19 

Change Directory. File Maintenance. menu 
selection, 13-16 

Change idle character, Layer 1 action, 28-12 

Channel, ISDN, ISDN Interface Setup selection. 
48-10 

Channel mode 
G.703. field on Interface Control menu, 

50-22 
G.703 BERT. 9-40 
Tl BERT, 9-27 

Channel number 
G.703. field on Interface Control menu, 

50-23 
Tl Interface Control selection, 49-24 

Char 
C data type, 56-13 
sub field on Line Setup menu, 4-8 

Character 
C constant, 57-7 
conversion for display, 56-16, 57-8 
received, detected in C, 59-5 
types, data versus special characters in C. 

59-5 

Character buffer. 11-4 
attributes less flexible than in Display Window. 

59-15 
capacity. 5-27 
data. 11-3 
enhancement attributes carried in high byte of 

event word, 59-6 
playback. 11-4 
recording. 11-10 
storage capacity, 1-12 
writing to, 59-15-59-19 

Character data 
buffer correlation with trace data. 5-26 
display of 

accessed by DATA softkey, 5-7 
dual line, 5-8 
single line. 5-8 

Character field. defined, 34-7 

Circuit Identifier Code (CIC). SS#7 Layer 3. 
43-6, 43-10 

Clear. editor command, 26-5 

Clear key, 26-4 
in menu fields. 3-6 
in spreadsheet, 3-7 

Clear path. emulate-mode action, X.25 Layer 
3. 34-41 

Clear statistical accumulator values. 27-15 

Clear statistical counter values. 
layer-independent action. 27-10 

Clear statistical timer values, layer-independent 
action. 27-11 

Clock 
field on Line Setup menu. 9-16 

in BERT testing. 9-16 
signal. 1-13 

See also Speed 
time-of-day. 1-14 

See also DatelTime Setup 

Clock Source. field on Line Setup menu. 4-10 

COMMON. T1 test access point, 49-9 

CONNECT IND primitive. example on 
spreadsheet, 30-7 

CONNECT REQ primitive. example on 
spreadsheet. 30-8 

in C. 63-12 

Index to Part I and Part II 



Code 
conversion charts. DI-2-D1-14 
field on Line Setup menu, 4-5. 8-8, 9-15, 

9-16 
significance in BERT testing. 9-15 
standard codes, 4-5 
user-defined, D3-1 

Coding type. 0.703. Interface Control selection. 
50-19 

Color, applied to ROB output. not to plasma 
screen, 61-1 

Color display 
color graphics. 16-6 
connectors for external monitors. 16-3 
miscellaneous utilities. 16-3-16-6 
selectable options. 16-4-16-5 

background color, 16-5 
blink, 16-5 
character, 16-5 

trigger control of. 16-5-16-6 

Command, field on File Maintenance menu, 
3-6 

Command addressing 
adjunct to receive condition. X.25 Layer 2, 

33-16 
adjunct to send-frame action. X.25 Layer 2, 

33-24 

Comment. 24-13 
debugging tool. 24-14 
delimiters. 24-13 
in C region, 53-10 
length of. 24-13 
location on spreadsheet. 24-13 
purpose of, 24-14 
valid characters. 24-13 

Common Channel Signalling System #7. See 
SS#7 

Compilation 
compilation automatic during object-code 

save, 13-15 
error diagnostics. 2-16 
fields that can be modified without causing 

recompile. 2-16 ' 
rerun without recompiling. 2-15 
seven phases, 2-15 

Compile, File Maintenance 
compiles contents of file or spreadsheet, 

13-21 
compiling spreadsheet generates #pragma 

hooks. 13-21 
menu selection, 13-21 • 

Condition clause. C construction corresponding 
to trigger. 53-8 

may contain multiple expressions. 53-9 

Conditions 
EIA. fails to come true, 2-20 
in C, 53-7 
Layer 1, 28-1 
layer-independent, 27-3-27-7 

counters in linkable-object ftles. 24-12 
flags in linkable-object files. 24-13 

Protocol Spreadsheet 
naming requirements. 27-1 
programming block. 24-8 

comments in. 24-13 
rules for combining conditions, 27-2 

transitional vs. Status, 27-2, 27-6 

Confirm primitives. 30-5 

Connectors 
back panel. 1-7 
interface specifications. 1-1-1-13 
power. back panel, 1-7 
ROB. 16-3 
RS-170 video, 16-3 
RS-232 printer connector. 14-3 
Test Interface Module, 1-10-1-16 

Constants. 25-3-25-7 
expansion of. 25-7 
fox message, 29-4 
in C string. 56-22 
in Receive string condition. 21-8 
in spreadsheet string. 29-3 
legal names of. 25-4 
nesting of, 25-6 
Protocol Spreadsheet, 20-8 

programming block. 24-8 
comments in, 24-13 

referencing. 25-5 
scope of. 25-4 
transmitting, 29-4 

Control characters 
data-entry of, 29-1 
enhancement of via bit mask, 5-12 

Control leads 
See also EIA leads 
playback. 2-18 

of bit-image data. 2-18. 7-5 
of character data. 2-17. 7-5 

Conversion specifiers 
in C routines. 61-10 
table of C conversion specifiers, 61-37 

Copy 
editor command. 26-6 
File Maintenance. menu selections. 13-17 

Index to Part I and Part II 



Counter 
accumulated, 27-15 
action 

Protocol Spreadsheet. 17-3 
Trigger Setup menus. 17-3 

condition 
Protocol Spreadsheet. 17-4. 27-5 

when used in linkable-object files. 24-12 
Trigger Setup menus, 17-4. 21-11 

identified by name on statistics screen. 17-4 
layer-independent action, 27-9 
maximum value VB. maximum stat display, 

27-6 
may be identified on statistics screen following 

run, 17-6 
printing line of tabular statistics for, 27-16 
relational operators. 27-5 
shared between spreadsheet and Trigger Setup 

menus, 27-9 
transmitted. 29-4 

Cover 
removal. See Field Service 
replacement. See Field Service 

CPM board 
block diagram. 2 
connections for. J4-2 
detachment of connectors, J5-2 
firmware replacement. See Field service 
hardware architecture, J3-3, J3-6-J3-7 
view as a component. J2-2 

CR control character, 3-5 

CRC Mode, field on BCC Setup menu, 8-8, 
8-11. 8-13, 8-15 

CRC-4 errors, 0.703, statistics display. 50-28 

CRC-6 errors, T1 statistics display, 49-30 

CRT/ROB connector, 1-9 

CTS 
available for triggering. 28-5 
field on Interface Control menu, 10-10, 

10-12, 10-14. 10-15 
field on RS-232 Interface Control menu, 9-4. 

9-6 

CTS onloff. Layer 1 Emulate DCE action, 
28-10 

CTS-off delay, 10-15 

CTS-on delay, 10-15 

Current, column on Tabular ·Statistics screen, 
27-9, 27-10 

Current Date. field on DatelTime Setup menu. 
15-4 

Current directory 
File Maintenance screen, 13-10 
filing system, 13-4 

Current Time, field on DatelTime Setup menu, 
15-4 

Cursor 
positioning the cursor in the Display Window, 

pos_cursor, Croutine, 61-8 
restoring cursor to previous position, 

restore_cursor. C routine. 61-22 

Cursor keys 
in spreadsheet, 3-8 
may be programmed in the Display Window, 

3-11. 5-22. 61-4 
on menu screens, 3-8 
used to control playback speed, 3-11 

o 
%d. C conversion specifier, converts char to 

short. 56-14 

D, trace column. X.25 Layer 3, 34-13 

D bit 
adjunct to monitor/receive-packet condition. 

34-18 
adjunct to send-packet action. 34-36 
position diagrammed. 34-13 
value selectable for Call and Call Confirm 

packets as well as Data. 34-19 

D channel, ISDN. 48-3. 48-4 

D4, Tl superframing, 49-23 

D4 superframes. Tl frame structures, 49-32 

DATA, field on X.2S Packet Level Setup 
screen, 34-7 

DATA IND primitive. example on spreadsheet, 
30-9 

DATA REQ primitive. example on spreadsheet. 
30-9 

Data 
See also Character data 
bit-image data. 11-3 
buffered automatically in FEB. 7-3 
character-oriented. 11-3 
in IL buffer. 63-4 

Data acquisition tracks. 12-3 

Data capture. 2-17 
See also Playback; Recording data 
manual control of. 11-11 
RAM, data storage. 1-12 
trigger control of. 11-10 

Index to Part I and Part II 



Data compression. S5#7, Layer 1. 41-4 

Data display 
black and white enhancements, 16-6 
C character types, data versus special 

characters. 59-5 
character buffer 16-bit word. 59-16 
data event-word. 59-15 
enhancements, created by ~ttribute bits in 

high byte of event word. 59-6 
special-receive word, 59 ... 15 

Data event-word. data display, 59-15 

Data Path 
G.703, field on Interface Control menu. 

50-22 
T1, field on Interface Control menu. 49-24 
T1 Interface Control selection, 49-23 

Data packet 
monitor/receive condition. X.25 Layer 3, 

34-15 
translates into two C variables, 72-1 

send action. X.25 Layet 3. 34-31 

Data plus leads 
display available during playback, 7-5 
display enabled/disabled by FEB setup. 7-5 
display of. 5-9 

control leads selected for, 5-9 
RS-449. 45-7 
V.3S, 44-7 
X.21.46-7 

softkey access, 5-9 
X.21. 46-7 

failure of leads to transition, 2-21 

Data source, connection to, 1-16 

Data speeds, selectable, C-l 

Data Transfer. Disk Maintenance. menu 
selection. 12-7 

Data to Record. field on Record Setup menu, 
11-6 

Data transfer 
INTERVIEW 5, 10. 15 PLUS data. 

12-10-12-16 
prior to playback, 11-4 

Data-character buffer, 63-3 
Se, also IL buffer 

Data--start offset, in PDU! 63-5 

Data-transmit delay. 10-14 

DatelTime Setup, 15-3-15-4 
menu selections, 15-2 
set date. 15-3 
set time. 15-3 

Day of month. as trigger condition. 27-6 
DCE, monitor· condition 

LAPD.39-9 
Layer 1, 28-3 
0.931. 40-9 
SDLC. 35-11 
SS#7 Layer 2, 42-6. 43-7 
X.25 Layer 2. 33-11 
X.25 Layer 3. 34-15 

DDCMP 
Layer 1 package, 37-1 

Decimal 
conversion for display. 56-16, 57-8 
conversion specifier. 61-11 
in Ct constant. 57-7 

Decimal field. defined, 34-6 
Decrement counter t layer-independent action, 

27-9 
Decrement flag byte, as 16-bit binary counter. 

layer-independent action, 27-14 
Default menus, how to change. 2-6 
#define, C preprocessor directive. 56-5, 61-40 

example, 67-15 
Degraded minutes 

G.703 BERT statistics. 9-44 
Tl BERT statistics. 9-31 

Delete 
editor command. 26-5 
File Maintenance 

menu selection. 13-20 
remove. C routine, 65-32 

Delete Char key. 3-6. 26-4 
Delete Line key. 3-7, 26-4 
Destination Point Code (DPC). SS#7 Layer 3, 

43-10 
Diagnostic byte 

adjunct to Restart. Reset. Clear. Diag, and 
Reg Conftrm conditions. 34-23 

adjunct to Restart. Reset. Clear. Diag. and 
Reg Confirm send actions, 34-38 

entered as two hex digits, 34-23 
Directories 

Isys, 13-6 
/usc. 2-4, 13-6 
/usr/defauh. 2-5 
absolute pathnames. 13-5 
directory listings, 13-10 
.filing system. how to create. 13-5 
naming conventions. 13-7 
relative pathnames, 13-6 
root (I) directory, 13-4 
write-protected, 13-10 

Index to Part t and Pi&rt II 



Disk. source of playback data. 4-4 

Disk drives. 1-5 
current disk, filing system. 13-10 
drive references and priority. 12-3 
filing systems, moving from disk to disk. 13-5 
microfloppies 

compatibility, 1-5 
write protection, 1-5 

microfloppy disks. storage capacity, 1-5 
Winchester hard disk, 1-7 

installation. See Field Service 

Disk Maintenance, 12-3-12-16 
allocating disk space, 12-3 
command 

Data Transfer, 12-7 
Disk Summary, 12-6 
Duplicate Disk. 12-9 
Format Disk, 12-5 
INT 10, 12-10-12-16 

data acquisition tracks. 12-3 
data transfer, 13-7 
description of disks, 12-3 
initializing system. INTERVIEW 7000. 2-3 
installing new system software, 2-7 
menu selections. 12-2, 12-4-12-16 
overview. 2-14 

Disk Name, subfield on Disk Maintenance 
menu, 12-5 

Disk No 
field on Line Setup menu, 11-4 
field on Record Setup menu. 11-6, 11-10 

Disk Number. subfield on Disk Maintenance 
menu, 12-5 

Disk Summary, Disk Maintenance, menu 
selection. 12-6 

Display, plasma, 1-3 

Display Abott 
field on Line Setup menu. 21-6 
sub field of BOP Format. 4-9 
subfield on Line Setup menu, 4-9 

Display Idle 
field on Line Setup menu. 28-11 
subfield on Line Setup menu, 4-8, 5-10, 7-4 

cannot display idle if suppressed in FEB. 
7-4 

Display Mode 
current display mode tracked via C variables, 

66-1 
field on Display Setup menu. 5-7, 5-17 
information on current display stored in C 

variable, 61-1 

Display Setup 
menu selections. 5-2 
traces. 2-21 

Display Setup screen, overview, 2-11 
Display States, field on Display Setup menu. 

5-19. 27-19 

Display Window 
array of 1 • .088 long integers, 61-35 
cursor keys under programmer's control, 

5-22, 61-4 
display mode, 5-22 

DL data. 30-10 

DL_CONNECT CONF 
entered manually at Layer 2 to "fool" Layer 3 

into thinking there is a link, 34-46 
primitive forced up Dy user program at Layer 

2. 30-6 
primitive sent upward by Layer 2 to confirm 

the link, 30-9 

DL_CONNECT IND 
action primitive at Layer 2, 30-3 
condition primitive at Layer 3, 30-3 

DL_CONNECT REO 
automatic when data primitives are passed 

down by Layer 3, 31-1 
primitive passed down from Layer 3, 30-8 
primitive triggered automatically by Layer 3 

Send action, 30-6 
sent down automatically at Layer 3 if Layer 2 

inactive. 34-44. 34-46 

DL_DATA 
macro. 29-5 
primitives between Layers 2 and 3, 30-9 

DL_DATA IND 
condition at Layer 3, 39-31 
primitive code for, 55-4 
sent up automatically by Give Data action at 

Layer 2, 33-28, 33-34, 35-27, 35-32, 
39-26, 39-31 

DL_DATA REO. sent down automatically by 
Send or Resend action at Layer 3, 34-44 

Don't Care key, 3-6 
in Receive string condition, 21-7 

Done key 
on menu screens, 3-9 
used to change real-time display softkeys, 5-6 
used to exit softkey rack in spreadsheet, 3-9 
used to move from Conditions to Actions. 

33-21. 34-29, 35-21, 39-19 

Double parens, 3-5 
in Protocol Spreadsheet string. 29-3 
in Receive string condition, 21-8 

Down Arrow key. 26-4 

Index to Part I and Part II 



~, .. i 
Drive, field on Layer Setup screen, 6-3 

Drop-and-insert mode 
G.703 transmissions. 9 ... 38. 50-6 

Interface Control selection, 50-21 
ISDN transmissions. ISDN Interface Setup 

selection, 48-10 
T1 transmissions, 9-26, 49-5 

Interface Control selection. 49-22 

DS1 
T1 circuits, 49-3 
T1 physical interface, 49-6 

DSR, available for triggering, 28-5 

DSR on/off. Layer 1 Emulate DCE action, 
28-10 

DTE, monitor condition 
LAPD,39-9 
Layer 1. 28-3 
0.931,40-9 
SDLC.35-11 
SS#7 Layer 2. 42-6, 43-7 
X.2S Layer 2, 33-11 
X.2S Layer 3, 34-15 

DTR 
available for triggering. 28-5 
enables/disables B bus (RS-48S), 47-7 

DTR on/off. Layer 1 Emulate DTE action, 
28-10 

Dual floppy disk drive bracket. changing. See 
Field Service 

Dual-channel testing. ISDN, 48-4 

Duplicate Disk 
Disk Maintenance. menu selection. 12-9 
installing new system software via the 

DUPDISK command. 2-7 

E 
EBCD 

default BCC parameters. 8-9 
hex-ta-display conversion table. D2-3 
keyboard-to-EBCD con.version table. D1-4 
reverse bit order appropriate for, 4-11 

EBCDIC 
default BCC parameters. 8-8 
hex-to-display conversion table, D2-3 
keyboard-to-EBCDIC eonversion table, DI-2 

Echo program 
BOP Info-field echo. 55-10 
sync or async data. 55 ... 9 

Edit key, 3-7 

Editing keypad, 26-3 

Editor. Protocol Spreadsheet 
See also Protocol Spreadsheet editor 
editing a C program, 56-4 
function keys. 26-5-26-10 

EIA 
condition. Trigger Setup menus, 21-9 
Layer 1 conditions, 28-5 
Layer 1 emulate-mode actions, 28-10 

RS-485 application. 47-7 
trigger conditions, fails to come true, 2-20 

EIAleads 
buffered or discarded in FEB. 7-3 

effect on character-buffer capacity, 5-27 
effect on data-plus-leads display. 7-5 
effect on EIA trigger conditions, 7-3 

driven onloff as trigger action, 10-9 
four kinds of status indicators, 10-8 
handshaking, 10-10 
maintaining lead statuses during program 

chaining. 27-20 
masking for status. 60-2 
masking to detect a change, 60-1 
monitoring by trigger, 10-9. 44-7 
storage of. 1-12 

Emulate 
field on LAPD Frame Level Setup screen. 

39-3, 39-4 
field on SDLC Frame Level Setup screen, 

35-3. 35-4 
field on SNA/SDLC Frame Level Setup 

screen. 36-3 
field on X.2S Frame Level Setup screen. 

33-3. 33-4, 33-24 
field on X.2S Layer 2 Setup screen. 33-16 
field on X.2S Packet Level Setup screen. 

34-3. 34-4 
indicator on RS-485 Test Interface Module. 

47-5 

Emulate DCE, indicator on Test Interface 
Module. 10-4 

Emulate DTE. indicator on Test Interface 
Module. 10-4 

Emulate modes 
effect of open breakout switch when 

INTERVIEW is driving signal, 10-6 
effect of open switch when INTERVIEW is 

receiving signal. 10-6 
installing connectors for. 10-4, 49-7. 50-9 
setting up, 4-3 

Emulation, connectors used. 1-10 
Enable CRC-4. G.703. field on Interface 

Control menu, 50-23 

Index to· Part I and Part II 



End, editor command. 26-5 

End/Incl, field on Bce Setup menu, 8-12 

End/N/Incl. field on BCe Setup menu, 8-12 

End/StaystartedlIncl. field on BCC Setup menu, 
8-12 

End/Staystarted/N/Incl, field on Bee Setup 
menu, 8-12 

Enhance 
field on Display Setup menu. 5-12, 11-5 
field on Miscellaneous Utilities menu, 16-4, 

16-$ 
field on Trigger Setup menu, 22-7 

Enhance character data 
as Layer 1 action. 28-13 
ctl_enhanceJd. C routine, 59-8 
ctl_enhance_td. e routine, 59-7 
on Display Setup, 5-12 

Enhance selected trace rows 
LAPD action. 39-29 

12_enhance, C variable. 77-8 
map to color display, 33-33. 34-42. 35-30, 

39-30, 40-12. 42-10. 43-11 
Q.931 action, 40-12 

I3_enhance. C variable. 78-4 
SDLC action. 35-30 

12_enhance, C variable. 73-8 
SNA action, 36-3 

11_enhance, C variable. 74-4 
SS#7 Layer 2 action. 42-10 

12_enhance. e variable, 79-4 
SS#7 Layer 3. 13_enhance, C variable, 80-7 
SS#7 Layer 3 action. 43-10 
X.25 Layer 2 action. 33-32 

12_enhance, e variable. 71-8 
X.2$ Layer 3 action, 34-42 

13_enhance. C variable, 72-9 

Enhancements 
black and white. 16-6 
color. 16-3-16-6 
low intensity. 28-13 
must be turned off as well as on at Layer 1, 

28-13 
used to highlight Bisync addresses, 28-13 

Enter State 
in e, 53-3 
la yer-independent condition, 27-3 

ERR INJ 
G.703 BERT, run-time function key, 9-45 
T1 BERT. run-time function key, 9-32 

Error Injection Rate. field on BERT Setup 
menu, 9-14, 9-22 

Error messages 
interactive messages. A1-1-A1-15 
issued by C translator, A2-1-A2-6 
issued by compiler. A3-1-A3-16 

locating errors, 56-4 
issued by translator. locating errors, 56-4 

Error-free seconds 
BERT counter, 9-21 
G.703 BERT statistics, 9-44 
T1 BERT statistics, 9-31 
T1 statistics display, 49-30 

Error-free secs, G.703. statistics display. 50-29 

Errors 
in BERT 

automatic injection, 9-14 
manual injection. 9-18 

recoverable. 2-17 

ESF. Tl superframing. 49-23 

ESF errors. T1 statistics display, 49-30 

ESF superframes, Tl frame structures. 49-32 

Event 
e type specifier, 56-4 
program interrupt 

two events never simUltaneous, 54-3 
various possible origins. 54-2 

Event variable 
in C, may be created by user. 57-6 
one used by C translator for every spreadsheet 

condition, 53-10 

Execute key, 3-6 

Extern, C storage-class specifier, cannot be 
declared below Test level, 53-IS 

External monitors 
control of enhancements 

black and white, 16-6 
color, 16-3-16-6 

ROB color video connector, 1-9, 16-3 
RS-170 video connector. 1-10. 16-3 

Extra bits. G.703, field on Interface Control 
menu. 50-24 

F 
FACILITIES. field on X.25 Packet Level Setup 

screen, 34-7 

Facilities 
adjunct to send-call action on Protocol 

Spreadsheet. X.25 Layer 3, 34-33 
relation to FACILITIES field on X.25 

Packet Layer Setup screen, 34-33 
length byte handled automatically, 34-7 

Index to Part I and Part II 



-~ , I ... 

Failed seconds 
0.703 BERT statistics. 9-44 
Tl BERT statistics, 9-31 

Fan 
back panel. 1-8 
clean filter to prevent overheating. 1-9 

Fast event, C type specifier. 56-4 

Fault. in half-duplex BERT t 9-9 
on noisy circuit, 9-9 

Faults 
G.703 BERT statistics, 9-44 
Tl BERT statistics. 9-31 

FDL, T1 transmissions. See Frame Data Link 

FEB. See Front end buffer 

FEB board 
block diagram, 2 
connections for, J4-2 
hardware architecture, J3-3, 13-11-J3-12 
view as a component. 12.-2 

FEB Setup screen, Tl options. 9-25 

Field Service. J-1-J-2 
boards 

installation, J3-3 
removal. J2-3-J2-6 

CPM board, ftrmware replacement, 
J5-1-J5-6 

cables 
connection, J3-15 
disconnection, J2-5 

cover 
removal, 12-3 
replacement. 12-6 

dual floppy disk drive bracket. changing. 
J7-1-J7-4 

hard drive, installation. J6-1-J6 ... 6 
logic board 

installing. 13-1-J3-3 
removal. 12-1-J2-6 

MPM board. S 1 switch settings. J3-14 
mux board. firmware replacement, J4-1-J4-5 
PROMs, exchanging, J5-4 
self tests, 13-15 
static electricity elimination. Ji-3 

File Maintenance, 13-3-13-16 
absolute pathnames, 13-5 
C routines, 65-31-65-38 
creating new directories. 13-5 
current directory, 13-10 
default directory. 13-4 
directories. 13-4 
File Maintenance screen. 13-9 

current disk. 13-10 
directory listings, 13-10 
overview. 2-14 

files 
data files, 13-7 
description of, 13-6 
linkable-object files. 13-7. 24-10, 56-8 

compiled contents of spreadsheet. 24-10 
loading and saving, 13-3 
marking files. 13-13 
moving from file to file. 13-4 
object files. 13-6, 13-14 
Protocol Spreadsheet. 13-7 
program files, 13-6. 13-14 
selecting files for command execution, 

13-12 
setup files. 13-6, 13-14 
types, 13-12 

get_file_type, C routine. 65-36 
set_file_type, C routine, 65-34 

unmarking files. 13-13 
menu selections, 13-2 

Change Directory, 13-16 
Compile, 13-21 

compiles contents of file or spreadsheet. 
13-21 

compiling spreadsheet generates #pragma 
hooks. 13-21 

Copy. 13-17 
Delete. 13-20 
how to execute, 13-13 
Load, 13-14 
Make Directory, 13-16 
Print. 13-19 
Rename, 13-19 
Save, 13-15 
View, 13-18 
Write Enable. 13-19 
Write Protect, 13-20 

moving from disk to disk, 13-5 
naming conventions, files and directories. 

13-7 
pathnames. the use of periods. 13-8 
relative pathnames. 13-6 
root (I) directory. 13-4 
the Isys directory. 13-6 
the lusr directory, 13-6 
write-protected files. 13-10 

Fill-in frame, monitor/receive condition, SS#7 
Layer 2, translates into two C variables, 
79-3 

Find, editor command. 26-9 
FLO. flag, trace column, Q.931, 40-5 
Flag key. 3-6 

in Receive String condition, 21-7 
valid in Suppress field. 5-11 

Index to Part I and Part II 



Flags 
common to all tests and layers. 27-13 
condition, Trigger Setup menus, 21-10 
layer-independent action. 27-13 

as toggling mechanism, 27-14 
layer-independent condition, 27-7 

when used in linkable-object files, 24-13 
transmitted, 29-4 

Force data-packet transmit, 34-45 

Force receivers out of sync, Layer 1 action. 
28-11 

Format, field on Line Setup menu. 4-6, 4-9. 
9-15, 21-6, 28-4. 28-12 

significance in BERT testing, 9-15 

Format Disk, Disk Maintenance, menu 
selection, 12-5 

Fox message, 28-8, 33-28, 34-38, 35-26. 
39-25 

"'forced down" from Layer 3 to the Layer 1 
interface. 30-6 . 

in BERT, 9-7 
really a built-in constant, 29-4 

Frame Data Link. 
Tl Interface Control selection. 49-24 
T1 transmissions, with ESF framing, 49-35 

Frame fields 
diagrammed for LAPD, 39-7 
diagrammed for SDLC, 35-8 
diagrammed for X.2S, 33-8 

Frame resync criteria. 0.703, field on Interface 
Control menu. 50-25 

Frame sent, emulate-mode condition 
LAPD,39-17 

frame sent, C variable. 77..;.7 
SDLC,35-18 

frame sent. C variable, 73-7 
should be used along with More/No More to 

Resend, 33-20, 35-20, 39-18 
X.2S Layer 2. 33-18 

frame_sent, C variable. 71-7 

Framed mode 
0.703 BERT, 9-41 
T1 BERT. 9-28 

Frames received 
0.703, statistics display, 50-27 
T1 statistics display, 49-29 

Framing bits 
ISDN transmissions. 48-3 
recording of. 49-26 
T1 Interface Control selection, 49-24 
Tl transmissions 

with D4 framing. 49-33. 49-34 
with ESF framing, 49-35 

Framing error 
fevar_frm_error_td and fevar_frm_error rd. C 

events. 59-2 -
monitor/receive condition, Layer 1. 28-4 

Framing errors. G.703, statistics display, 50-28 

Framing mode, T1. Interface Control selection. 
49-23 

Framing pattern sequence (FPS), T1 
transmissions, with ESF framing. 49-35 

Freeze key. 3-11 
contrasted with Capture On/Off trigger action, 

3-11 

Freeze LED, 10-4, 46-4. 48-6, 49-9. 50-11 
front panel, 1-5 

Freeze mode 
current mode status stored in C variable, 61-2 
in BERT, 9-17 
initiated by trigger. See Capture data to screen 

(on/off) 
parallel cursor movement during. 5-26, 33-6, 

34-8. 35-6, 36-4. 40-4, 42-4. 43-4 

Frequency selection. back panel. 1-8 

From 
field on Disk Maintenance menu, 11-4 
subfield on Disk Maintenance menu, 12-7 

From Disk Number, sub field on Disk 
Maintenance menu. 12-9 

Front End Buffer Setup. menu selections. 7-2 

Front end buffer 
applies to playback of bit-image data. 2-18 
Idle Suppress field, does not apply to 

playback of bit-image data, 2-18 
on playback path of bit-image data, 2-18. 

7-5, 7-6 
setup 

effect on character-buffer capacity, 5-27 
effect on data-plus-leads display. 5-9 

X.21. 46-7 
may inhibit EIA activity (except data), 

10-7 
time ticks and EIA leads, storage of, 1-12, 

2-17 

Front panel. 1-3 
function keys. 1-4 
LED overlay, 1-5 
LED's, 1-4, 2-18 

VIA, 1-11 
plasma display, 1-3 

FT Errors, T1 statistics display, 49-30 

Index to Part I and Part II 



FTIFS Errors. Tl statistics display. 49-30 

Full duplex handshaking. 10-12, 10-15 

Function keys, 1-4 

G 
G.703, 50-1-50-17 

aggregate data capture, 50-5 
BERT, 9-35-9-46 

automatic error injection rate, 9-42 
bit errors, 9-44 
block size, 9-42 
blocks in error, 9-44 
blocks received, 9-44 
blocks sent. 9-44 
channel mode, 9-40 
degraded minutes. 9-44 
error-free seconds. 9-44 
failed seconds. 9-44 
framed mode. 9-41 
invert, 9-41 
number of faults. 9-44 
pattern, 9-41 
run-time function keys. 9-45 
Setup screen, 9-39 
Statistics screen, 9-43 
setting up. 9-36 
severely errored seconds. 9-44 
test length. 9-42 
test seconds. 9-44 
unframed mode, 9-40 

Bipolar violations. 50-19 
CCITT recommendation. 50-3 

Tl.49-3 
channel O. 50-4 
channel data capture. 50-4 
data displays, 50-7 
drop-and-insert, 9-38, 50-6 
emulation modes, 50-6. 50-9 
framing characteristics. 50-4 
Interface Control screen. 9-37. 50-2, 50-17 

begin CAS MF w/frame containing frame 
align. signal, 50-24 

CAS MF resynccriteria, 50-25 
CAS MF sync criteria, 50-25 
channel mode. 50-22 
channdnumber, 50-23 
coding type. 50-19 
data path. 50-22 
enable CRC-4, 50-23 
extra bits, 50-24 
frame resync criteria. :50-25 

include channel 16. 50-26 
international bits. 50-25 
line clock select. 50-21 
line impedance, 50-19 
national bits. 50-25 
receiver gain, 50-19 
signalling type, 50-23 
termination, 50-19 
transmit mode, 50-20 
xmit distant.MF alarm. 50-22 
xmit remote alarm, 50-22 
xmit signalling all l's, 50-22 

line conditions, statistics display. 50-29 
monitor mode. 50-6 
multiframe structure. CAS. 50-31 
Primary Rate ISDN, 50-7 
physical connectors, 50-8 
record setup, 11-9 
setting up menus for testing. 50-16 
signalling bits 

with CAS Signalling with channel 16. 50-32 
with CCS/CAS signalling with CRC-4. 50-34 

statistics display. 50 ... 26 
as alternate run-time display, 50-30 
BPV's received. 50-28 
BPV-free seconds. 50-28 
CRC-4 errors. 50-28 
error-free secs, 50-29 
Frames re.ceived. 50-27 
framing errors, 50-28 
0.703 line conditions. 50-29 
sync loss time. 50-28 
sync losses. 50-28 
test seconds, 50-27 

Test Interface Module. 50-2. 50-:8, 1-19 
signal direction, 50-10 

Transmit mode. 9-38 
testing and layer protocols, 50-17 
testing configurations. 50-11 
transmission speeds. 50-3 

0.703 BERT. testing modes, 9-39 

0.703 line conditions. 0.703, statistics display, 
50-29 

G.704, CCITT recommendation -
0.703 framing. 50-4 
T1 superframing, 49-4 

G703STA. 0.703 BERT, run-time function key. 
9-46 

OBM board 
block diagram. 2 
connections for, 14-2 
hardware architecture, J3-3. J3-5-J3-6 
view as a component. 12-2 

Index to Part I and Part 1/ 



General operation. 2-1-2-25 
boot-up program. creating a user interface. 

2-4 
changing default menus. 2-6 
common problems, 2-20-2-22 
data capture, 2-17 

front end buffer. 2-17 
front end buffer, on playback path of 

bit-image data. 2-18 
initializing system, INTERVIEW 7000. 2-3 
installing new system software. 2-7 
overview of menus. 2-9-2-14 
power up, 1-16. 2-1 
rerunning a test program, 2-15 
running a test program. 2-15 
running default program. 2-5 

Give data. 29-5 
LAPD,39-26 
LAPD action. 12Jive_data, C routine. 77-9 
SDLC action. 35-27 

12 Jive_data, C routine. 73-9 
X.25 Layer 2 action. 30-10. 33-28 

12 Jive_data, C routine, 71-9 
X.25 Layer 3 action. 34-39 

13Jive_data, C routine. 72-10 

Glitch catcher, 10-8. 44-6. 45-6, 46-6 

Glossary, abbreviations. B-I-B-IO 

Go-error. editor command, 26-10 

Go-line, editor command, 26-9 

Good BCC 
adjunct to monitor-frame condition 

LAPD, 39-13. 39-15 
dceJood_bcc. C variable. 77-1 

SDLC, 35-14, 35-16 
dceJood_bec. C variable. 73-1 

X.25 Layer 2. 33-14, 33-15 
dce_good_bec, C variable. 71-1 

adjunct to send-frame action 
LAPD,39-25 
SDLC, 35-26 
X.25 Layer 2. 33-28 

adjunct to send-string action. Layer 1. 28-8 
appended to transmit string, 8-5 
as condition. 8-5 
default BCe for frames. 33-28. 35-26, 39-25 
monitor/receive condition. Layer I, 28-4 

operational only when Rcv Blk Chk 
enabled, 28-4 . 

overlay. 8-3 
parameters defined onBCe Setup menu, 8-6 

Goto. C statement. 53-4. 53-5. 53-7. 53-13 
placed inside of state loop, 52-16 
used to move program control to a different 

state-label. 53-2. 53-4 

Graphical Statistics menu. color graphics. 16-6 

H 
Half duplex handshaking, 10-12, 10-15 

Half-duplex BERT. 9-6 

Handshake 
default for remote port, 67-20 
field on BERT Setup menu. 9-5, 9-6. 9-7, 

9-13 
relation to Interface Control screen. 9-7 

Hard drive. installation. See Field Service 

Hardware, 1-3-1-16 
back panel, 1-7 
block diagram of architecture, 2 
clock. 1-13 
current hardware configuration stored in 

unit_config C variable, 66-1 
disk drives. 1-5 

hard drive. J6-1-J6-6 
front panel. 1-3 
interior layout. 12-3-12-5 
keyboard, 1-3 
operating environment, 1-14 
operating positions. 1-14 
physical dimensions. 1-3 
power up. 1-14 
storage capacity, 1':"12 

Hazardous areas, J2-3 

HDB3. See High Density Bipolar 3 

Hex. subfield on Trigger Setup menu. 22-7. 
22-8 

Hex key 
for hexadecimal data entry, 3-6 

valid inside C strings. 56-22 
for hexadecimal translation of line data. 5-14 
LED display on keycap, 5-14 

Hexadecimal 
C constant. 57-7 
conversion for display, 56-16, 57-8, 61-20 
conversion specifier. 61-11 

Hexadecimal code. conversion charts. 
Dl-2-Dl-14 

Hexadecimal display 
in relation to order of.transmission. 5-14 
turned onloff by trigger action. 5-15 

Hexadecimal field. defined. 34-6 

Index to Part I and Part II 



rf' 
I 

High Density Bipolar 3, transmission technique, 
50-3 

High Outgoing Channel #, field on X.2S Packet 
Level Setup screen, 34-3 

High speed 
aggregate 0.703 record, 50-5 
aggregate T1 record. 49-5. 49-26 
data recording, 11-9 
G.703 aggregate record. 50-26 
optimizing performance, 2-22 

Home key. 3-8, 26-4 

Hook text 
added to top-level main, 56-12 
C code in #pragma hook directive. 56-11 
definition 

indirectly referencing routines. 56-12 
may reference tasks. 56-12 

Hook_type. decimal constant to identify type of 
flpragma hook directive. 56-11 

Host Port, SNA frame setup selection. 36-3 

HRO/1.JM/user _intrf 
affect on Start Up screen, 2-2 
boot-up program. creating a user interface, 

2-4 

I 
I. intensity. field on Graphical Statistics menu, 

18-7 

Idle 
change idle-line character. 28-12 
display in relation to Outsyncaction. 28-11 
display used for visual record of time 

intervals. 7-4 
displaying for visual record of lead timings. 

5-10 
displaying synchronous idle. 4-8 
idle action, C routine. S9-13 
retained/discarded on FEB Setup menu, 7-3, 

7-4 
selecting transmit idle. 4-9 
voltage not affected by inverted polarity. 4-12 

Idle line action. used in X.21 bis, 32-4 

Idle Suppress, field on Front-End Buffer Setup 
screen, 7-4 , 

does not apply during playback. 2-18 

Idle select, T1. Interface Control selection. 
49-22 

Idle Timeout 
conditions under which timer expires. 35-4 
expired, emulate-mode condition, SDLC. 

35-18 
field on SOLC Frame Level Setup screen, 

35-3 
field on SNA/SOLC Frame Level Setup 

screen. 36-3 
maximum and minimum values, 35-4 

If, C statement, 58-6 
nonzero expressions always true inside of if 

statement, 58-2 
routine that returns nonzero makes if 

statement true. 58-6 
used in Enter State conditions. 53-4 

IL buffer 
advantage as storage medium, 55-1 
and primitives. 30-3 
created by DOCMP package, 37-2 
creating a structure-pointer to an IL buffer. 

63-6 
data-character buffer, 63-3 

being passed up the layers. 55-2. 63-4 
downward moving. illustrated. 55-6, 63-2 
identified by segment number. 55-5 
number of the buffer in POU, 63-5 
pointer-list buffer. 63-3 

being passed down the layers. 63-2 
pointing to data inside an IL buffer. 63-5, 

63-41 
SOU shrinks as IL buffer moves up the layers. 

55-1 
string to be referenced in. 30-6 
structure of. 63-3-63-4 

header, 63-3 
service data unit, 63-3-63-4 

data, 63-4 
list node. 63-4 
list-header node. 63-4 

upward moving. illustrated, 55-2 

INFO frame 
monitor/receive condition 

LAPO, 39-10 
translates into two C variables, 77-6 

SOLC, 35-12 
translates into two C variables. 73-6 

X.25 Layer 2. 33-12 
translates into two C variables. 71-6 

send action 
LAPO, 39-20 
SOLC, 35-22 
used to convey OL data sent down from 

Layer 3. 33-23, 39-20 
X.2S Layer 2. 33-22 

INFO-ELEMENT. trace column. Q.931, 40-5 

Index to Part I and Part II 



INJIERR 
0.703 BERT, run-time function key, 9-45 
T1 BERT. run-time function key, 9-32 

INT 10, Disk Maintenance selection. 
12-14-12-16 

INTERVIEW transfer. INTERVIEW 5. 10, 15 
PLUS data. transfer from Disk Maintenance 
screen, 12-10-12-16 

In-band signaling, T1 transmissions, 49-23, 
49-32 

In/out. editor command, 26-6 

#include. C preprocessor directive. 56-6. 61-23. 
61-29. 61-30 

stdio.h file included with all disk 1/0 routines, 
65-3 

Include channel 16, 0.703, field on Interface 
Control menu. 50-26 

Increment counter, layer-independent action. 
27-9 

Increment flag byte. as 16-bit binary counter. 
layer-independent action, 27-14 

Indication primitives. 30-5 
versus "Requests", 30-10 

Info element. Q.931. 40-5 

Initial Condition. field on Record Setup menu, 
11-9 

Initial Phase, field on X.21 Interface Control 
menu. 46-9 

Initial State. field on BCC Setup menu. 8-11 

Initializing system software, INTERVIEW 7000, 
2-3 

Injection Rate 
field on BERT Setup menu, 9-19 
status field on BERT results screen, 9-21 

Input/output connectors, back panel, 1-9 
AUXILIARY TTL. 1-9 
CRT/ROB. 1-9, 1-10 
internal MODEM, 1-9 
PRINTER, 1-9 
REMOTE RS-232, 1-9 
RS-170 composite video. 1-10 

Insert Char key, 26-4 
in menu fields, 3-6 
used to exit insert mode, 3-8 

Insert Line key. 26-4 
in spreadsheet. 3-7 
on statistics screens, 3-7 

Insert mode, 3-8, 26-4 

Installing new system software, on hard disk. 
2-7 

Instrument. menu field on Disk Maintenance 
screen, for INTERVIEW 10 transfer, 12-14 

Int, C data type, 56-13 
same as short int, 56-13 

Integral promotion. 56-16, 61-11 

Integrated Services Digital Network (ISDN). 
SS#7 Layer 3, 43-22 

Interactive messages. A1-1-A1-15 

Interface Control menu, 10-10 
in relation to Line Setup menu, 10-10 
RS-485 application. 47-7 
X.21,46-8 

Interface Control screen, 0.703 options, 9-37 

Interlayer buffer. See IL buffer 

Interlayer message buffer. See IL buffer 

Internal MODEM connector, 1-9 

International bits. 0.703. field on Interface 
Control menu. 50-25 

Interrupt packet, sample program to enhance 
all. 34-43 

Invalid frame 
defined, 33-7. 35-7, 39-8 
receive condition 

LAPD.39-16 
SDLC,35-16 
X.2S Layer 2. 33-16 

Invalid packet 
defined. 34-12 
receive condition. X.25 Layer 3. 34-26 

invaIidJ>acket. C variable. 72-8 

Invert BCC. field on BCC Setup menu, 8-11 

IPARS 
default BCC parameters, 8-8 
default sync pattern. 4-7 
hex-to-display conversion table. D2-3 
keyboard-to-IPARS conversion table. Dl-6 
reverse bit order appropriate for. 4-11 
SY characters inappropriate for. 4-7 

ISDN 
See also Q.931 
B channels. 48-3, 48-4 
Basic Rate ISDN, 48-3 
channel. ISDN Interface Setup selection. 

48-10 
D channel, 48-3, 48-4 
dual-channel testing, 48-4 
ISDN D. 38-3 
LED's front panel. 48-6 

Index to Part I and Part II 



line conditions. ISDN s~tistics display. 48-11 
monitor mode, installing connectors for. 48-8 
NT, network termination. 48-7 
NT state, 48-13 
physical devices. 48-6 
RD line status. 48-13 
sample Line Setup. 4-13 
single-channel testing. 48-5 
speaker, ISDN Interface Setup selection. 

48-10 
statistics display, as alternate run-time display, 

48-11 
TO line status, 48-12 
TE, terminal equipment, 48-7 
TE state, 48-11 
Test Interface Module, 48-2. 48-6, 1-21 
testing interfaces, 48-6, 4S-7 

Isoc 
data setup, 4-10 
format in BERT, 9-16 

J 
JIS7 

hex-to-display convers\on table. D2-3 
keyboard-to-JIS7 con~rsion table. Dt-10 

JIS7/JIS8. optional codes. H-1 

JIS8 
hex-to-display conversion table. Dl-3 
keyboard-to-JISS conversion table. D1-12. 

01-13 

K 
Katakana, JIS7/S optional code set, H-1 

Keyboard, 1-3 
See also ASCII keys; entry under each special 

key . 
condition. Trigger Setup menus. 21-12 
editing keypad, 26-3 
function keys, 1-4 
layer-independent condition. 27-4 
programming keys. 3-3-3-7 
real-time keys. 3-10-3-12 
soft (function) keys, 3.,.3 

for editing, 26-5-26-10 
translation tables, D-1-D-2 

Keyword, 29-3 

L 
L. label, field on Graphical Statistics menu. 

18-4 

LAPD. 39-3-39-14 
diagram of frame fields, 39-7 
send actions, 39-19 
used with ISDN D channel, 38-3 

LAPD Frame Level Setup screen, 39-2 

Label 
C keyword. equivalent to a spreadsheet State, 

53-2 
C type specifier, 56-4 

Last. column on Tabular Statistics screen, 17-6, 
27-10, 27-11 

Layer, field on Display Setup menu, 5-17, . 
5-19, 27-19 

Layer 2, user program to force packets up to 
Layer 3 and down to Layer 1, 34-24 

Layer Setup. 6-3-6-6 
how to save, 6-5 
Personality packages. 6-3 

reside on user and hard disks, 6-3 
Protocol Configuration screen, 6-4 
protocols. select and load. 6-3 

Layer Setup screen, overview. 2-14 

Layers 
identified on Program Trace, 5-19 
in C. 53-1 
Protocol Spreadsheet. programming block. 

24-8 
comments in. 24-13 

passing data between, 2-21 
program model, 20-3-20-8 

LeN 
adjunct to monitor/receive-packet condition, 

X.25 Layer 3. 34-18 
allocation sequence. 34-5. 34-31 
assigned dynamically on per-call basis, 34-4 
column on X.25 Packet Level Setup screen, 

34-4. 34-5 
predefined for a particular call address 

("path"). 34-4. 34-6 
trace column. X.25 Layer 3, 34-12 

LED's 
front panel. 1-4. 1-5, 2-18 

during playback. 10-4 
Freeze, 10-4, 46-4. 48-6, 49-9, 50-11 
INTERVIEW status. 1-5 
interface status, 1-4 
not affected by FEB suppression of EIA 

leads, 10-7 

Index to Part I and Part II 



Remote, 10-4, 48-6, 49-9, 50-11 
RS-232 overlay. 10-4 
RS-449 overlay. 45-2, 45-4 
U/A. 1-5. 1-11, 10-4, 44-4. 45-4 
V.35 overlay, 44-2, 44-4 
X.21 overlay, 46-4 

green-red characteristics not affected by logic 
(polarity). 4-12 

Test Interface Module, 1-11 

Left Arrow key. 26-4 

llib directory, filing system, 13-21, 24-11. 56-9 

Line clock select 
G.703. Interface Control selection. 50-21 
T1. Interface Control selection. 49-22 

Line data. data capture. 2-17 

Line impedance. G.703, Interface Control 
selection. 50-19 

Line number, of cursor position in frozen 
Program Trace. 5-20 

Line Setup, 4-3-4-4 
current line setup parameters stored in 

unit_setup C variable. 66-1 
significance in BERT testing. 9-15 

Line Setup screen 
menu selections, 4-2 

Async. 4-13 
Bisync. 4-13 
ISDN. 4-13 
SNA.4-13 
SS#7.4-13 
X.2S, 4-13 

overview, 2-11 

Line utilization, programming example. 17-11 

Linefeed. not valid in C string. 56-20 

Linkable-object files. 13-7 
#pragma hook directives in, 56-11 
accessed via #pragma object, 56-8 
accessed via Object block-identifier. 24-10 
advantage over object flIes. 13-22 
C code 

contents of LOBJ files. 13-7 
must be compatible with menu selections, 

13-22 
combined with spreadsheet program, 56-19 
compiled spreadsheet 

accessed via OBJECT block-identifier only. 
13-21 

contents of LOBJ files, 13-7, 13-21 
must be a valid program, 13-21 

contents of, 13-21, 24-10 

. counters or flags in, 24-12 
efficiently use memory and spreadsheet, 

24-12. 56-10 
in /lib directory. 13-21 
indirectly referencing routines. 56-10 
scope of routine definitions contained in. 56-8 
search rules for, 24-11, 56-8 
transparent to unit configuration, 13-22 

List header, beginning of linked list in IL 
buffer, 55-7 

List node. See IL buffer 

List-header node. See IL buffer 

Lists, on Protocol Spreadsheet, 29-1 

Load, File Maintenance. menu selections. 
13-14 

Load key. 3-6, 13-14 

Load program 
layer-independent action, 27-19 
loadj>rogram, C routine, 69-12 

Logical DTE/DCE 
contrasted to physical DTE/DCE, 33-4 
determines command and response addresses, 

33-4. 33-16 
determines order (ascending/descending) of 

LCN selection, 34-4 

Long, C data type. 56-13 
long routine returns a long. 58-3 

Loop down 
Tl BERT, run-time function key, 9-33 
Tl command. 49-9 

Loop up 
T1 BERT. run-time function key, 9-32 
Tl command. 49-9 

Loop-back C/R bit, adjunct to send-frame 
action, LAPD, 39-22 

Loop-back PIF bit 
adjunct to resend-frame action 

LAPD.39-27 
X.2S Layer 2. 33-30 

adjunct to send-frame action 
LAPD.39-23 
SDLC, 35-24 
X.2S Layer 2. 33-25 

Low, subfield on Trigger Setup menu. 22-7 

Low Outgoing Channel #, field on X.2S Packet 
Level Setup screen, 34-3 

LRC Parity. field on BCC Setup menu, 8-11 

LU 6.2, SNA selection, 36-3 

Index to Part I and Part II 



~~ 
i 

M 
M, trace column. X.25 Layer 3, 34-14 

M bit 
adjunct to monitor/receive-packet condition, 

34-18 
adjunct to send-data ""Packet action, 34-36 
position diagrammed. 34-14 

MAKE, T1 test access point. 49-9 

Main 
C function, placed at hlghest level of source 

code, 52-16 
program main created by C translator, 52-1 

hook text from #pragma hook directives 
added to, 56-12 

using multiple hooks, 56-12 

Maintain, field on Interface Control menu. 
10-18 

X.21,46-9 

Maintain bit 
freeing via the _free_ll_ms£...buff routine. 

55-5 
setting via the _set_maint_buff_bit routine. 

55-5 
used to lock an IL buffer against reallocation, 

55-5 

Make Directory, File Maintenance 
menu selection, 13-16 
mkdir, C routine. 65-33 

Mark key, 26-5 
on File Maintenance screen, 3-6, 13-13 
used as program tab in spreadsheet, 3-9 

Maximum, column on Tabular Statistics screen, 
17-6. 27-10 

Maximum data rates 
data analysis. 1-13 
data recording. 1-13 

Memory, capacity. 1-12 

Menus 
overview. 2-9-2-14 

See also Separate listing. each menu name 
configuring menus, 2...;10 
Program Menu. 2-9 

Record Setup, 11-5-11-11 

Message, indicator on RS-485 Test Interface 
Module. 47-6 

Message Buffer. field on :BERT Setup menu, 
9-10 

Message fields. diagrammed for 0.931. 40-7 

Message Signal Units (MSU's). Layer 3. 43-6 

Message type, Q.931. 40-5 

MIL, field on Line Setup menu. 4-12 

MIL-ISS. 4-12 

MISC. trace column. X.25 Layer 3, 34-14 

Microfloppy disks 
compaubUity, 1-5 
storage capacity, 1-12 
write protection. 1-5 

Minimum. column on Tabular Statistics screen, 
17-6, 27-10 

Miscellaneous Utilities 
overview, 2-14 
with COIOT mapping options. 16-3-16-6 

See also Graphical statistics menu. color 
graphics 

Miscellaneous Utilities screen 
black and white enhancements, 16-6 
color display, selectable options. 16-4-16-5 

background color, 16-5 
blink, 16-5 
character. 16-5 

controlling color displays from. 16-3-16-6 
menu selections, 16-2 

Mnemonics. glossary. B-I-B-I0 

MOD 128. 33-5. 34-4, 35-4. 39-4 

MOD 8, 33-5, 34-4, 35-4. 39-4 

Mode 
default handshake for remote pon, 67-20 
field on Line Setup menu. 4-3, 9-5. 9-6, 

9-22, 10-3, 10-10, 11-4, 28-10, 33-15, 
34-24. 39-15. 49-7. 50-8 

test mode field on Line Setup menu, 1-11 

Mode of Operation 
field on Frame Level Setup screen, 33-12. 

34-16. 39-10 
field on LAPD Frame Level Setup screen, 

39-3, 39-4 
field on SDLC Frame Level Setup screen, 

35-3, 35-4 
field on SNA/SOLC Frame Level Setup 

screen, 36-3 
field on X.25 Frame :Level Setup screen, 

33-3, 33-5 
field on X.25 Packet Level Setup screen, 

34-3. 34-4 

Modem connector 
external, 1-9 
internal. 1-9 

Modem eliminator, patching example. 10-7 

Index to Part I and Part II 



Monitor mode 
installing connectors for, 10-3, 49-7. 50-8 

ISDN, 48-8-48-9 
not affected by position of breakout switches, 

10-6 
setting up. 4-3 

Monitor path, upward path of IL buffer in 
monitor (or emulate) mode, 55-3 

More to resend, emulate-mode condition 
LAPD,39-18 

translated into C, 77-8 
SDLe, 35-19 

translated into C, 73-8 
X.25 Layer 2, 33-19 

translated into C, 71-8 
X.2S Layer 3, 34-28 

translated into C, 72-11 

Move, editor command. 26-6 

MPM board 
block diagram, 2 
connections for. J4-2 
hardware architecture. 13-3, J3-12-J3-13 
S1 switch settings. See Field Service 
view as a component. J2-2 

MPM errors. 2-17 

MSG-TYPE, trace column. Q.931. 40-5 

MUX board, hardware architecture. 13-3, J3-5 

Multidrop handshaking, 10-12. 10-15, 10-16 

Mux board. firmware replacement. See Field 
service 

N 
N. name, field on Graphical Statistics menu, 

18-6 

N_DATA. macro, 29-5 

N_DATA IND, sent up automatically by Give 
Data action at Layer 3, 34-39, 34-44 

Naming. of variables in C, 57-2 

National bits. G.703. field on Interface Control 
menu, 50-25 

National Format. field on S8#7 Packet Level 
Setup screen. 43-3 

Negative exponent, meaning in BERT formulas, 
9-14 

Network Indicator, SS#7 Layer 3, 43-9 

Network Management (NETM) Headers, SS#7 
Layer 3, 43-18 

NETM condition, translates into two e 
variables. 80-1 ' 

Newline, nonliteral used inside C string, 56-20 
writes fresh blank line into trace buffer, 61-27 
writes hex 00 OA (ASCII CR-LF) to printer 

output, 64-9 

Next Page key, 26-4 
in spreadsheet, 3-8 
on statistics screens, 3-8 
on trace display. 33-6, 34-8. 35-5, 36-4, 

40-4, 42-4, 43-4 

Next state 
in C, 53-4 
Protocol Spreadsheet, programming block, 

24-9 
comments in. 24-13 

No BCC. appended to transmit string. 8-6 
interpreted as bad BCC. 8-6 

No display. display mode. 5-28 

No more to resend, emulate-mode condition 
LAPO, 39-18 

translated into C, 77-8 
SOLe. 35-19 
SOLe variable. translated into e, 73-8 
X.25 Layer 2. 33-19 

translated into C. 71-8 
X.25 Layer 3, 34-28 

translated into C. 72-11 

Nonevent variables. 59-5 
in C 

checked when event is signalled, 57-5 
true in expressions with nonzero value, 

53-12 

Nonliteral characters 
inside C strings. 56-21 
inside set..,print_header strings. 64-7 

Nonzero conditional expression, always true in 
C, 53-12, 58-2 

Not Equal key, 3-6 
in Receive string condition, 21-7 
used in Suppress field to indicate .. display 

only", 5-11 

NRZI. field on Line Setup menu. 4-12 

Nr 
acknowledging last NSf adjunct to send-frame 

action 
LAPD.39-23 
SDLC, 35-24 
X.2S Layer 2. 33-26 

Index to Part I and Part II 



calculated automatically, adjunct to 
send-frame action 

LAPD,39-23 
SDLC, 35-24 
X.25 Layer 2. 33-26 

repeating last Nr, adjunct to send-frame 
action 

LAPD,39-23 
SDLC. 35-24 
X.25 Layer 2, 33-26 

reset, emulate-mode action 
LAPD,39-28 
SDLC, 35-30 
X.25 Layer 2. 33-31 

trace column 
LAPD,39-8 
SDLC.35-9 
staggered to indicate two separate numbering 

sequences, 33-9, 35-9 
X.25 Layer 2, 33-9 

value. adjunct to send-frame action 
LAPD,39-23 
SDLC.35-24 
X.2S Layer 2. 33-26 

Nr error, emulate-mode condition 
LAPD.39-16 
SDLC. 35-18 
X.2S Layer 2, 33-18 

Ns 
calculated automatically, adjunct to 

send-I-frame action 
LAPD,39-24 
SDLC, 35-26 
X.25 Layer 2, 33-27 

reset. emulate-mode action 
LAPD,39-28 
SDLC, 35-30 
X.25 Layer 2, 33-31 

same as last-received Nr. adjunct to 
send-I-frame action 

LAPD,39-24 
SDLC.35-26 
X.25 Layer 2, 33-27 

skip to correct Ns plus one. adjunct to 
send-I-frame action 

LAPD,39-24 
SDLC.35-26 
X.25 Layer 2. 33-27 

trace column 
LAPD,39-8 
SDLC, 35-9 
staggered to indicate two separate numbering 

sequences. 33-9,35-9 
X.25 Layer 2, 33-9 

value, adjunct to send-I-frame action 
LAPD.39-24 
SDLC, 35-25 
X.2S Layer 2. 33-26 

Ns error, emulate-mode condition 
LAPD,39-16 
SDLC, 35-17 
X.25 Layer 2. 33-17 

NT 
ISDN network termination, 48-7 
state on ISDN line. 48-13 

Null 
added by compiler to terminate string. 56-19, 

57-12 
not valid in C string. 56-20 
octal or hex version legal inside C string, 

56-21 
terminates execution of display and print 

routines. 56-21 
termination overridden by %H conversion 

specifier. 61-10 

Number of Faults. BERT counter, 9-21 

o 
Object, Protocol Spreadsheet, programming 

block, 24-8 
C regions in relation to, 53-1. 52-16. 53-17 
comments in. 24-13 
format of. 24-11 
must be used to access compiled spreadsheet, 

13-21 
only C regions and comments may precede, 

24-8 
placement of. 24-11 
used to access #pragma hook routines, 56-12 
used to access linkable-object files. 24-10, 

56-12 

Object code 
contents of llnkable-object files 

compiled C code. 13-7 
compiled spreadsheet, 13-7 

accessed via OBJECT block-identifier 
only. 13-21 

must be a valid program. 13-21 
contents of object files. 13-6 
loaded in automatically via Load Program 

action. 27-19 
rerunning object version of program. 2-15 

Object files. 13-6. 13-12. 13-14 
compared to linkable-object files, 13-7, 

13-22 
not as versatile as source-code files. 13-15 
use disk-space intensively. 13-15 

Index to Part I and Part II 



Octal 
C constant. 57-7 
conversion for display, 57-8, 61-20 
conversion specifier, 61-11 

Offset, 5-26 

On Signal, layer-independent condition, 27-8 

On/off (power) switch, back panel, 1-8 

One, transmitting steady one, set_tcr_b, C 
routine, 59-14 

1 OF, field on Trigger Setup menu, 21-8 

One-of character list 
effect of not-equal character, 21-8 
monitor/receive condition, Layer 1, 28-3 

OOF events. Tl statistics display, 49-30 

OPT-951-01-1, J6-1-J6-6 

OPT-951-22-1, optional codes J187/8, H-l 

OPT-951-98-1, rack mount, 0-1-G-4 

Operating environment, 1-14 

Operating positions, 1-14 

Operator messages 
interactive messages, AI-1-Al-15 
issued by C translator, A2-1-A2-6 
issued by compiler, A3-1-A3-16 

Operator precedence, C language, 56-17 

Operators, relational, in counter conditions. 
27-5 

Order of transmission 
in relation to binary display, 5-15 
in relation to code charts, 4-11 
in relation to hex display, 5-14 
in relation to pattern sync in BERT. 9-11 

Originating Point Code (OPC), SS#7 Layer 3. 
43-9 

Origination/destination link. message-type 
condition, Q.931, 40-11 

OSI 
Layer Setup, 6-3 
Open Systems Interconnection. layered 

programming, 20-3-20-8 
See also Layers 

primitives, 20-8 

OSI primitives. See Primitives 

Other frame 
monitor/receive condition 

LAPO, 39-11 
SOLC, 35-12 
X.25 Layer 2, 33-12 

send action 
LAPO, 39-21 
SOLC. 35-23 
X.25 Layer 2, 33-24 

Other packet 
monitor/receive condition, X.2S Layer 3, 

34-17 
send action, X.2S Layer 3, 34-33 

Out of sync, status message in BERT. 9-21 
Output jacks 

on RS-232 TIM, 10-8 
on RS-449 TIM, 45-6 
on V.35 TIM, 44-6 
on X.21 TIM, 46-6 

Outsync 
called "resync" in BERT. 9-8 
Layer 1 action, 28-11 

compared to Capture Off action. 28-11 
outsync_action, C routine, 59-10 
parameters not selectable in OOCMP. 37-1 
subfield on Line Setup menu, 4-7. 4-8 

Outsync Char, field on Line Setup menu, 3-6 

Overlay, Test Interface Module, 1-5 ' 

Overrun, of print buffer. 64-1 
minimize by suspending playback. 64-2 

Overstrike mode, 3-8 

p 
P/F, trace column 

LAPO, 39-8 
SOLC. 35-10 
SNA-SDLC, 36-6 
X.2S Layer 2, 33-10 

P/F bit 
adjunct to monitor/receive-frame condition 

LAPO.39-13 
SOLe, 35-14 
X.25 Layer 2, 33-14 

adjunct to resend-frame action 
LAPO, 39-27 
SOLC, 35-29 
X.2S Layer 2. 33-30 

adjunct to send-frame action 
LAPO.39-23 
SOLC.35-24 
X,2S Layer 2, 33-25 

PATH. field on X.2S Packet Level Setup 
screen, 34-5 

Packages Loaded 
column on Layer Setup menu. 33-3, 34-3, 

39-3, 43-3 
column on Layer Setup screen, 6-4 

Index to Part I and Part II 



Packet fields, diagrammed for X.2S, 34-10 

Packet sent, emulate-mode condition 
should be used along wiUl More/No More to 

Resend. 34-29 . 
X.2S Layer 3. 34-27 

packet_sent, C variable, 72-8 

Parity 
a consideration when entering BCC 

parameters, 8-11 
adjustment automatic in Sync Chars field. 4-7 
always the last bit transmitted. 4-11 
automatic calculation of in receive sync 

pattern, 4-7 
default value for remote port, 67-20 
field on Line Setup menu, 4-6. 4-7, 9-16, 

21-6. 28-4 
field on Printer Setup menu, 14-4 
in BERT testing. 9-15 
in setup, 4-6 

Parity errors 
monitor/receive condition, Layer 1, 28-4 
special display of. 4-6 

Patching. modem-eliminator example. 10-7 

Path 
adjunct to receive-packet condition, X.2S 

Layer 3, 34-25 
adjunct to send-packet action, X.25 Layer 3, 

34-32, 34-33. 34-34 
used in all packet types except Restart, 

34-34 
correspondence at different layers, 30-5. 

34-34 
more "programmable" than LCN. 34-25. 

34-34 
part of definition of data primitive, 30-5 
rcvd_devicej)ath. C variable. 72-9 
tied to a set of Call Request parameters on 

X.25 Packet Level Setup screen, 34-5. 
34-25. 34-34, 72-9 

Pattern, field on BERT Setup menu, 9-7 

Pattern Sync Status 
field on BERT results screen, 9-20 
line on BERT results screen. 9-21 

Pattern sync. in half-duplex pseudorandom 
BERT. 9-11 

two default sets, 9-13 

PCM board 
block diagram, 2 
connections for, 14-2 
hardware architectUre, 13-3, J3-8-J3-11 
view as a component. ~-2 

PDU. See Primitive data unit; Primitives 

Perc(entage). 5-26 
of Program Trace buffer storing previous data, 

5-20 

Percentages. computed through the sampling 
action, 17-11 

Personality packages. See Protocol packages; 
Protocol packages and Layers 

PH_ACTIVATE REO. sent down automatically 
at Layer 2 if Layer 1 inactive. 33-34. 
35-32, 39-31 

PH_DATA. primitives between Layers 1 and 2. 
30-9 

PH_DATA REO. sent down automatically by 
Send or Resend action at Layer 2, 33-34. 
35-32, 39-31 

PH_TD_DATA IND 
implemented by a set of monitor-path 

variables. 55-3 
implemented by a set of receive-path 

variables. 55-3 
signalled by DDCMP package. 37-2 

Physical DTE/DCE 
basis of Source column on trace display. 

33-7. 34-12. 35-5. 36-4, 39-6. 40-5 
contrasted to logical DTE/DeE, 33-4 

Physical dimensions, size and weight. 1-3 

Playback 
control leads. 2-17. 7-5 
disk data. 2-18 
EIA leads. storage. 1-12 
manual control of. 3-11 
source of data selected on Line Setup screen, 

4-4 
startJcn:i"p1ay. C routine. 65-3, 69-16 
suspend_rcrd"play, C routine. 65-3. 69-17 
time ticks. 2-18. 7-6 
timer values not affected when time ticks 

enabled. 27-10 
transfer of data prior to, 11-4 

Pointer. in C 
always 32 bits no matter what the data type, 

57-11 
creating a pointer. 57-11 
incrementing pointers of various data types. 

57-12 
mJ)acket_infoj)tr. pointer to first data byte 

in X.2S packet, 72-8 
mj)tr_to_ca1l_ref. pointer to 0.931 

call-reference field. 78-4 
mj)tr_to_info_element. pointer to Q.931 

info-element field. 78-4 
making a pointer to the data in a received 

frame, 71-8, 73-8. 77-8 

Index to Part I and Part II 



making a pointer to the data in an IL buffer, 
57-10, 63-41 

pointing with subscripts, 57-12, 57-13 
rcvd..,pkt_info..,ptr. pointer to first data byte in 

X.2S packet, 72-8 
rh..,ptr, pointer to first byte of SNA 

request/response header, 74-4 
ru..,ptr, pointer to first byte of SNA 

request/response unit, 74-4 
string. 56-19 
structure pointer, 57-16 
th..,ptr. pointer to first byte of SNA 

transmission header, 74-4 

Pointer-list buffer. 63-3 
See also IL buffer 

Polarity 
field on Line Setup menu, 4-11 
nonnal versus inverted, 4-12 

Pound sign (#), precedes preprocessor 
directives. 56-5 

Power connector, 1-7 

Power switch, back panel. 1-8 

Power up. 1-14, 2-1 
self tests. 2-1 

PROMs, exchanging. See Field Service 

PROTSEL. Protocol Select, Layer Setup 
function key used to select 
protocol-configuration screen for a given 
layer, 33-3, 34-3, 43-3 

Pr 
acknowledging last Ps, adjunct to send-packet 

action, X.25 Layer 3, 34-36 
calculated automatically, adjunct to 

send-packet action, X.25 Layer 3. 34-36 
repeating last Pr. adjunct to send-packet 

action. X.25 Layer 3, 34-36 
reset, emulate-mode action, X.2S Layer 3, 

34-41 
trace column 

staggered to indicate two separate numbering 
sequences, 34-13 

X.25 Layer 3, 34-12 
value. adjunct to send-packet action, X.25 

Layer 3, 34-35 

Pr error, emulate-mode condition, X.25 Layer 
3, 34-27 

pr_error, C variable. 72-8 

#pragma, C directive. placed inside of task 
definition, 52-16 

#pragma hook. C preprocessor directive, 56-11 
defining the hook text. 56-12 
fonnat of, 56-11 

. hook text added to top-level main function, 
56-12 

in linkable-object files. 56-11 
system-generated during Compile spreadsheet, 

56-11 
using multiple hooks. 56-12 

#pragma layer. C directive. used to declare a 
layer. 53-1 

#pragma nowarn, C directive, used to suppress 
compiler warnings. A3-1 

#pragma object. C preprocessor directive, 56-8 
format of. 56-8 
placement of, 56-8 

#pragma tracebuf, C directive. used to configure 
size of trace-buffer arrays, 5-18, 5-24. 
61-26 

Preamble, field on BERT Setup menu, 3-6 

Preamble characters, in half-duplex BERT, 9-7, 
9-9 

Precision 
length of conversions in display and print 

routines. 61-10 
size of data types. 56-13 

Prev Page key, 26-4 
in spreadsheet, 3-8 
on statistics screens, 3-8 
on trace display, 33-6, 34-8, 35-5. 36-4, 

40-4. 42-4. 43-4 
used to restore previous menu. 3-8 

Primary (host) in SDLC. 35-4 

Primary Rate ISDN. 49-6 
0.703,50-7 

Primitive data unit 
See also Primitives 
and IL buffers, 30-3 
being passed down the layers. illustrated, 63-2 
being passed up the layers. 55-2 

illustrated, 63-4 
structure of. 63-5 

data length. 63-5 
data-start offset, 63-5 
IL buffer number. 63-5 

Primitives 
accessing information in, 63-5-63-11 
as conditions and actions. 30-3 
automatic. 31-1 

at Layer 1, 30-3 
below the top layer, 31-1 
monitor primitives. 31-1 
varies with protocol package, 31-1 

currently not accessible at Layer 1. 30-3 
indications versus requests. 30-10 

Index to Part I and Part II 



Layer 1 not automatic, 30-3 
Layers 1 through 7, listed. 30-11-30-13 
layered programming. lO-3 
OS1,20-8 . 
OS1 routines 

sending primitives up and down the layers, 
63-44 

on spreadsheet 
indication of direction, 30-4 
indication/confirm, 30-5 
path. 30-5 
request/response, 30-5 
type, 30-4 

pointing to data inside PDUs, 63-3 
prefixes, 30-4 
several automatic at given layer 

LAPD,39-31 
SDLC, 35-33 
X.25 Layer 2. 33-34 
X.25 Layer 3, 34-44 

shared by layers. 30-3 
used for passing data macros downward, 29-5 

Print 
File Maintenance. menu selection. 13-19 
layer-independent action, 27-16 

used to check status of print buffer. 64-1 

Print accumulator t layer-independent action, 
27-16 

Print buffer 
overrun, 64-1 

minimize by suspending playback. 64-2 
queues unprinted text from print actions. 64-1 

Print counter. layer-independent action. 27-16 
statistical log produced by. 17-9 

Print key 
used to print data. 3-13 
used to print programming screens or 

spreadsheet. 3-6, 14-7-14-8 

Print prompt, layer-independent action, 27-18 

Print server. transfers output from print buffer 
to printer port, 64-1 

Print timer. layer-independent action. 27-16 
statistical log produced by, 17-9 

Printer. 14-3-14-5 
C print routines. 64-1-..,.64-10 

nonliteral characters inside setJ'rint_header 
strings. 64-8 

C print structures. 64-1 
Printer Setup screen. 1<~-3-14-5 

menu selections. 14-2. 14-3-14-5 
characters per line. 14-5 
form feed, 14-5 

format character buffer. 14-5 
handshake mode. 14-6 
lines per page. 14-5 
new line, 14-4 
number of bits, 14-4 
number of pads. 14-5 
parity. 14-4 
print to file jnstead of printer, 14-6-14-7 
printer type, 14-5 
speed. 14-4 

print server I transfers output from print buffer 
to printer port. 64-1 

printing data, 14-10-14-15 
from display window, 14-16-14-17 
line data. 14-10-14-15 
program trace, 14-14-14-15 
protocol traces. 14-13-14-15 
statistics. 14-15 
user traces. 14-17 

printing disk files. 14-17-14-18 
printing static displays, 14-7-14-8 

Layer Setup screen, 14-8 
Protocol Spreadsheet, 14-8 
program menus, 14-8 
setup menus. 14-8 
Trigger Setup screens. 14-8 

RS-232 printer connector. 14-3 
special characters. data, display of, 14-10 
special characters. menus, display of, 14-7 
spreadsheet control of. 14-17 
unprinted text queued in print buffer, 64-1 

Printer connector. 1-9. 14-3. 64-1, 1-3 

Program files, saving and loading. 19-6 

Program key, 2-4, 3-4 
unit unexpectedly enters Run mode. 2-20 

Program trace, 5-18 
#pragma tracebuf. 5-18, 61-26 
as customized protocol analysis. 27-19 
as debugging tool, 27-19 
buffer containing 4096 characters, 61-23 
buffer may be scrolled through in Freeze 

mode. 5-18, 61-23 
buffer size may be increased, 5-18, 61-26 
C routines. 61-27 
generated by trace actions on the Protocol 

Spreadsheet, 27-18 
one of eight trace buffers. 61-23 
printing, 14-14 
run-mode softkey available if Trace action 

invoked or if state trace requested. 5-18 
sample trace. 5-18. 5-20 
selecting state names from via Display Setup, 

5-19. 27-19 
specific to LayerlTest selected on Display 

Setup. 5-19. 27-19 

Index to Part t and Part II 



structures, declared in trace buf.h #include 
file. 61-23 -

trace_bur. C structure. 61-23 
trace_buffer_header. C structure, 61-23 

Programming 
concepts of 

branching (changing states). 20-3. 24-9 
OS1 layers, 20-3-20-8 
simultaneous tests, 20-3-20-4 
states. 20-3 
three-tiered design. 19-1-19-6 

program structure, Protocol Spreadsheet. 
24-6-24-7 

Prompt 
blanking the entire prompt line. 58-4 
display-prompt, C routine. 61-3, 61-21 
field on Trigger Setup menu, 22-3 
layer-independent action. 27-12 
most recent prompt retained in Display 

Window. 61-3 
printing. 27-18 
prompt line never accessed by trace routines, 

61-4 
using backslash and double-quote characters 

inside of, 27-12 

Protocol header 
applied to user data by Send action. 30-6 
not applied if Data Req primitive used instead 

of Send. 30-7 

Protocol hex. user program to convert X.2S 
headers to hexadecimal. 33-35 

Protocol packages, 6-3 
general description. 19-3-19-4. 20-7-20-8 
user disk. 6-3 

Protocol Spreadsheet 
comments. 24-13 
constants. 20-8. 25-3-25-7 
creating and editing, 19-4-19-5 

See also Protocol Spreadsheet editor 
editor. See Protocol Spreadsheet editor 
files 

reading and writing. 26-6-26-10 
saving and loading. 19-6 

function key hierarchy (editor). 26-2 
function key hierarchy (programming). 24-2 
function keys. 24-3-24-5 
fundamentals. 24-3-24-7 
general description of capabilities. 19-1. 

19-3-19-4 
increasing the size of. 2-13 
Layer 1 conditions and actions enabled 

automatically, 28-1 
Mark key. used as program tab. 3-9 

overview. 2-12 
printing. 14-8 
program format. 24-9 
program structure. 24-6-24-7 
special ASCII characters 

backslash (\). 3-5 
double quote ("). 3-5 
space ( ). 3-5 

spreadsheet editor. WRITE command, 13-7 
syntax errors, 2-16 
unexplained strike-through's, 2-20 
use of cursor keys. 3-8 
use of softkeys and the Done key. 3-9 
variables shared with Trigger Setup menus, 

19-5 

Protocol Spreadsheet editor, 26-3-26-10 
insert mode, 3-8 
Mark key, used as program tab. 3-6 
WRITE command, 13-7 

Protocol Trace 
buffer 

logical beginning offset. 61-40 
logical end offset, 61-40 
monitor position within, 61-38 
physical beginning of, 61-38 
physical end of, 61-38 
size of, 61-38 

Protocol trace 
See also Trace display 
display entering Run mode enabled on Display 

Setup. 5-17 
enabled on Layer Setup screen, 5-16 
printing. 14-13 

Protocols 
compatibility with line setup, 6-4 
how to select and load, 6-3 

Ps 
calculated automatically, adjunct to 

send-data-packet action, X.25 Layer 3, 
34-35 

reset, emulate-mode action, X.25 Layer 3, 
34-41 

same as last-received Pr. adjunct to 
send-data-packet action. X.25 Layer 3. 
34-35 

skip to correct Ps plus one. adjunct to 
send-data-packet action. X.25 Layer 3. 
34-35 

trace column 
staggered to indicate two separate numbering 

sequences, 34-13 
X.2S Layer 3, 34-12 

value. adjunct to send-data-packet action, 
X.25 Layer 3. 34-34 

Index to Part I and Part II 



Ps error, emulate-mode condition. X.2S Layer 
3, 34-27 

ps_error, C variable, 72,...8 

Q 
Q, trace column, X.25 Layer 3, 34-13 

Q bit 
adjunct to monitor/receive-packet condition. 

34-18 
adjunct to send-packet action, 34-36 
position diagrammed. 34-13 

Q.931 
diagram of message fielQs. 40-7 
message types. adjunct to DTE and DCE 

receive conditions. 40-9 
used with ISDN D channel. 38-3 

Quotation mark. entry of inside prompt 
message, 27-12 

R 
RAM 

data storage. 1-12 
RAM -to-disk transfer 

bit-oriented data. 11-4 
character buffer. 11-4 

Rack mount assembly, 0-1-G-4 

RC-8245. See RS-48S 

Rcv Blk Chk 
enabled automatically for BOP, 28-4 
field on Line Setup me$U, 8-3, 21-5. 28-4. 

28-9 
field on Line Setup scr~en. 22-5 
must be enabled for BCC conditions to come 

true. 28-4 
subfield on Line Setup menu. 4-9 

REJ 
monitor/receive condition 

LAPD.39-10 
SDLC.35-12 
X.25 Layer 2. 33-12 , 

address needed for Receive REJ. 33-16 
X.25 Layer 3. 34-16 

send action 
LAPD,39-20 
SDLC.35-23 
X.2S Layer 2. 33-23 

address required tot Send REI. 33-23 
X.2S Layer 3. 34-31 

REMOTE RS-232 connector, 1-9 
See also Remote port 

Read. editor command. 26-6 
formatted. 26-6 
unformatted. 26-7 

Receive 
emulate-mode condition 

LAPD.39-15 
Layer 1. 28-3 
SDLC, 35-16 
X.25 Layer 2, 33-15 
X.2S Layer 3, 34-24 

does not see the data line directly. 34-24 
may specify path as added condition. 

34-24 
via REMOTE RS-232 port. 67-1 

Receive path. upward path of IL buffer in 
emulate mode. 55-3 

Receiver. Conditions. Trigger Setup menus, 
21-5 

Receiver gain. G.703. Interface Control 
selection, 50-19 . 

Record 
layer-independent action, 27-20 
staIt_rcrd"'play, C routine. 14-6. 65-3, 69-16 
suspendJcrd..,:play. C routine. 65-3, 69-17 

Record Ch16. G.703 Interface Control screen, 
50-5 

Record Framing Bits. Tl Interface Control 
selection, 49-5, 49-26 

Record key, 3-11, 11-11 

Record Setup 
defaults. 11-4 
menu selections. 11-2. 11-5-11-10 
overview of screen, 2-12 
the screen buffer, 11-4 

Record Speed 
field on Record Setup menu, 11-7 
G.703 channel data capture. 50-5 
Tl channel data capture. 49-4 

Recording data, 11-3-11-11 
format of recorded data, 11-3 

bit-image data. 11-· .. 3 
character-oriented. 11-3 

manual control of. 3-11 
maximum rate, 1-13 
medium used. 11-3 
record speed 

high-speed, 11-9 
normal. 11-7 

Index to Part I and Part II 



screen buffer 
manual control of, 11-11 
trigger control of. 11-10 

spreadsheet control of, 27-20 
trigger control of, 11-10 
with EIA lead transitions. 1;"'12 

Redirect run-mode output 
Line and Record setups override. 14-6 
terminated by recording to disk. 14-6 
to disk file instead of printer, 14-6 

Relative pathnames. files and directories, 13-6 

Relay baton. See Maintain bit 

Remote connector, 1-2 

Remote LED. 10-4. 48-6, 49-9. 50-11 
front panel, 1-5 

Remote port 
default configuration. 67-20 
transmit and receive data. 67-1 

Remote RS-232 connector, Remote port 
controlled by C program. 67-1-67-27 

Rename, File Maintenance 
menu selection, 13-19 
rename. C routine, 65-31 

Repair, replacement. return, assistance. 
E-I-E-3. H-1-H-4 

Replace, editor command. 26-9 

Reque~primitives, 30-5 
versus "indications", 30-10 

Resend frame 
effect on Frame Sent condition, 33-18. 

35-18, 39-17 
first in window. 33-30, 35-29. 39-27 

action resets resend pointer, 33-30, 35-29. 
39-27 

in relation to window. 33-5, 34-4. 35-5. 39-5 
LAPD action, 39-26 

resend_frame. C routine. 77-10 
next in window. 33-30. 35-29. 39-27 

default resend, 33-30. 35-29. 39-27 
SDLC action. 35-27 

resend_frame. C routine. 73-10 
used with More To Resend and No More To 

Resend conditions, 33-19, 35-19, 39-18 
X.25 Layer 2 action, 33-29 

resend_frame. C routine. 71-10 

Resend packet 
effect on Packet Sent condition, 34-27 
fir~ in window, 34-39 

action resets resend pointer, 34-40 

next in window, 34-39 
default resend, 34-39 

programming example. 34-46 
used with More To Resend and No More To 

Resend conditions. 34-28 
X.25 Layer 3 action, 34-39 

resend"'packet, C routine. 72-14 

Resend pointer, reset automatically by 
acknowledgement. 33-30, 35-29. 39-27 

Resend window. programming example. 34-46 

Reset 
0.703 BERT, run-time function key. 9-45 
Tl BERT, run-time function key. 9-32 

Reset Nr. emulate-mode action 
LAPD.39-28 

reset_nt. C routine. 77-11 
SDLC. 35-30 

reset_nr, C routine. 73-11 
X.2S Layer 2. 33-31 

reset_nr, C routine, 71-11 

Reset Ns. emulate-mode action 
LAPD,39-28 

reset_ns, C routine, 77-11 
SDLC, 35-30 

reset_ns. C routine. 73-11 
X.25 Layer 2. 33-31 

reset_nsf C routine. 71-11 

Reset Pr and Ps, emulate-mode action, X.25 
Layer 3, 34-41 

reset"'pr ...ps, C routine. 72-15 

Resolution. display. 1-3 

Response addressing 
adjunct to receive condition. X.2' Layer 2. 

33-16 
adjunct to send-frame action. X.2S Layer 2, 

33-24 

Response primitives. 30-5 

Restart 
0.703 BERT, run-time function key, 9-45 
Tl BERT. run-time function key. 9-32 

Restart (or start) timeout, layer-independent 
action, 27-11 

Restart (or start) timer 
in C, 62-11 
layer-independent action. 27-10 

Resync.9-9 
field on BERT Setup menu. 9-8, 9-21 
in full-duplex BERT. 9-8 

may be inappropriate on noisy circuit. 9-9 
triggered by a fault, 9-21 

not available in half-duplex BERT. 9.,..9 
outsync mode in BERT. 9-9 

Index to Part I and Part II 



Retransmitted I-frames. sample program to 
enhance all. 33-33 

Return. C statement, 58-2 
breaks out of while loop. 58-6 

Return key, 3-5. 29-1 

Rev, subfield on Trigger Setup menu, 22-7 

Reverse EBCD 
hex-to-display conversion table, D2-3 
keyboard-to-reverse-EBCD conversion table, 

D1-7 

ROB monitor. 1-5 

ROB video connector, 1-9. 16-3 

RI, available for triggering. 28-5 

Right Arrow key. 26-4 

RJ45. ISDN connectors. 48-6 

RNR 
monitor/receive condition 

LAPD.39-10 
SDLC. 35-12 
X.25 Layer 2, 33-12 

address needed for Receive RNR, 33-16 
X.25 Layer 3, 34-16 

send action 
LAPD,39-20 
SDLC, 35-23 
X.25 Layer 2. 33-23 

address required for Send RNR. 33-23 
X.25 Layer 3. 34-31 

ROLL, function key. used to roll through 
packet-level "causes". 34-20. 34-36 

Robbed bits. T1 Interface Control selection, 
49-24 

Robbed-bit signaling. T1 transmissions. 49-23 

Roll Back key. 3-8, 26-4, 33-5, 34-8. 35-5. 
36-4. 40-4. 42-4. 43-4 

Roll Fwd key. 3-8, 26-4, 33-5, 34-8. 35-5, 
36-4, 40-4, 42-4. 43 ... 4 

Root directory. filing system, 13-4 

Routines. in C, 58-1-58-6 
always followed by parentheses, 58-2 
nonzero retummakes conditional statement 

true, 58-6 
not usually necessary to declare. 58-1 
user-defined, 58-4-58-6 

RR 
monitor/receive condition 

LAPD.39-10 
SDLC.35-12 

X.2S Layer 2, 33-12 
address needed for Receive RR. 33-16 

X.2S Layer 3, 34-16 
send action 

LAPD.39-20 
SDLC.35-23 
X.25 Layer 2. 33-23 

address required for Send RR. 33-23 
X.25 Layer 3. 34-31 

RS-170 video connector, 1-10, 16-3 

RS-232 
connector, REMOTE, 1-9 
Test Interface Module, 1-7 

RS-232N.24, test connector, 1-10 

RS-449 
circuits. monitOring by trigger, 45-8 
data-plus-leads display. 45-7 
lead status, in C. 60-2 
Test Interface Module. 45-2. ]-15 

DIP switches 
balanced circuits. 45-5 
unbalanced circuits. 45-5 

RS-48S 
data display 

A bus as TD data. 47-6 
B bus as RD data. 41-6 

dual tri-state bus interface. 47-3 
enable/disable buses 

DTR controls B bus, 47-7 
RTS controls A bus. 47-7 
via C ctLeia routine, 47-8 
via EIA spreadsheet (or trigger) action. 

47-7 
via Interface Control Screen, 47-7 

Line Setup configuration. 47-6 
minimum length of message. 47-6 
only valid emulate mode is EMDTE. 47-3 
Test Interface Module. 47-2. 1-13 

activates drivers to allow transmission. 47-6 
connectors. 47-3 
controls output of protocol flags. 47-6 
DIP switches 

balanced data circuits. 41-4 
connector-termination. 41-4 

LEns 
A BUS EN. 47-5 
B BUS EN. 47-5 
EMULATE, 47-5 
MESSAGE. 47-6 

suppresses non-protocol flags, 47-6 
test points. 47-4 

transmit message. via SEND spreadsheet 
action. 47-7 

Index to Part I and Part II 



RTS 
available for triggering, 28-5 
enables/disables A bus (RS-485), 47-7 
field on Interface Control menu, 10-10, 

10-12, 10-14, 10-15 
field on RS-232 Interface Control menu, 9-4, 

9-6 

RTS on/off, Layer 1 Emulate DTE action, 
28-10 

RTS-off delay, 10-14 

RTS-on delay, 10-12 

Rub Out key, 3-7, 26-4 

Run mode. unit fails to enter, 2-20 

s 
S, scale, field on Graphical Statistics menu. 

18-5, 18-6 

SABM 
monitor/receive condition. X.25 Layer 2, 

33-12 
sample program to enhance all occurrences on 

trace display, 39-30 
send action, X.25 Layer 2, 33-23 

SABME. monitor/receive condition. X.25 Layer 
2. 33-12 

SAPI 
adjunct to monitor/receive-frame condition, 

LAPD, 39-12 
adjunct to send-frame action, LAPO, 39-22 
trace column, LAPD. 39-6 

Sample action 
on counter, 17-6 

clears current value. 17-7 
translated into C, 62-4 

on timer. 17-6 
used to compute percentages. 17-11 

Sample counter value 
in C, 62-4 
layer-independent action, 27-10 

Sample test, force data-packet transmit, 34-45 

Sample timer 
in C, 62-12 
layer-independent action, 27-11 

Save. File Maintenance, menu selection, 13-15 

Save key. 3-6. 13-15 

Screen buffer, storage capacity, 1-12 

Screen display of data 
sixteen data lines in center of, 5-5 
three divisions of, 5-5 
three lines of softkey functions at bottom of. 

5-5 
two status lines at top of, 5-5 

SOLC 
diagram of frame fields, 35-8 

SOLC Frame Level Setup screen, 35-2 

. SOU. See Service data unit 

SELECT, function key, used to select a rolling 
packet-level "cause", 34-20, 34-36 

SETUP, sample program to enhance all 
occurrences on trace display, 40-13 

Secondary (drop) in SDLC, 35-4 
identified in ADDR column of trace display, 

35-7 

Segment, in 80286 processor, number used to 
identify IL buffer, 55-5, 63-5 

Selectable. eRC mode. 8-13 
versus Bisync mode. 8-13 

Selections. column on Layer Setup screen, 6-4 

Selectric 
default BCC parameters, 8-9 
hex-to-display conversion table. D2-3 
keyboard-to-Selectric conversion table, D1-8 

Self tests, 2-1 
See also Field Service 

Send frame. Layer 2 action 
effect on Frame Sent condition. 33-18, 

35-18, 39-17 
LAPD,39-20 

send_frame, C routine. 77-12 
SOLC, 35-22 

send_frame, C routine, 73-12 
SNA, 36-3 

send_frame, C routine, 74-5 
X.2S, 33-22 

default parameters, 33-22. 33-23 
send_frame, C routine, 71-12 

Send packet, Layer 3 action 
does not send packet directly out on line, 

34-24. 34-30 
effect on Packet Sent condition. 34-27 
X.25, 34-29 

sendyacket. C routine. 72-16 

Send string 
Layer 1 action. 28-7. 33-27, 34-38, 35-26, 

39-24. 47-7 
11 il tansmit, C routine. 59-12 
U:tansmit, C routine, 59-11 

Index to Part I and Part 1\ 



Service data unit 
component in IL buffer structure. 63-3 
intransnntroutine.55-4 
offset. 55-1 
shrinks as IL buffer moves up the layers. 

55-1 
size in PDUt 63-5 

Service Indicators (SI0'sh SS#7 Layer 3, 43-17 

Set (and start) timeout, layer-independent 
action. 27-11 

Set counter value, layer-independent action, 
27-9 

Set Date, field on DatelTime Setup menu, 15-3 

Set flag bits, layer-independent action. 27-14 

Set idle character. Layer 1 action. 28-12 

Set Time, field on DatelTime Setup menu, 15-3 

Setup files. saving and loading, 19-5-19-6 

Setup menus 
Display Setup screen. overview. 2-11 
Line Setup. overview. 2-11 
overview. 2-11 

See also Separate entry under name of each 
menu 

Record Setup, 11-5-11-10 
overview, 2-12 

Severely errored seconds 
G.703 BERT statistics. 9-44 
Tl BERT statistics, 9-31 

Shipping. how to pack, F-1-F-4 

Short, C data type. 56-13 
short routine returns a short. 58-3 

S10 
monitor/receive condition. LAPD. 39-10 
send action. LAPD. 39-21 

SI1 
monitor/receive condition. LAPD, 39-10 
send action, LAPD. 39-21 

Sig Channel Polarity, T1 Interface Control 
selection, 49-6 

Sign extension. occurs during conversion of 
signed data types in C, 56-14 

Signal 
layer-independent action. advantage over flag 

or counter, 27-14 
layer-independent conQition. 27-8 
used in layer-to-Iayer ~mmunication. 55-7 

Signal Channel Idle Char \ T 1 Interface Control 
selection, 49-6 

Signal Channel Number. T1 Interface Control 
selection. 49-6 

Signal channel idle char. T1 Interface Control 
screen. 49-27 

Signal channel number. T 1 Interface Control 
screen. 49-27 

Signal channel polarity. T 1 Interface Control 
screen, 49-27 

Signaling bits. T1 Interface Control selection. 
49-24 

Signalling bits. 0.703 transmissions 
with CAS signalling with channel 16. 50-32 
with CCS/CAS signalling with CRC-4, 50-34 

Signalling Channel Control Part (SCCP). SS#7 
Layer 3. 43-19 

Signalling Link Selection (SLS). SS#7 Layer 3, 
43-6. 43-10 

Signalling type, 0.703, field on Interface 
Control menu. 50-23 

Signed, C data type, 56-14 

Single-channel testing. ISDN. 48-5 

Size, trace column 
LAPD.39-8 
SDLC.35-10 
SNA-SDLC, 36-6 
X.25 Layer 2. 33-10 
X.2S Layer 3, 34-14 

Sizeof. C operator, 56-20, 71-13. 72-17. 
73-13 

SNA 
fields in protocol trace. 36-7 
LU 6.2, 36-3 
sample Line Setup. 4-13 

SNAfSDLC Frame Level Setup screen. 36-2 

SNRM. send action. SDLC. 35-23 

Source. field on Line Setup menu. 4-4. 11-4 

Speaker, ISDN. ISDN Interface Setup selection, 
48-10 

Special-recieve word. data display, 59-15 

Speed 
different speeds for TD and RD, 4-11 
field on Line Setup menu. 4-10 
optimizing high-speed performance. 2-22 
selecting monitor and transmit speeds, 4-10 
selecting record speed. 11-9 

SRC. source, trace column 
LAPD.39-6 
Q.931. 40-5 
SDLC.35-7 

index to Part I and Part II 



SS#7 Layer 2, 42-5 
X.25 Layer 2, 33-7 
X.2S Layer 3. 34-12 

SREJ 
monitor/receive condition 

SDLC, 35-12 
X.25 Layer 2, 33-12 

address needed for Receive SREJ. 33-16 
send action 

SDLC.35-23 
X.25 Layer 2, 33-23 

address required for Send SREJ, 33-23 

SS#7 
Layer 1, 41-3-41-6 

compression of data. 41-4 
Run-time display. 41-3 
setup for testing, 41-3 

Layer 2. 42-3-42-12 
frame structure and values. 42-11 
Run-time display. 42-3 
setup for testing. 42-3 
testing in emulate mode. 42-11 
testing in monitor mode. 42-6 

Layer 3, 43-3-43-22 
ANSI format, 43-4 
CCITI format, 43-4. 43-9 
Circuit Identifier Code (CIC) , 43-6, 43-10 
Destination Point Code (DPC), 43-10 
Integrated Services Digital Network (ISDN), 

43-22 
Message Signal Units (MSU's). 43-6 

incomplete. 43-7 
structure and values, 43-12-43-22 

Network Indicator, 43-9 
Network Management (NETM) Headers. 

43-18 
Originating Point Code (OPC). 43-9 
Service Indicators (SIO's). 43-17 
Signalling Channel Control Pan (SCCP). 

43-19 
Signalling Link Selection (SLS). 43-6, 

43-10 
setting up. 43-3 
Telephone User Pan (TUP). 43-20-43-21 
testing in Monitor mode. 43-7-43-22 
US standard fonnat. 43-9 

sample Line Setup. 4-13 

START/INCL, field on BCC Setup menu, 8-10 

START/N/INCL, field onBCC Setup menu. 
8-11, 8-14 

STX, field on BCC Setup menu, 8-11 

Start At Block. subfield on Disk Maintenance 
menu. 12-8 

Start timeout, layer-independent action, 27-11 

Start timer. layer-independent action, 27-10 

Start up screen, 2-2 

Start-stop, data setup, 4-10 

Start-stop bit, voltage not affected by inverted 
polarity, 4-12 

Start/lncl, field on BCC Setup menu, 8-11 

Start/N/Incl, field on BCC Setup menu, 8-12 

States 
in C, 53-2 
introduction to concept, 20-3 
Protocol Spreadsheet, programming block, 

24-8 
comments in, 24-13 

traced along with layers and tests on Program 
Trace, 5-19 . 

Static electricity 
anit-static packing. 11-3 
elimination. J 1-3 

Static Leads. field on Interface Control menu. 
10-17 

Statistics 
graphics display 

accessing via softkey, 18-3 
printing, 14-15 

identification of counters and timers. 17-4 
postponed until after run, 17-6 

tabular display 
75 values displayed at one time, 17-3 
accessing via softkey. 18-3 
can scroll through 100 counters. timers, and 

accumulators, 17-5 
printing. 14-15 

tabular menu 
cursor movement, 17-4 
two cursors, 17-4 

Statistics menus, overview, 2-13 

Statistics screen 
G.703 BERT. 9-43 
T1 BERT. 9-30 

Statistics Type. field on Display Setup menu, 
18-3 

Stats. statistical softkey t linked to Statistics Type 
field in Display Setup menu, 18-3 

Status 
four kinds of indicators for leads. 10-8 

Status lines 
division of Run-mode screen, 5-5 

recordlplayback field, 4-5, 11-9 
in BERT. 9-18 

Status variables. See Nonevent variables 

Index to Part I and Part II 



Stop At, field on Record Setup menu, 11-10 

Stop Bits 
field on Line Setup menu, 21-6, 28-4 
subfield on Line Setup menu, 4-10 

Stop timeout, layer-independent action, 27-11 

Stream, copy of disk file used by disk I/O 
routines, 65-1 

Strike-through's, Protocol Spreadsheet, 2-20 

String 
adjunct to send-frame action 

LAPD.39-24 
SDLC,35-26 
X.2S Layer 2, 33-27 

adjunct to send-packet action. X.2S Layer 3, 
34-33, 34-38 

relation of string entry in Call Request to 
OAT A field on Pa~ket Level Setup 
screen, 34-33 . 

conversion specifier, 61-11 
Layer 1 send action. 33-27, 34-38, 35-26. 

39-24 
location of IL buffer. 30;"6 
monitor/receive condition 

always in quotation marks on Protocol 
Spreadsheet, 28-3 

Layer 1, 28-3, 28-4 
monitored or received, size limit. 28-3 
referenced in IL buffer. 30-6 
send action . 

always in quotation marks onPrntocol 
Spreadsheet, 28-8 

no practical size limit. 28-7 
valid characters. 28-7 

to be passed down with data primitive. 30-6 
used to initialize an array in C, 56-19. 57-13 
user-defined routine that matches string 

against line data. 5 8~6 

Strings on Protocol Spreac\Sheet. 29-1 

Strip, field on BCC Setup menu. 8-12 

Structure, in C. 57-15 

Suppress. field on Oisplay.Setup menu. 5-10, 
5-13 

Suppress not equal. logical equivalent of 
"display only", 5-11 

Suppress selected trace roWs 
LAPD action. 39-29, 39-30 

12_suppress. C variable. 77-8 
Q.931 action, 40-12. 4Qe-13 

I3_suppress. C variable. 78-4 

SOLC action. 35-30, 35-32 
12_suppress, C variable. 73-8 

SNA action. 36-3 
12_suppress. C variable. 74-4 

SS#7 Layer 2 action, 42-10, 42-11 
12_suppress. C variable, 79-4 

SS#7 Layer 3 action, 43-10, 43-11 
I3_suppress. C variable, 80-7 

X.2S Layer 2 action, 33-32, 33-33 
12_suppress, C variable. 71-8 

X.2S Layer 3 action, 34-42, 34-43 
13_suppress, C variable. 12-9 

Sync Char 
field on Line Setup menu, 3-6. 9-9 
subfield on Line Setup menu. 4-7 

Sync characters 
in half-duplex BERT, 9-7 
must be included in transmit string, 29-3 

Sync length, Interface Control screen, 49-25 

Sync loss time 
G.703, statistics display, 50-28 
Tl statistics display. 49-30 

Sync losses 
G.703, statistics display, 50-28 
Tl statistics display, 49-29 

Sync Pattern 
field on BERT Setup menu. 3-6. 9-9 

not applicable in pseudorandom full-duplex 
test. 9-11 

used for pattern sync in half-duplex 
pseudorandom test. 9-11 

versus Sync Chars on Line Setup menu. 9-9 
in fox or user-dermed test. 9-9 

Sync symbol, special symbol on data display, 
4-7 

Synchronization 
accidental syncrung. 4-9 
continuous search for sync (autosync). 4-8 
default patterns for standard codes. 4-7 
entering a one-character pattern. 4-7 
in-sync status message in BERT. 9-21 
searched for following Outsync action, 28-11 
when receivers do not search for sync. 4-9 

Synchronization point. in half-duplex 
pseudorandom BERT, 9-11 

Syntax errors. Protocol Spreadsheet. 2-16 

/sys/fifty_hertz. file name. 1-8 

System disk. boot-up, 2-3. 6-3 

tnc:lex to Part .1 .and Part II 



T 
T. type, field on Graphical Statistics menu, 

18-5 

T1, 49-1-49-17 
aggregate data capture, 49-5 
BERT, 9-23-9-34 

automatic error injection rate, 9-29 
bit errors, 9-31 
block size. 9-29 
blocks in error, 9-31 
blocks received, 9-31 
blocks sent, 9-31 
channel mode, 9-27 
degraded minutes, 9-31 
error-free seconds. 9-31 
failed seconds. 9-31 
framed mode, 9-28 
number of faults, 9-31 
run-time function keys, 9-32 
Setup screen, 9-27 
Statistics screen, 9-30 
setting up. 9-24 
severely errored seconds, 9-31 
test length, 9-29 
test seconds, 9-31 
unframed mode, 9-28 

Bipolar violations. 49-26 
bit-robbing 

with D4 framing. 49-34 
with ESF framing, 49-35 

CRC check during sync. ESF framing, 
Interface Control selection, 49-25 

channel data capture. 49-4 
clear-channel signaling 

with D4 framing, 49-34 
with ESF framing. 49-35 

data displays, 49-6 
drop-and-insert, 9-26, 49-5 
emulation modes. 49-5, 49-7 
FAS. 49-35 
FEB Setup screen. 9-25 
FPS (framing pattern sequence). in ESF 

transmissions, 49-35 
field on Interface Control menu, 10-15 
field onLAPD Frame Level Setup screen, 

39-3 
field on X.2S Frame Level Setup screen. 33-3 
frame structures. D4 and ESF. 49-32 
framing bits 

D4, 49-33. 49-34 
ESF,49-35 
recording of, 49-26 

framing characteristics, 49-4 

Interface Control screen, 49-2. 49-19 
B8ZS Coding, 49-26 
cable length. 49-21 
cable type, 49-20 
channel number. 49-24 
check CRC during sync, 49-25 
data path, 49-24 
Framing mode, 49-23 
Fs Bits, 49-24 
frame data link. 49-24 
framing (Ft) bits. 49-24 
idle select, 49-22 
line clock select. 49-22 
record framing bits. 49-26 
robbed bits, 49-24 
sig channel polarity, 49-27 
signal channel idle char, 49-27 
signal channel number. 49-27 
sync length. 49-25 
Transmit mode, 49-21 
yellow alarm. 49-24, 49-25 

in-band signaling 
with D4 framing, 49-34 
with ESF framing, 49-35 

Line Clock selection. 49-12 
line conditions, statistics display, 49-31 
monitor mode. 49-5 
Primary Rate ISDN. 49-6 
physical connectors. 49-6 
record setup, 11-9 
Sync procedure, D4 framing, Interface 

Control selection. 49-25 
setting up menus for testing, 49-18 
signaling, robbed-bit (in-band). 49-23 
statistics display. 49-27 

BPY's received. 49-29 
BPY-free seconds, 49-29 
CRC-6 errors. 49-30 
carrier losses. 49-31 
ESF errors. 49-30 
error-free seconds. 49-30 
Frames received, 49-29 
FT errors. 49-30 
FT/FS errors, 49-30 
OOF events, 49-30 
sync loss time, 49-30 
sync losses. 49-29 
T1 line conditions. 49-31 
test seconds. 49-29 

superframing. 49-23 
Test Interface Module. 49-2. 49-6. 1-17 

signal direction, 49-10 
Transmit mode. 9-26 
test access points. 49-9 
testing and layer protocols. 49-19 
testing configurations. 49-11 
transmission speeds, 49-3 

Index to Part I and Part \I 



T1 BERT. testing modes. 9-27 

T1 expired. emulate-mode condition 
LAPD, 39-4, 39-16 
X.2S Layer 2, 33-4, 33-18 

T1 line conditions. Tl statistics display. 49-31 

T1 statistics display, as alternate run-time 
display. 49-32 

Tl timeout 
conditions under which timer expires, 33-4. 

39-4 
maximum and minimum values. 33-4. 39-4 

TISTATS. T1 BERT. run-time function key, 
9-34 

T2. field on Interface Control menu, 10-14 

T3, field on Interface Control menu. 10-14 

TS. field on Interface Control menu. 10-16 

T6, field on Interface Control menu, 10-16 

Task 
C keyword, 56-3 

equivalent to spreadsheet Test. 53-1 
placed at highest level of source code, 

52-16 
in linkable-object files. local to the file. 

56-11 
intercommunication between tasks via signal 

routine. 55-7 
use routine in hook text to export tasks from 

LOBJ files, 56-11 

TE 
ISDN terminal equipment. 48-7 
state on ISDN line, 48-11 

TEl 
adjunct to monitor/receive-frame condition, 

LAPD.39-12 
adjunct to send-frame action, LAPD. 39-22 
trace column, LAPD. 39-6 

Telephone User Pan (TUP). SS#7 Layer 3. 
43-20-43-21 

Temperature, operating. 1-14 

Termination, G.703. Interface Control selection, 
50-19 

Test. field on Display Setup menu, 5-19, 27-19 

Test connectors 
software control, 1-11 
Test Interface Module, back panel. 

1-10-1-16 
TO DCE. 1-11 
TO DTE, 1-11 

Test Interface Module 
G.703,50-8 

signal direction. 50-10 
ISDN. 48-2. 48-6 
installation, 1-14, 10-3 
LED overlay, 1-5 

installation. 1-15. 10-3 
LED's, back panel, 1-11 
RS-232 

AUX outputs, 10-8 
breakout panel, 10-5 

effect of opened switch on screen and 
LED display, 10-S 

output jacks. 10-8 
test points. 10-8 

user-assigned input. 10-7 
RS-449, 45-2 

AUX outputs. 45-7 
output jacks. 45-6 

software control, 1-11 
Tl, 49-6 

signal direction. 49-10 
test connectors, 1-10-1-16 
V.35,44-2 

AUX outpUts, 44-7 
output jacks, 44-6 

X.21.46-2 
output jacks, 46-6 

Test Length. field on BERT Setup menu, 9-14, 
9-29, 9-42 

Test points. on RS-485 TIM. 47-4 

Test Seconds, BERT counter, 9-20 

Test seconds 
G.703. statistics display. 50-27 
G.703 BERT statistics. 9-44 
Tl BERT statistics. 9-31 
Tl statistics display. 49-29 

Tests 
identified on Program Trace, 5-19 
in C. 53-1 
Protocol Spreadsheet, programming block, 

24-8 
comments in, 24-13 

simultaneous, program design, 20-3-20-4 

TIM 
See also Test Interface Module 
hardware architecture. J3-14 

Tick Rate, field on Front-End Buffer Setup 
menu. 7-7, 18-7 

Tick rate. 7-6 
should agree with time "Unit" on Statistics 

screen, 7-6 

Index to Part I and Part II 



Time, trace column 
LAPD,39-8 
Q.931, 40-6 
SDLC, 35-10 
SNA-SDLC, 36-6 
SS#7 Layer 2, 42-6 
SS#7 Layer 3, 43-6 
values may be wall time, ticks, or recorded 

ticks. 33-10. 34-14, 35-10, 36-6, 39-8. 
40-6. 42-6, 43-6 

X.25 Layer 2, 33-10 
X.25 Layer 3, 34-14 

Time of day, layer-independent condition, 27-6 

Time Ticks, field on Front-End Buffer Setup 
screen, 7-6, 33-10, 34-14. 39-8, 40-6. 
42-6, 43-6 

Time ticks 
effect on capacity of character buffer, 5-27 
enabled/disabled on FEB Setup screen. 7-3 
encodable in bit-image or character data. 7-3 
gives most accurate timer readings. 27-10 
playback, 2-18 

of bit-image data. 2-18. 7-6 
of character data, 2-17, 7-6 

storage of, 1-12 
stored in variable called l1_tick_count. 62-8 
versus wall-clock timing measurements, 7-3, 

7-6, 62-11 

Time-of-day clock. See DatefTime Setup 

Time/Date Setup, overview, 2-14 

Timeout 
condition. Trigger Setup menus, 21-10 
field on Trigger Setup menu. 22-8 
layer-independent action, 27-11 
layer-independent condition. 27-4 
maximum value. 27-11 
program to increase maximum value, 27-12 
restart (or start). 27-11 
shared between spreadsheet and Trigger Setup 

menus, 27-11 

Timeout expired, SDLe condition. 35-4 

Timer 
accumulated. 27-15 
action 

Protocol Spreadsheet. 17-3 
Trigger Setup menus, 17-3 

identification postponed until after run, 17-6 
identified by name on statistics screen, 17-4 
layer-independent action, 27-10 
printing line of tabular statistics for, 27-16 

Timers, no values displayed, 2-21 

TO DCE, test connector, 1-11 

TO DTE. test connector. 1-11 

To Disk Number, subfieJd on Disk Maintenance 
menu, 12-9 

Trace 
as component of custom protocol analysis. 

5-20 
as debugging tool, 5-19 
compared to prompt. 5-19 
layer-independent action, 27-18 
layer-independent spreadsheet action. 5-19 
versus prompt. 27-18 

Trace buffer 
correlation with character data. 5-26 

Trace display 
LAPD,39-5 
Q.931, 40-3 
SDLC.35-5 
SNA-SDLC. 36-4 
X.25 Layer 2. 33-5, 42-3 
X.25 Layer 3, 34-8, 43-4 

Transitional condition. 27-2, 27-6, 28-1 
C translation uses event variable, 54-3 

Transitional/status condition. 27-2. 28-1. 28-5 
C translation uses event or status variable. 

54-3 

Transmit 
sample transmit program 

BOP echo, 55-10 
sync or asyne echo, 55-9 

via REMOTE RS-232 port, 67-1 

Transmit complete. Layer 1 condition. 28-6 

Transmit mode 
G.703. Interface Control selection. 50-20 
T1. Interface Control selection. 49-21 

Transmit string 
complete version entered only at Layer 1. 

29-3 
does not appear on display, 2-21 

Transmit tag. in header of IL buffer. 55-7 

Trigger. condition-action grouping on Protocol 
Spreadsheet. 27-1 

Trigger conditions. EIA, fails to come true. 
2-20 

Trigger freeze. See Capture data to screen 
(on/off) 

Trigger Setup. variables shared with Protocol 
Spreadsheet, 19-5 

Trigger Setup menus, 21-3 
Actions. 22-3-22-12 
basic description of capabilities, 19-2 

Index to Part I and Part II 



Conditions 
Buffer Full, 21-11 

combined with other Conditions, 21-4 
Counter, 21-11 

combined with other Conditions. 21-4 
combining static and instantaneous, 21-4 
EIA, 21-9 

combined with other Conditions, 21-4 
Flags. 21-10 

combined with other Conditions, 21-4 
Keyboard, 21-12 
Receiver, 21-5 
Timeout. 21-10 
Xmit Complete. 21-10 

menu selections 
(Actions), 2 
(Conditions), 2 

overview, 2-12 
transmit string, does not appear on screen, 

2-21 

Trigger Summary screen, 23-3 

Triggers 
active. 21-4 
control of color display, 16-5-16-6 
in C, 53-8 

Trouble-shooting 
data plus leads. failure of leads to transition, 

2-21 
data-pIus-leads display,. failure of leads to 

transition. 2-21 
layers, passing data between. 2-21 
overheating, 1-9. 2-22 
Program key, unit unexpectedly enters Run 

mode, 2-20 
Protocol Spreadsheet, unexplained 

strike-through's. 2-20 
Run mode. unit fails to enter, 2-20 
timers. no values displayed, 2-21 
transmit string. does not appear on screen, 

2-21 
trigger conditions. EIA. fails to come true, 

2-20 

Twisted pair. patch cords. 44-5, 45-5, 46-5 

Two's complement, 56-14 

TYPE, trace column 
LAPD.39-8 
SDLC,35-7 
X.25 Layer 2, 33-7 
X.25 Layer 3. 34-12 

Type 
field on BCC Setup menu, 8-11 
field on Disk Maintenance menu, 11-4 
field on Display Setup menu. 5-7 

primitives. 30-4 
subfield on Disk Maintenance menu, 12-8 

Type conversion, automatic in some 
circumstances in C. 56-14 

triLflag, name of flag mask on Trigger Setup 
menus. 21-11, 22-6, 27-7 

trii.-timeout_1. name of timeout on Trigger 
Setup menus, 22-9 

trilLtimeout_2. name of timeout on Trigger 
Setup menus. 22-9 

u 
%u, C conversion specifier. converts char to 

short. 56-14 

U. unit. field on Graphical Statistics menu, 18-7 

UIA 
LED,1-11 
RS-232 input jack, 10-7 
RS-449 input jacks. 45-5 

A and Bt 45-5 
A used for unbalanced patching. 45-5 

V.35 input jackst 44-5 
A and Bt 44-5 
A used for unbalanced patching, 44-6 

X.21 input jacks. 46-5 
A and B t 46-5 
monitored for on/off status. 32-7 

UA, send action 
SDLC, 35-23 
X.2S Layer 2. 33-23 

Undelete. editor command, 26-9 

Unframed mode 
0.703 BERT. 9-40 
Tl BERT. 9-28 

Unit. column on Tabular Statistics screen, 17-6 

Unit of time 
selection for printout of timer line. 27-17 
selection on a statistics screen, 7-7 

Unknown frame. receive condition 
LAPD.39-16 
SDLC.35-16 
X.25 Layer 2. 33-17 

Unknown packet. receive condition. X.25 Layer 
3, 34-26 

Unresolved reference. error message, 2-20 

Unsigned, C data type. 56-14 

Up Arrow key. 26-4 

User disk. personality packages reside on. 6-3 

Index to Part I and Part II 



User trace 
#pragma tracebuf. 5-24, 61-26 
buffer may be scrolled through in Freeze 

mode, 61-23 
buffer size may be increased. 5-24, 61-26 
C routines. 61-27 
display mode, 5-24-5-26 
messages written only via C routines, 61-23 
newline nonliteral (\n) provides leading blank 

line. 61-27 
seven buffers containing 4096 characters each. 

61-23 
seven of eight trace buffers are user-trace 

buffers, 61-23 
structures, declared in trace buf.h #include 

file. 61-23 -
trace_buff C structure, 61-23 
trace_buffer_header. C structure, 61-23 

User-assigned BERT pattern. 9-7 

lusr directory. filing system, 13-6 

lusrldefault 
affect on Start Up screen, 2-2 
boot-up menu configuration, 2-5 
default program. 2-5 

lusrluser _intrf 
affect on Start Up screen, 2-2 
creating a user interface, 2-4 
may be given display line on stat screen(s). 

27-15 

Utilities menus, overview, 2-14 
See also Separate entry under name of each 

menu 

v 
V, value, field on Graphical Statistics menu. 

18-6 

V.35 
circuits. mOnitoring by trigger, 44-7 
Test Interface Module. 44-2, 1-9 

DIP switches 
balanced circuits, 44-5 
unbalanced circuits, 44-5 

test connector. 1-10 

Video connectors 
CRTIRGB, 1-9 
RS-170 composite video. 1-10 

View, File Maintenance. menu selection. 13-18 

Void, C data type. return statement invalid with 
this type. 58-3 

Voltage selection, back panel. 1-7 

Voltages 
RS-232 

detected by receivers, 10-9 
generated by drivers, 10-9 
generated by special output jacks, 10-8 
indicated by UA-input LEDs. 10-7 

RS-449 
generated by special output jacks, 45-6 
indicated by UA-input LEDs. 45-5 

V.35 
generated by special output jacks, 44-6 
indicated by UA-input LEDs, 44-6 

X.21 
generated by special output jacks. 46-6 
indicated by UA-input LEDs. 46-5 

w 
Wait for End Of Frame 

condition dependent on Rcv Blk Chk. ON, 
8-5 

sub field on Trigger Setup menu, 8-5 

Wait for End of Frame, subfield on Trigger 
Setup menu, 21-9 

Wait for EOF (end of frame) 
adjunct to String or One-of condition, Layer 

1. 28-5 
Layer 1 condition, 28-3 

Waitfor. C statement, 53-2, 53-4, 53-5, 53-6, 
53-7, 53-9, 53-13. 54-1. 56-3 

placed inside of state loop. 52-16 

Wall clock 
accurate to one millisecond. 7-6 
controls timers when time ticks are disabled. 

27-10 
drives the timers displayed on the stats results 

screen, 62-11 
enabled when time ticks are disabled, 7-6 
timings available via the 

get_wall_time_286_ticks routine. 62-11 

Warranties. E-3 

WECO 310. Tl connectors. 49-7. 49-8 

While. C statement. nonzero expressions always 
true inside of while statement. 58-2 

Winchester hard disk 
installing new system software. 2-7 
storage capacity. 1-12 

Window 
cleared by Reset Ns action, 33-31, 35-30. 

39-28 
defined. 33-29, 34-39, 35-27, 39-26 

Index to Part I and Part II 



empty, emulate-mode condition. 34-28. 
35-18, 39-17 

LAPD, translated into C, 77-8 
SDLC. translated intoC, 73-8 
X.25 Layer 2. 33-18 

translated into C, 71-8 
X.25 Layer 3. translated into C, 72-13 

full 
effect on Send action, 33-23. 34-31. 

35-22. 39-20 
emulate-mode condition, 34-28. 35-18. 

39-17 
LAPD, translated into C, 77-8 
SDLC, translated into C, 73-8 
X.25 Layer 2. 33-18 

translated into C, 71-8 
X.25 Layer 3, translated into C, 72-12 

not empty, emulate-mode condition. 34-28, 
35-18, 39-17 

LAPD. translated into C, 77-8 
SDLC, translated into C. 73-8 
X.25 Layer 2, 33-18 

translated into C. 71-8 
X.25 Layer 3, translated into C, 72-13 

not full. emulate-mode condition, 34-28. 
35-18, 39-17 

LAPD, translated into C, 77-8 
SDLC, translated into C, 73-8 
X.25 Layer 2. 33-18 

translated into C. 71-8 
X.25 Layer 3, translated into C, 72-12 

Window Size 
field on LAPD Frame Level Setup screen. 

39-3 
field on SDLC Frame Level Setup screen, 

35-3 
field on SNA/SDLC Frame Level Setup 

screen, 36-3 
field on X.2S Frame Level Setup screen, 33-3 
field on X.25 Packet Level Setup screen, 

34-3 

Window size. 33-5, 34-4, 35-5, 39-5 

Write, editor command, 13-7, 26-6 
formatted. 26-6 
unformatted, 26-7 

Write Enable. File Maintenance, menu 
selection, 13-19 

Write Protect, File Maintenance, menu 
selection. 13-20 

Write protection, microfloppies, 1-5 

while. C statement, 58-6 

x 
%x. C conversion specifier, converts char to 

short. 56-14 

X.200, CCI'IT recommendation. 20-5 
X.21 

call-setup phase. 32-4 
clampinglunclamping data leads, 32-9 

set_tcr_b. C routine. 70-8 
invoking. 32-10 

enter_call-phase, C routine, 70-9 
plus. ben and sync idle. 32-9 

x21 idle action. C routine. 70-6 
selectable as initial phase, 46-9 
send action. 32-8 

code and format. 32-8 
x21_transmit_call. C routine, 70-7 

data-plus-Ieads display. 46-6 
data-transfer phase, 32-5 

default initial phase. 46-9 
invoking, 32-11 

enter_data-phase. C routine. 70-9 
selectable as initial phase, 46-9 
send action. 32-7 

Interface Control Menu screen, 46-8 
Layer 1 package. 32-3 
leads 

controlling C and It 32-10 
monitoring C and I for true or valid status, 

32-'6 
mOnitoring T and R for valid status. 32-5 

sending from Layer 2. 32-5. 32-11 
Test Interface Module. 46-2. 1-11 

DIP switches. 46-5 

X.21 bis. lead conversions. 32-4 
X.2S 

diagram of frame fields. 33-8 
diagram of packet fields. 34-10 
sample Line Setup. 4-13 
user program to convert protocol headers to 

hexadecimal, 33-35 
user program to force data packets containing 

fox messages out onto the line from Layer 
3. 34-45 

user program to make Layer 2 "automatic" 
for higher layer. 33-36 

X.25 Frame Level Setup screen, 33-2 

X.25 Packet Level Setup screen. 34-2. 34-32 
Xmit Complete 

condition, Trigger Setup menus. 21-10 
fevar_xmit_cmplt, C event. 59-5 
Layer 1 condition. 28-6 

Xmit Delay, field on Interface Control menu, 
10-12. 10-16 

tndex to Part I and Pert II 

-----"""----------------



Xmit distant MF alarm. G.703. Interface 
Control selection, 50-22 

Xmit Idle Char 
field on Line Setup menu, 3-6 
subfield on Line Setup menu, 4-9 

Xmit remote alarm, G.703. field on Interface 
Control menu, 50-22 

Xmit signalling all l's, G.703, Interface Control 
selection, 50-22 

XS-3 
default BCC parameters. 8-9 
default sync pattern, 4-7 

hex-to-display conversion table. D2-3 
keyboard-to-XS-3 conversion table, D1-5 
SY characters inappropriate for. 4-7 

v 
Yellow alarm, Tl transmissions, 49-24 

z 
Zero. transmitting steady zero. set_tcr_b. C 

routine, 59-14 

Index to Part I and Part II 



Index B 
C Structures, Variables, and Routines 

A 
Aux. port 110 

events. aux._change, 68-4 
routines 

set_aux._ctl_leads. 68-6 
set_aux._direction, 68 .... 5 
set_aux.Jeg. 68-10 
write_aux., 68-7 

variables 
curr_aux_value, 68-4 
prev _aux_ value. 68-4 

add_arraLto_buff. data-display routine, 
defined, 59-18 

add_event_to_buff. data-display routine. 
defined. 59-17 

_append_il_buff_list_cnt. OSI layer-independent 
routine. 55-7 

defined, 63-43 

aux_change. aux port 1/0 event. 68-3, 68-10 
defined. 68-4 

B 
bcc_error 

LAPD event. defined, 77-3 
SDLC event. defined, 73-3 
X.25 Layer 2 event. defined. 71-3 

c 
Counter 

events. counter_name_change. 62-3 
structures, counter_struct. 62-2 

ciearerr, disk 1/0 routine, 65-2. 65-4 
defined. 65-10 

convert tick count. timer routine. 62-11. 
62-12. 62-18 

defined, 62-18 

counter_name_change, counter event, 54-2. 
54-3, 62-1 

defined. 62-3 

counter_strllct. counter structure. 57-15, 62-1, 
62-6, 62-16 

defined. 62-2 

crnt_date_of_day, real-time clock variable. 
defined. 69-4 

crnt_displaLscreen, status variable. 61-1. 66-1, 
69-18 

defined. 61-2 

crnt_time_oCday. real-time clock variable. 
52-1. 54-1. 57-3 

defined, 69-4 

crnt_tm, real-time clock structure, defined. 
69-2 

ctl_capture_rd. data-display routine. 57-12, 
59-9 

defined, 59-9 

ctl_capture_td. data-display routine, 57-12 
defined. 59-8 

ctl_eia 
EIA routine. 60-4 

defined, 60-3 
RS-485 application, 47-8 

X.21 routine. 70-5 
dermed. 70-4 

ctl_enhance_fd, data-display routine, defined. 
59-8 

ctl_enhance_td. data-display routine. defined, 
59-7 

curr_aux._value. aux port I/O variable, 68-8. 
68-10 

defined, 68-4 

current_col. Display Window variable. 61-4 
defined, 61-5 

current_ eia _leads 
EIA variable. 57-8, 60-1. 60-2, 60-3 

defined, 60-2 
X.21 variable, 70-2 

defined. 70-3 

current_line. Display Window variable. 61-4 
defined, 61-5 

Index to C Structures. Variables. and Routines 



D 
Data display 

routines 
add_array_to_buff, 59-18 
add_event_to_buff. 59-17 
ctl_captureJd, 59-9 
ctl_capture_td. 59-8 
ctl_enhanceJd, 59-8 
ctl_enhance_td, 59-7 

variables 
rd_modifier. 59-5 
td_modifier, 59-4 

DDCMP 
events 

fevar_bd_bcc_Td, 75-2 
fevaT_bd_bcc_td. 75-2 
fevar_bd_bcc2_rd. 75-2 
fevar_bd_bcc2_td. 75-2 
fevarJd_bccJd, 75-2 
fevarJd_bcc_td. 75-2 
fevarJd_bcc2_rd. 75-2 
fevar_sd_bee2_td, 75-2 

Disk I/O. routines 
elearerr, 65-10 
£Close, 65-5 
feof, 65-7 
ferror, 65-8 
fflush. 65-6 
fgete. 65-20 
fgets, 65-18 
fopen. 65-4 
fprintf, 65-28 
fputc, 65-26 
fputs, 65-25 
fread, 65-16 
fseek. 65-11 
fwrite. 65-23 
Jet_file_type. 65-36 
lock. 65-14 
mkdir, 65-33 
remove, 65-32 
rename, 65-31 
rewind, 65-13 
_set_file_type, 65-34 
ungete, 65-21 
unlock. 65-16 

Display Wmdow 
routines 

displaYJ>rompt, 61-21 
displaye, 61-9 
displayf, 61-9 

displays, 61-20 
pos_cursor. 61-21 
restore_cursor, 61-22 
sprintf, 61-13 

structures. display_window_index_buffer. 61-8 
variables 

current_col, 61-5 
current_line, 61-5 
display-Window _buffer, 61-7 
window_color. 61-5 
window_modifier, 61-7 

d_dce_frame. ISDN event. defined. 76-2 

d_dte_frame, ISDN event, defined, 76-2 

d_rcv_frame. ISDN event. defined, 76-2 

dee_abort 
LAPD event. defined. 77-3 
SDLC event, defined, 73-3 
SS#7 Layer 2 event, defined, 79-2 
X.25 Layer 2 event, defined, 71-3 

dce_bad_bce 
LAPD event, defined, 77-3 
SDLC event, defined. 73-3 
55#7 Layer 2 event. defined, 79-2 
X.25 Layer 2 event. defined, 71-3 

dee_flags, S5#7 Layer 1 variable, defined. 79-5 

dee_frame, 54-2 
LAPD event, defined. 77-3 
SDLC event, defined, 73-3 
5S#7 Layer 2 event, defined, 79-2 
X.25 Layer 2 event, defined. 71-3 

dce_frames_suppressed, 55#7 Layer 1 variable, 
defined, 79-5 

dceJood_bee 
LAPD event, defined, 77-3 
5DLC event, defined. 73-3 
SS#7 Layer 2 event. defined, 79-2 
X.2S Layer 2 event. defined. 71-3 

dce...packet 
0.931 event. defined, 78-2 
55#7 Layer 3 event, defined, 80-2 
X.2S Layer 3 event, defined, 72-3 

display_binary, user-defined routine, 58-5 

displaYJ>rompt. Display Window routine, 67-16 
defined. 61-21 

display_screen_changed. status event, 61-1, 
66-1 

defined, 61-2 

display_window _buffer, Disp1ay Window 
variable. 61-4. 61-35, 61-36 

defined. 61-7 

Index to C Structures. Variables, and Routines 



display_window_index_bufter. Display Window 
structure, 61-7. 61-35 

defined, 61-8 

displaye, Display Window routine, 61-1 
defined, 61-9 

displayf. Display Window routine, 56-14, 
56-19, 61-1. 61-3, 61-8, 61-13, 61-32, 
61-33. 65-7. 65-19, 67-6, 67-11 

defined. 61-9 

displays, Display Window routine, 56-19, 
56-22, 57-10, 58-1. 58-3, 61-1, 65-12, 
65-24 

defined. 61-20 

dte_abort 
LAPD event, defined. 77-3 
SDLC event. defined. 73-3 
SS#7 Layer 2 event, detmed. 79-2 
X.25 Layer 2 event, defined, 71-3 

dte_bad_bee 
LAPD event, defined, 77-3 
SDLe event. defined, 73-3 
SS#7 Layer 2 event, defined, 79-2 
X.25 Layer 2 event, defined, 71-3 

dte_flags, SS#7 Layer 1 variable, defined, 79-5 

dte_frame 
LAPD event. defined. 77-3 
SOLe event, defined. 73-3 
SS#7 Layer 2 event, 79-3 

defined. 79-2 
X.2S Layer 2 event, defined. 71-3 

dte_frames_suppressed. SS#7 Layer 1 variable. 
defined. 79-5 

dteJood_bce 
LAPD event, defined, 77-3 
SOLe event, defined, 73-3 
SS#7 Layer 2' event, defined. 79-2 
X.25 Layer 2 event, defined. 71-3 

dteJ)aeket. 54-2 
0.931 event. defined, 78-2 
SS#7 Layer 3 event. 80 ... 1 

defined, 80-2 
X.25 Layer 3 event, defined. 72-3 

_dup_il_bufClist, OSI layer~independent 
routine. 63-43. 63-44 

defined. 63-34 

_dup_il_buff_list_start. OSI layer-independent 
routine. 63-39, 63-42.. 63-43 

defined, 63-33 

E 
EIA 

events. fevar_eia_ehanged, 60-2 
routines, cteela. 60-3 

RS-485 application. 47-8 
variables 

current_eia_leads. 60-2 
previous_eia_leads, 60-2 

enter_callJ)hase. X.21 routine. 70-9 
defined. 70-9 

enter_dataJ)hase. X.21 routine, 70-10 
defined. 70-9 

F 
Flag 

events, flaL.name_change, 69-4 
structures, flaL.stTUct, 69-2 

fclose. disk I/O routine. 65-1. 65-3, 65-6, 
65-7. 65-10. 65-11. 65-13, 65-14, 67-16 

defined. 65-5 
feof, disk 110 routine. 65-4. 65-8 

defmed, 65-7 
ferror. disk 1/0 routine, 65-4, 65-9 

defined, 65-8 
levar abort rd. line event, 59-6 

defined, 59-3 
fevar_abort_td, line event, 59-6 

defined, 59-3 
fevar bd bee rd 

onCMP event. defined. 75-2 
line event, 59-2, 59-6 

defined, 59-3 
fevar bd bee td 

DoCMP event. defined. 75-2 
line event. 59-2 

defined. 59-3 
fevar bd bec2 rd, DDCMP event, 59-6 

defined. 75..:2 
fevar bd bee2 td. DDCMP event, defined, 

75-2- -

fevar _ eia_changed 
EIA event. 53-1S. 54-2. 60-1, 60-3 

defined. 60-2 
X.21 event. 70-2 

defined, 70-3 
fevar_frm_errorJd. line event, defined. 59-3 
fevaT_frm_erroT_td, line event, defined. 59-3 

fevar Jd_becJd 
DOCMP event. defined, 75-2 
line event, 54-2, 59-6 

defined. 59-3 

lndex to C Structures, Variables, and Routines 



fevar-id_bcc_td 
DDCMP event, defined, 75-2 
line event, defined, 59-3 

fevar-id_bcc2Jd, DDCMP event, 59-6 
defined. 75-2 

fevar-id_bcc2_td, DDCMP event, defined, 
75-2 

fevaryaritLrd, line event, defined. 59-3 

fevaryarity_td, line event, defined. 59-3 

fevar_rcv_buffer_full. line event. 59-2 
defined. 59-3 

fevarJcvd_charJd, line event. 55-1, 59-5 
defined. 59-3 

fevar rcvd char td. line event. 54-2. 55-1, 
59-5 - -

defined, 59-3 

fevar_time_of_day. real-time clock event, 52-1. 
54-1, 54-2. 57-1. 57-3 

defined, 69-4 

fevar_xmit_cmplt. transmit event, 59-5 
defined, 59-4 

fflush, disk 110 routine. 65-1, 65-2. 65-3. 
65-7 

defined, 65-6 

fgetc, disk I/O routine. 65-1. 65-2 
defined, 65-20 

fgets. disk I/O routine, 65-1, 65-2. 65-19 
defined. 65-18 

flaLname_change. flag event. 54-2, 54-3 
defined, 69-4 

flaLstruct, flag structure. defined. 69-2 

fopen, disk I/O routine, 65-2. 65-3. 65-5. 
65-13. 67-15 

defined, 65-4 

fprintf. disk I/O routine, 65-2. 65-7. 65-31 
defined. 65-28 

fputc, disk I/O routine, 65-2. 65-11. 65-27 
defined, 65-26 

fputs. disk I/O routine. 65-2 
defined. 65-25 

frame sent 
LAPD event. defined, 77-4 
SDLC event. defined. 73-4 
X.25 Layer 2 event. defined. 71-4 

fread, disk 110 routine. 65-1. 65-2, 65-9, 
65-17, 65-36, 67-16 

defined. 65-16 

_free_il_msLbuff. OSl layer-independent 
routine, 55-5. 63-38. 63-39 

fseek. disk 110 routine. 65-2. 65-4. 65-12. 
65-14 

defined, 65-11 

fwrite. disk 110 routine. 65-1, 65-2. 65-15, 
65-24. 65-36 

defined, 65-23 
defined. 63-37 

G 
get_68kJ'hys_addr. stats-display routine, 58-1. 

62-5, 62-7. 62-16 
dermed, 62-14 

-iet_file_type. disk I/O routine. 65-37 
defined. 65-36 
defined. 63-32 

-iet_il_msLbuff. OSI layer-independent 
routine, 55-5. 55-8. 59-13. 63-36. 63-37. 
63-41, 63-45, 71-13, 72-17. 73-13, 76-5. 
77-13 

defined. 63-31 

get_wall_time_286_tkks, timer routine. 62-11. 
62-12. 62-17 

defined. 62-17 

get_wall_time_ticks, timer routine, 62-17 
defined, 62-16 

I 
Interrupt 

events, signal_name. 69-4 
routines, signal. 69-15 

ISDN 
events 

d_dce_frame. 76-2 
d_dte_frame. 76-2 
dJcv_frame. 76-2 

routines 
send_d_frame. 76-3 
send_d_frame_il. 76-4 
set_isdn_speaker_chan. 76-5 

structures, xmit_list. 76-1 

idle_action, transmit routine. defined. 59-13 

il buffer. OSI structure. 55-7. 57-16. 63-6, 
- 63-7 
defined. 63-9 

il list header. OSI structUre. 63-4 
-defined. 63-10 

Index to C Structures. Variables, and Routines 



iLlist_node. OSI structure. 63-4 
defined. 63-11 

index. string routine. 56-22. 69-11 
defined. 69-11 

_insert_il_buff_list_cnt 
OSI layer-independent routine. 55-5, 55-7, 

55-8, 59-13, 63-36, 63-39. 63-41. 
63-42, 63-46, 71-13, 72-17, 73-13. 
76-5, 77-13 

defined, 63-39 

invalid_frame 
LAPD event, defined. 77-3 
SDLC event, defined. 73-3 
X.25 Layer 2 event, defined, 71-3 

invalid.J'acket, X.25 Layer 3 event. defined. 
72-3 

OSI routine. 63-12 

K 
Keyboard 

events 
keyboard_new_any_key, 69-5 
keyboard_new_key, 69-4 

routines, send_key, 69-17 
structures. keyboard. 69-2 
variable. keyboard_any_key, 69-5 

keyboard, keyboard structure. defined. 69-2 

keyboard_any_key, keyboard variable. 53-9, 
53-1~ 59-14. 69-18 

defined. 69-5 

keyboard_new_anLkey, keyboard event, 53-9, 
53-13. 53-14, 53-15, 57-2 

defined. 69-5 

keyboard_new_key, keyboard event, 53-14, 
53-IS, 54-2. 69-2 

defined. 69-4 

L 
LAPD 

events 
bcc_error, 77-3 
dee_abort, 77-3 
dee_bad_bce. 77-3 
dee_frame, 77-3 
dee-iood_bec. 77-3 
dte_abort. 77-3 
dte_bad_bce, 77-3 
dte_frame, 77-3 

dW-8ood_bec, 77-3 
frame_sent, 77-3 
invalid_frame. 77-4 
12_Tl, 77-3 
nr_error, 77-3 
ns_error, 77-3 
rcvd_frame. 77-3 

routines 
12-iive_data, 77-9 
resendjrame, 77-10 
reset_nr, 77-11 
reset_ns. 77-12 
send_frame. 77-12 

structures. send_frame_structure. 77-2 
variables 

12_current_window_edge, 77-5 
12_enhance. 77-6 
12_lower_window_edge. 77-5 
12Jesend_edge. 77-5 
12_suppress. 77-6 
12_upper_window_edge, 77-5 
m frame addr cr, 77-4 
m:frame:addr:sapi, 77-4 
m_frame_addr_tei, 77-4 
m_frame_bcc_type. 77-4 
m_frame_cntrl_byte_l. 77-4 
m_frame_nr. 77-4 
m_frame_ns, 77-4 
m_frame.J'f, 77-4 
m_frame_type, 77-4 
rcvd_frame_addr_cr. 77-4 
rcvd_frame_3ddr_sapi, 77-4 
rcvd_frame_addr_tei. 77-4 
rcvd_frame_bcc_type. 77-5 
rcvd_frame_bufCseg, 77-5 
rcvd_frame_cntrl_byte_l. 77-5 
revd_frame_nr. 77-5 
rcvd_frame_ns. 77-5 
rcvd_frameJ'f. 77-5 
rcvd _frame _sdu _offset, 77-5 
rcvd_frame_sdu_size, 77-5 
rcvd_frame _type. 77-4 

Line 
events 

fevar_abort_rd. 59-3 
fevar_abort_td, 59-3 
fevar_bd_bccJd. 59-3 
fevar_bd_bcc_td, 59-3 
fevar_frm_errorJd. 59-3 
fevar_frm_error_td. 59-3 
fevar-id_bcc_rd, 59-3 
fevarJd_bcc_td, 59-3 
fevar,..ParitYJd. 59-3 
fevarJ'arity_td, 59-3 
fevarJcv_buffer_full, 59-3 

index to C Structures. Variables. and Routines 

,------- .. _------



fevar_rcvd_char_rd. 59-3 
fevarJcvd_char_td. 59-3 

routines. outsync_action, 59-10 
variables 

rcv_buffer_full, 59-4 
rcvd_charJd, 59-4 
rcvd_char_td, 59-4 

Lock, routines 
lock. 69-13 
unlock. 69-14 

11 il transmit. transmit routine, 55-1. 55-4, 
- 55-8, 63-39 
defined, 59-12 

11 tick count. timer variable, 62-8, 62-9, 
- 62=11. 62-18. 63-10. 63-16, 63-19, 

63-22, 63-25. 63-28, 63-30 
defined. 62-10 

l1_transmit, transmit routine, 59-1 
defined, 59-11 

ll_trbuf. trace buffer structure. defined, 61-25 

12_current_window_edge 
LAPD variable. defined. 77-5 
SDLC variable. 73-8 

defined. 73-5 
X.25 Layer 2 variable. 71-8, 77-8 

defined, 71-5 

12_enhance 
LAPD variable. 77-8 

defined, 77-6 
SDLC variable, 73-8 

defined. 73-6 
SNA variable, 74-4 
SS#7 Layer 2 variable. 79-4 

defined. 79-3 
X.25 Layer 2 variable, 71-8 

defined. 71-5 

12Jive_data 
LAPD routine, defined. 77-9 
SDLC routine, defined. 73-9 
X.25 Layer 2 routine, defined, 71-9 

12 lower window edge 
LAPD -variable:- 77-8 

defined, 77-5 
SDLC variable. 73-8 

defined, 73-5 
X.25 Layer 2 variable, 71-8 

defined, 71-5 

12 resend edge 
LAPD ;ariable. 77-8 

defined. 77-5 

. SDLC variable. 73-8 
defined, 73-5 

X.25 Layer 2 variable. 71-8 
defined, 71-5 

12_suppress 
LAPD variable, 77-8 

defined. 77-6 
SDLC variable, 73-8 

defined. 73-6 
SNA variable, 74-4 
SS#7 Layer 2 variable, 79-4 

defined, 79-3 
X.25 Layer 2 variable. 71-8 

defined. 71-5 

12 Tl 
LAPD event. defined. 77-3 
SDLC event, defined. 73-3 
X.25 Layer 2 event, defined, 71-3 

12 tick count, OS! Layer 2 variable. defined. 
- 63=16 

12_trbuf. trace buffer structure, defined, 61-25 

12_ upper_window _edge 
LAPD variable. 77-8 

defined. 77-5 
SDLC variable. 73-8 

defined. 73-5 
X.25 Layer 2 variable. 71-8 

defined. 71-5 

12pp_trbuff. Protocol Trace variable. defined, 
61-39 

12pp_trbuff_ctl, Protocol Trace structure. 
defined. 61-41 

12pp _ trbuff_ end. Protocol Trace variable. 
defined, 61-39 

13_clear"path. X.2S Layer 3 routine. defined. 
72-11 

13 enhance 
'0.931 variable, 78-4 

defined. 78-3 
SS#7 Layer 3 variable. 80-7 

defined. 80-6 
X.25 Layer 3 variable. 72-9 

defined. 72-7 

13Jive_data. X.25 Layer 3 routine. defined, 
72-10 

13 more to resend. X.25 Layer 3 routine, 
- defuled:- 72-11 

13 _suppress 
0.931 variable. 78-4 

defined, 78-3 

Index to C Structures, Variables. and Routines 



SS#7 Layer 3 variable. defined. 80-6 
X.25 Layer 3 variable. 72-9. 80-7 

defined. 72-7 

13_tick_count, OSI Layer ,3 variable. defined, 
63-19 

13_trbuf. trace buffer structure, defined. 61-25 

13_window_empty, X.2S Layer 3 routine, 
defined, 72-13 

13_window_full. X.2S Layer 3 routine, 58-2 
defined, 72-12 

13pp_trbuff, Protocol Trace variable, defined, 
61-39 

13pp_trbufCct1. Protocol Trace structure, 
defined. 61-42 

13pp_trbufCend. Protocol Trace variable. 
defined. 61-39 

14_tick_count. OSI Layer 4 variable, defined. 
63-22 

14_trbuf. trace buffer structure, defined, 61-25 

IS_tick_count. OSI Layer 5 variable. defmed, 
63-25 

lS_trbuf.trace buffer structure. defined, 61-26 

16_tick_count. OSI Layer 6 variable. defined, 
63-28 

16_trbuf. trace buffer structure, defined. 61-26 

17_tick_count, OSI Layer .7 variable, defined, 
63-30 

17 _trbuf. trace buffer structure. defined. 61-26 

lo_dl_it.buff. 051 Layer 3 variable. 55-3, 
63-50 

defined. 63-18 

10_dl.Jldu-.seg, OSI Layer 3 variable. defined. 
63-17 

lO_dl"'prmtv. OSI Layer 3 event. 55-3 
defined. 63-17 

10_dl.J'l1Xltv_code. OSI Layer 3 variable. 63:-47 
defined. 63-17 

lo_dl"'prmtvJ)ath, 051 Layer 3 variable, 63-47. 
63-51 

defined. 63-18 

10 dl sdu. OSI Layer 3 variable. 55-3, 63-51 
defined. 63-18 

10 n U buff. OSI Layer 4i variable, 63-54, 
- 63':-56 
defined, 63-21 

lo_n.Jldu_seg, OSI Layer 4 variable. defined, 
63-20 

lo_n"'prmtv, OSI Layer 4 event. defined. 63-20 

lo_nJ>rmtv_code. OSI Layer 4 variable. 63-51 
defined, 63-20 

lo_n-prmtv-path, aS! Layer 4 variable. 63-55 
defined. 63-21 

lo_n_sdu, OSI Layer 4 variable. 63-55 
defined. 63-21 

IO"'p_il_buff. OSI Layer 7 variable. defined. 
63-30 

lO"'p""pdu_seg. OSI Layer 7 variable. defined. 
63-29 

l0...p...prmtv. OSI Layer 7 event. defined. 63-29 

10....P...Prmtv_code. OSI Layer 7 variable. 63-63 
defined. 63-29 

10J)...prmtv...path, OSI Layer 7 variable. defined, 
63-29 

IOJ)_sdu. OSI Layer 7 variable. defined. 63-30 

10J)h_il_buff. OSI Layer 2 variable, 55-3, 
63 .... 46 

defined. 63-15 

IO"'ph-pdu_seg, OSI Layer 2 variable. defined. 
63-14 

}o"'phJ)rmtv. OSI Layer 2 event. 55-3 
dermed. 63-14 

10...Ph....Prmtv_code. OSI Layer 2 variable. 63-45 
defined. 63-14 . 

l0....Ph...PrmtvJ)ath. OSI Layer 2 variable. 
defined. 63-15 

lO"ph_sdu, OSI Layer 2 variable, 55-3, 63-46, 
63-47 

defined. 63:-15 

10 s il buff. OSI Layer 6 variable, 63-62 
'defined. 63-27 

lo_s-Pdu_seg. OSI Layer 6 variable. defined. 
63-26 

lo_s"'prmtv, OSI Layer 6 event. defined, 63-26 

lo_s"'prmtv_code, OSI Layer 6 variable. defined. 
63-26 

lo_s...prmtv..path. OSI Layer 6 variable. 63 ... 63 
defined. 63-27 

10 s &du. OSI Layer 6 variable. 63-63 
'defined, 63-27 

10_t_U_buff, aS! Layer 5 variable. 63-58 
defined. 63-24 

Index to C Structures. Variabtes. and Routines 

-------



lo_t"'pdu_seg. OSI Layer 5 variable. defined. 
63-23 

lo_t..,prmtv.OSI Layer 5 event, defined, 63-23 

lo_t..,prmtv_code, OSI Layer 5 variable, 63-55, 
63-59 

defined. 63-23 

lo_t"'prmtv"'path. OSI Layer 5 variable. 63-59 
defined. 63-24 

lo_t_sdu, OSI Layer 5 variable. 63-59 
defined. 63-24 

Ioad...program. program-chaining routine, 69-13 
defined. 69-12 

lock 
disk I/O routine. 65-4, 65-15 

defined, 65-14 
lock routine. 69-14 

defined, 69-13 

M 
m_bib, SS#7 Layer 2 variable. defined. 79-2 

m_callJef_flag, Q.931 variable, defined, 78-2 

m_callJeClen. Q.931 variable. defined, 78-3 . 

m_cic, SS#7 Layer 3 variable, defined, 80-6 

m_code_type. SS#7 Layer 3 variable. defined. 
80-2 

m_fib. SS#7 Layer 2 variable. defined. 79-2 

m_frame_addr 
SDLC variable. defined, 73-4 
X.2S Layer 2 variable. defined, 71-4 

m frame addr cr, LAPD variable. defined, 
- 77-4- -

m_frame_addr~sapi, LAPD variable, defined, 
77-4 

m frame addr tei. LAPD variable, defined. 
- 77-4- -

m_frame_bcc_type 
LAPD variable. defined. 77-4 
SDLC variable. defined. 73-4 
SS#7 Layer 2 variable, defined. 79-3 
X.25 Layer 2 variable, defined. 71-4 

m frame cntrl byte 1 
LAPD ;ariable, defined, 77-4 
SDLC variable. defined. 73-4 
X.25 Layer 2 variable, defined. 71-4 

m_frame_nr. LAPD variable, defined, 77-4 

m_frame_ns, LAPD variable, defined. 77-4 

m_frame"'pf 
LAPD variable, defined, 77-4 
SDLC variable, defined. 73-4 
X.25 Layer 2 variable. defined, 71-4 

m_frnme_type 
LAPD variable. defined, 77-4 
SDLC variable. defined. 73-4 
SNA variable. 74-1 
X.25 Layer 2 variable, defined. 71-4 

m info element len. Q.931 variable. defined. 
- 78':-3 -

m_Iabel_dpc. SS#7 Layer 3 variable. defined. 
80-6 

m_IabeLopc. SS#7 Layer 3 variable. defined. 
80-6 

m_Iabel_sls. SS#7 Layer 3 variable. defined. 
80-6 

m_li, SS#7 Layer 2 variable. defined, 79-3 

m_lo_dUI_buff. OSI Layer 3 variable. 55-3, 
63-5, 63-7. 63-8, 63-9, 63-10, 63-11, 
63-52 

defined. 63-18 

m_lo_dl..,.Pdu_seg. OSI Layer 3 variable. 63-8 
defined, 63-17 

m_Io_dl"'prmtv. OSI Layer 3 event. 55-3. 63-7 
defined, 63-17 

m_Io_dI..,prmtv_code, OSI Layer 3 variable. 
63-8, 63-48 

defined, 63-18 

m_lo_dl..,.PrmtvJlath. OSI Layer 3 variable. 
63-8 

defined. 63-18 

m_lo_dl_sdu_offset. OSI Layer 3 variable. 55-3, 
63-8. 63-10, 63-52 

defined. 63-18 

m 10 dl sdu size, OSI Layer 3 variable, 55-3, 
- 63-8. 63:'52 
defined. 63-18 

m_lo_n_il_buff. OSI Layer 4 variable, 63-56 
defined. 63-21 

m_lo_nJldu_seg. OSI Layer 4 variable. defined, 
63-20 

m_lo_n..,prmtv. OSI Layer 4 event. defined. 
63-20 

m_Io_n"'prmtv_code. OSI Layer 4 variable, 
63-52 

defined, 63-21 

Index to C Structures. Variables. and Routines 



ID_Io_n..prmtv..path, 051 Layer 4 variable. 
defined. 63-21 

m_lo_n_sdu_offset. OSI Layer 4 variable. 63-56 
defined. 63-21 

m_Io_n_sdu_size. OSI Layer 4 variable. 63-56 
defined. 63-21 

m_lo"p_il_buff. OSI Layer 7 variable. defined. 
63-30 

m_lo"p"pdu_seg, OSI Layer 7 variable. defined. 
63-29 

m_I0..p..,prmtv. OSI Layer 7 event. defined. 
63-29 

m_loo-PJ'rmtv_code. OS! Layer 7 variable. 
63-64 

defined. 63-29 

m_lo"'pJ'rmtvJ'ath. 051 Layer 7 variable. 
defined. 63-30 

ID_loJ'_sdu_offset. OSI Layer 7 variable. 
defined. 63-30 

m_lo"'p_sdu_size. OSI Layer 7 variable, defined. 
63-30 

ID_IoJ'h_il_buff 
OSI Layer 2 variable, 55-1. 55-2, 55-3. 

63-48 
defined, 63-15 

OSI layer 2 variable. 57-10. 57-12, 57-17 

ID_loJ'ho-Pdu_seg, OSI Layer 2 variable. 
defined, 63-14 

ID_loJ'hJ'rmtv 
051 Layer 2 event. 55-1. 55-3 

defined. 63-15 
OSI layer 2 event, 57-10 
signalled by DDCMP package. 37-2 

mJoJ'hJ'rDltv_code. 051 Layer 2 variable, 
defined. 63-14 

ID_loJ'hJ'rmtv"path. 051 Layer 2 Variable. 
defined, 63-14 

m_loJ'h_sdu_offset. 051 Layer 2 variable. 
55-1. 63-48 

defined, 63-15 

m_IoJ'h_sdu_size, OSI Layer 2 variable, 55-3. 
63-48 

defined, 63-15 

ID_Io_s_il_buff. OSI Layer 6 variable, 63-64 
defined. 63-27 

ID_lo_s-Pdu_seg, OSI Layer 6 variable. defined. 
63-26 

ID_lo_sJ'rmtv. OSI Layer 6 event. defined, 
63-26 

m_Io_sJ'rmtv_code. OSI Layer 6 variable. 
63-60 

defined. 63-26 

m_lo_s..prmtv..path. OSI Layer 6 variable. 
defined. 63-27 

m_Io_s_sdu_offset. OSI Layer 6 variable, 63-64 
defined, 63-27 

ID_Io_s_sdu_size. OS! Layer 6 variable, 63-64 
defined, 63-27 

ID_lo_t_il_buff, OSI Layer 5 variable. 63-60 
defined. 63-24 

m_lo_tJ'du_seg. OSI Layer 5 variable, defined. 
63-23 

ID_lo_t"prmtv. OSI Layer 5 event. defined, 
63-23 

m_lo_tJ'rmtv_code, OSI Layer 5 variable. 
63-56 . 

defined. 63-23 

m_Io_t"prmtvJ'8th, OSI Layer 5 variable, 
defined. 63-24 

m_lo_t_sdu_offset. OSI Layer 5 variable, 63-60 
defined. 63-24 

m_Io_t_sdu_size. 051 Layer 5 variable, 63-60 
defined. 63-24 

ID_message_type. 0.931 variable, defined. 78-3 

m_message_type_defined, 0.931 variable. 
defined. 78-2 

IDJ'8cket_bcc_type, 0.931 variable. defined. 
78-2 

mJ'acket_bufCseg, X.2S Layer :3 variable. 72-8 
defined. 12-5 

mJ'acket_cause. X.2S Layer 3 variable. 
defined. 72-4 

m"packet_d, X.25 Layer 3 variable, defined. 
72-3 

mo-Pack.et_daf. SNA variable. defined. 74-2 

ID"'packet_def, SNA variable. defined. 74-2 

mJ'acket_dialLcode. X.2S Layer :3 variable, 
defined. 72-4 

mJ>acket_dsaf, SNA variable. defined. 74-2 

IDo-Packet_fi. SNA variable. defined. 74-3 

IDJ'acket_fid_type. SNA variable, 74-1 
defined, 74-2 

Index to C Structures, Variables. and Routines 



mJ'acket_info_length, X.2S Layer 3 variable. 
72-9 

dermed. 72-5 

mJ>acket_info_offset. X.2S Layer 3 variable, 
defined. 72-$ 

mJ'acket_ info J>tr 
X.25 Layer 2 variable. 58-6 
X.25 Layer 3 variable. 58-1, 61-29, 61-30, 

72-8 
defined, 72-6 

mJ'acket_info_seg, X.2$ Layer 3 variable, 
defined, 72-$ 

mJ'acket_lcn, X.25 Layer 3 variable, 61-29. 
61-30 

defined. 72-3 

mJ'acket_lcnJI'P. X.2S Layer 3 variable. 
defined. 72-3 

mJ'acket_length 
SNA variable. defined. 74-2 
X.2S Layer 3 variable. 72-8 

defined. 72-$ 

mJ'acket_lsid. SNA variable. defined. 74-2 

mJ'acket_m. X.2S Layer 3 variable. defined. 
72-3 

mJ>acket_oaf, SNA variable. defined. 74-2 

mJ'acket_oef. SNA variable. defined. 74-2 

mJ>acket_osaf. SNA variable. defined. 74-2 

mJ'acketJ'r. X.2S Layer 3 variable, defined, 
72-3 

mJ'acketJ>s. X.2S Layer 3 variable. defined. 
72-3 

mJ'acketJ'tf. X.2S Layer 3 variable. 57-14 
defined, 72-6 

mJ'acket_q, X.2$ Layer 3 variable, defined. 
72-3 

mJ'acketJri. SNA variable. defined. 74-3 

mJ>acket_rti. SNA variable. defined. 74-3 

mJ'acketJu_category, SNA variable, defined. 
74-3 

mJ'acket_sdi, SNA variable. 74-4 
dermed, 74-3 

m..J'acket_sdu_offset, X.2S Layer 3 variable, 
72-8 

defined. 72-$ 

mJ'acket_type, X.2$ Layer 3 variable. defined. 
72-4 

mJ'acket_type_byte. X.2S Layer 3 variable, 
defined. 72-4 

mJ'rot_disc, Q.931 variable. defined, 78-2 

mJ'tr_to_caILref, Q.931 variable. 78-4 
defined, 78-3 

mJ'tr_to_info_element. Q.931 variable. 78-4 
defined, 78-3 

m_sio_ni, SS#7 Layer 3 variable, defined, 80-2 

m_sioJ'riority, SS#7 Layer 3 variable. defined. 
80-2 

m_sio_si, SS#7 Layer 3 variable, 80-1 
defined. 80-2 

m_soO, SS#7 Layer 2 variable. 79-4 
defined, 79-3 

m_unit_type, SS#7 Layer 2 variable. 79-3 
defined. 79-2 

mkdir. disk 1/0 routine. defined, 65-33 

mpm_info. status structure, defined, 66-5 

N 
nr_error 

LAPD event, defined. 77-3 
SOLC event. defined. 73-3 
X.25 Layer 2 event, defined, 71-3 

ns_error 
LAPO event. defined, 77-3 
SOLC event. defined. 73-3 
X.2S Layer 2 event. defined, 71-3 

o 
OSI 

events 
lo_dlJ'rmtv, 63-17 
lo_nJ'nntv. 63-20 
10J'J'rmtv, 63-29 
lOJ'hJ'rmtv. 63-14 
lo_s..,pnntv, 63-26 
lo_tJ'rmtv. 63-23 
m_Io_dlJ'rmtv. 63-17 
m_lo_nJ'nntv. 63-20 
m_lo"'pJ'rmtv, 63-29 
m_IoJ'hJ'rmtv. 63-14 
m_lo_sJ'rmtv. 63-26 
m_lo_t..,prmtv. 63-23 
up_dlJ'rmtv, 63-14 

Index to C Structures. Variables. and Routines 



up_n.J>ITntv, 63-11 
up.J>.J>ITntv, 63-26 
up_s.J>ITntv, 63-23 
up_t.J>rmtv. 63-20 

routines. 63-30 
_append_il_buff_list_cnt. 63-43 
_dup_iLbuff_list, 63-34 
_dup_il_bufClist_start, 63-33 
_free_il_msLbuff. 63-31 
Jet_il_msLbuff. 63-31 
_insert_il_buff_llst_cnt. 63-39 
_open_space_in_il_buff. 63-35 
_set_maint_bufCbit. 63-37 
_start_il_bufClist, 63-32 
send_dl.J>ITntv_above. 63-46 
send_dl.J>rmtv_below., 63-53 
send_m_dl.J>ITntv_above, 63-48 
send_m_n.J>nntv_above. 63-52 
send_m.J>.J>rmtv_above. 63-64 
send_m_s.J>rmtv_above. 63-60 
send_m_t.J)ITntv _above. 63-56 
send_n.J>rmtv_above. 63-50 
send_n.J>rmtv_below •. 63-51 
send.J> .J>rmtv _above. 63-62 
send.J>.J>rmtv_below.63-66 
send.J)h.J>rIDtv _below. 63-49 
send.J>h_to_above. 63-44 
send_s...,PrIDtv3bove.63-58 
send_s...,PrIDtv_below. 63-65 
send_t.J)rmtv _above, 63-54 
send_t.J>rmtv_below. 63-61 

structures 
il_buffer. 63-9 
il_list_header, 63-10 
il_list_node, 63-11 
pdu.63-8 

variables. 63-12-63-30 
12 tick count. 63-16 
13:tick:count, 63-19 
14_tick_count. 63-22 
15 tick count, 63-25 
16:tick:count. 63-28 
17 _tick_count. 63-30 
lo_dUI_buff. 63-18 
lo_dl.J>du_seg, 63-11 
lo_dl.J)rmtv_code. 63-17 
lo_dl.J)rmtv.J>ath. 63-18 
lo_dl_sdu. 63-18 
lo_n_iLbuff, 63-21 
10_n.J)du_seg, 63-20 
lo_n.J)rmtv_code, 63 ... 20 
10_n.J)rmtv.J)atb, 63-t21 
lo_n_sdu, 63-21 
IO.J)_il_buff. 63-30 
lO.J).J>du_seg. 63-29 

lOJ>J>rIDtv_code, 63-29 
lO_l'. .. prmtvJ>ath, 63-29 
l0.J>_sdu, 63-30 
IOJ>h_il_buff. 63-15 
lO.J)h.J)du_seg, 63-14 
lo-ph-prmtv_code, 63-14 
l0.J>h.J)rIDtv.J)ath. 63-15 
10.J>h_sdu, 63-15 
lo_s_il_buff, 63-27 
lo_s"'pdu_seg, 63-26 
10_sJ>rmtv_code, 63-26 
lo_s...prmtvJ>ath, 63-27 
lo_s_sdu, 63-27 
lo_t_il_buff. 63-24 
lo_t...,Pdu_seg. 63-23 
lo_tJ>rIDtv_code, 63-23 
lo_t...prmtvJ>ath. 63-24 
lo_t_sdu. 63-24 
m_Io_dl_il_buff. 63-18 
m_Io_dl"'pdu_seg. 63-17 
m_Io_dl...,PfIDtv_code. 63-18 
m_lo_dlJ>rmtvJ>ath. 63-18 
m_Io_dl_sdu_offset, 63-18 
m 10 dl sdu size, 63-18 
mJo:n]I_buff. 63-21 
m_Jo_n...,Pdu_seg. 63-20 
m_Io_nJ'rttltv_code. 63-21 
m_lo_nJ>rmtvJ>ath, 63-21 
m 10 n sdu offset, 63-21 
m -10 - n -sdu - size, 63-21 
mJo:J>:il_bUff, 63-30 
m_loJ>J>du_seg, 63-29 
m_lo...p-Ptmtv_code. 63-29 
m_Jo J> "'prmtv .J)ath. 63-30 
m_lo.J)_sdu_offset. 63-30 
m_Io.J)_sdu_size. 63-30 
m_IoJ>h_il_buff. 63-15 
m_loJ>h.J)du_seg, 63-14 
m_lo"'ph-prmtv_code. 63-14 
m_lo.J)h.J)rIDtvJ>ath, 63-15 
m_IoJ>h_sdu_offset. 63-15 
m_loJ>h_stlu_size, 63-15 
m_Io_s_il_buff. 63-27 
m_lo_s.J)du_seg, 63-26 
m_lo_sJ'rmtv_code. 63-26 
m_lo_sJ>rmtvJ>ath. 63-27 
m_lo_s_sdu_offset. 63-27 
m_lo_s_sdu_size, 63-27 
m_lo_t_il_buff. 63-24 
m_lo_t...,Pdu_seg, 63-23 
m_lo_tJ>rmtv_code. 63-23 
m_lo_t.J)rIDtv.J)ath, 63-24 
m_Io_t_sdu_offset, 63-24 
m_Io_t_sdu_size, 63-24 
phJ'rIDtv_type. 63-13 
up_dl_il_buff, 63-16 

Index to C,Structures. Variables. and Routines 



up_dl..,pdu_seg. 63-15 
up_dl"'pnntv_code, 63-16 
up_dl..,prmtv"'path, 63-16 
up_dl_sdu, 63-16 
up_n_il_buff, 63-19 
up_n"'pdu_seg, 63-19 
up_n..,pnntv_code. 63-19 
up_n..,prmtv..,path. 63-19 
up_n_sdu, 63-19 
up..,p_il_buff, 63-28 
up"'p"'pdu_seg, 63-27 
up..,p..,pnntv_code. 63-28 
up..,p..,prmtv-patll, 63-28 
up-p_sdu, 63-28 
up_s_il_buff, 63-25 
up_sJXlu_seg, 63-24 
up_s-prmtv_code, 63-25 
up_s-pnntv..,path, 63-25 
up_s_sdu. 63-25 
up_t_il_buff, 63-22 
up_t-pdu_seg. 63-22 
up_t..,prmtv_code, 63-22 
up_t-pnntv-path, 63-22 
up_t_sdu. 63-22 

_open_space_in_il_buff. OSI layer-independent 
routine. 55-9. 63-36. 63-39, 63-42. 63-44. 
63-45 

defined, 63-35 

outsync_action. line routine. defined, 59-10 

p 
Playback 

routines 
start]crd-play. 65-3 
suspend_rcrd"'play, 65-3 

Primitives 
OSI routines 

Layer 1, 63-44 
Layer 2. 63-46-63-50 
Layer 3, 63-50 
Layer 4, 63-54-63-58 
Layer 5. 63-58-63-62 
Layer 6, 63-62 
Layer 7, 63-66-63-67 
layer-independent. 63-31-63-44 

See also IL buffer 

Print 
routines 

printc, 64-4 
printf, 64-4 
prints. 64-9 

. set"'print_header, 64-8 
sprintf, 64-7 

structures • ..,print_buffer, 64-2 

Program chaining. routines, load..,program, 
69-12 

Protocol Trace 
structures 

12pp_trbuff_ctl. 61-41 
13pp_trbuff_ctl, 61-42 

variables 
12pp_trbuff, 61-39 
12pp_trbuff_end, 61-39 
13pp_trbuff, 61-39 
13pp_trbufCend, 61-39 

packet_sent, X.2S Layer 3 event. defined, 72-3 

pdu, OSI structure, 55-4, 63-47. 63-51, 63-55, 
63-59 

defined, 63-8 

ph"'pnntv_type, OSI Layer 1 variable, 63-49 
defined. 63-13 

pos_cursor, Display Window routine, 58-1, 
58-3, 61-1. 61-3. 61-8, 61-9, 61-22. 
61-27, 65-22 

defined, 61-21 

pr_error, X.25 Layer 3 event, defined. 72-3 

prev_aux._value. aux. port 110 variable. 68-10 
defined, 68-4 

prev_date_of_day, real-time clock variable, 
defined, 69-4 

prev_display-screen. 'Status variable. 61-1. 66-1 . 
defined. 61-3 

prev_time_oCday. real-time clock variable. 
defined. 69-4 

prev_tm. real-time clock structure, defined, 
69-2 

previous_ eia_Ieads 
EIA variable, 60-1. 60-3 

defined. 60-2 
X.21 variable, 70-2 

defined, 70-3 

..,print_buffer. print structure. 64-1 
defined. 64-2 
used to check status of print buffer. 64-1 

printc. print routine. 64-1. 64-4 
defined. 64-4 

printf. print routine. 64-1. 64-6 
defined. 64-4 

prints, print routine, 56-22. 64-1 
defined, 64-9 

Index to C Structures, Variables, and Routines 



pro&.Jrbuf. trace buffer structure, defined 
61-25 • 

ps_error. X.25 Layer 3 event, defined. 72-3 

Q 
Q.931 

events 
dceyacket. 78-2 
dteyacket, 78-2 

variables 
i3_enhance. 78-3 
13_suppress. 78-3 
m_call_reCflag. 78-2 
m_call_reClen. 78-3 
m_info_element_len, 78-3 
m_message_type, 78-3 
m_message_type_defined, 78-2 
myacket_bcc_type, 78-2 
m-Pfot_disc. 78-2 
mytr_to_callJef, 78 ... 3 
mytr_to_info_element. 78-3 

R 
Real-time clock 

events, fevar_time_oCday. 69-4 
structures 

cmt_tm. 69-2 
prev_tm, 69-2 
tm, 69-2 

variables 
cmt_date_oCday, 69-4 
cmt_time_oCday, 69-4 
prev _date _ oC day. 69+-4 
prev_time_of_day, 69-4 

Record 
routines 

stan_rcrdylay, 65-3. 69-16 
suspend_rcrd...pJay. 65-.3, 69-17 

Remote pon 1/0 
events 

rmt_break. 67-3 
rmt_ input_ almost_empty. 67-3 
rmt_input_almost_full~ 67-3 
rmt_input_empty, 67"",3 
rmt_input_not_empty" 67-3 
rmt_input_overfiow. 67-3 
rmt_output_empty, 67;-3 

routines 
rmt_flushi. 67-8 
rmt_flusho. 67-16 
rmtJet_baud_rate, 67-25 
rmtJet_bits, 67-25 
rmtJet_mode, 67-26 
rmtJetyarity, 67 .... 26 
rmtJetc, 67-4 
rmtJetJ, 67-5 
rmtJets, 67-6 
rmt_lock. 67-9 
rmt.,..putb. 67-14 
rmt.,..putc, 67-11 
rmt"'puts, 67-13 
rmtJesumeo. 67-18 
rmt_send_break. 67-19 
rmt_set_baudJate. 67-21 
rmt_set_bits, 67-22 
rmt_set_mode, 67-24 
rmt_setyarity, 67-23 
rmt_suspendo, 67-17 
rmt_unlock. 67-10 

rev_buffer_full, line variable, 59-2 
defined. 59-4 

rcvd_char_rd. line variable. 55-1. 59-5 59-6 
59-18 • • 

defined. 59-4 

revd_char_td. line variable. 55-1. 59-S, 59-6, 
59-17. 59-19 

defined, 59-4 

rcvd_device...P3th. X.25 Layer 3 variable. 72-9 
defined. 72-7 

rcvd_frame 
LAPD event, defined, 77-3 
SDLC event, defined, 73-3 
X.2S Layer 2 event, defined. 71-3 

rcvd frame addr 
SDLC variable, defined. 73-4 
X.2S Layer 2 variable. defined, 71-4 

rcvd_frame_addr_cr. LAPDvariable. defined., 
77-4 

rcvd_frame_addr_sapi. LAPD variable. defined. 
77-4 

rcvd_frame_addr_tei. LAPD variable. defined. 
77-4 

rcvd_frame _bee_type 
LAPD variable, defined, 77-5 
SDLe variable, defined. 73-5 
X.25 Layer 2 variable. defined. 71-4 

rcvd_frame _buff_seg 
LAPD variable, 77-8 

defined, 77-5 

Index to C Struotures. Variables. and Routines 



SDLC variable. 73-8 
defined, 73-5 

X.25 Layer 2 variable, 71-8 
defined, 71-5 

rcvd _frame _ cntrl_ byte_1 
LAPD variable, defined. 77-5 
SDLC variable. defined, 73-4 
X.25 Layer 2 variable. defined, 71-4 

rcvd_frame_nr 
LAPD variable, defined, 77-5 
SDLC variable. defined, 73-S 
X.2S Layer 2 variable, defined, 71-4 

rcvd _frame _ ns 
LAPD variable. defined, 77-5 
SDLC variable. defined. 73-5 
X.25 Layer 2 variable. defined, 71-S 

rcvd_frame.,.pf 
LAPD variable, defined, 77-S 
SDLC variable, defined. 73-4 
X.25 Layer 2 variable. defined, 71-4 

rcvd_frame_sdu_offset 
LAPD variable. 77-8 

defined, 77-5 
SDLC variable. 73-8 

defined. 73-5 
X.25 Layer 2 variable, 71-8 

defined. 71-5 

rcvd_frame_sdu_size 
LAPD variable, 77-8 

defined. 77-5 
SDLC variable, 73-8 

defined, 73-5 
X.25 Layer 2 variable, 71-8 

defined. 71-5 

rcvd_frame_type 
LAPD variable, defined. 77-4 
SOLC variable. defined. 73-4 
X.25 Layer 2 variable. defined, 71-4 

rcvd.,.packet, X.2S Layer 3 event. defined. 72-3 

rcvd.,.packetJ'tr. X.2S Layer 3 variable. 
defined, 72-6 

rcvd"'p8cket_type, X.2S Layer 3 variable. 
defined, 72-S 

rcvdJ'kt_bufCseg, X.25 Layer 3 variable. 72-8 
defined, 72-6 

rcvdJ'kt_cause, X.25 Layer 3 variable, defined. 
72-4 

rcvd"pkt_d. X.25 Layer 3 variable, defined. 
72-4 

rcvd"pkt_diagn, X.25 Layer 3 variable, defined, 
72-4 

rcvdykt_info_length, X.2S Layer 3 variable, 
72-9 

defined. 72-6 
rcvd"pkt_info_offset, X.25 Layer 3 variable. 

defined, 72-6 

rcvdJ'kt_infoJ>tr. X.25 Layer 3 variable, 72-8 
defined. 72-6 

rcvdJ>kt_info_seg. X.25 Layer 3 variable, 
defined. 72-6 

rcvd.,.pkt_lcn, X.2S Layer 3 variable, defined, 
72-4 

rcvd.,.pkt_Iength, X.25 Layer 3 variable, 72-8 
defined, 72-6 

rcvdJ>kt_m. X.25 Layer 3 variable, defined, 
72-4 

rcvd.,.pkt.,.pr. X.25 Layer 3 variable. defined, 
72-4 

rcvd.,.pkt..ps, X.25 Layer 3 variable, defined. 
72-4 

rcvd"pkt_q, X.25 Layer 3 variable. defined, 
72-4 

rcvd"pkt_sdu_offset. X.2S Layer 3 variable. 
72-8 

defined, 72-6 
rcvd"pkt_type_byte, X.25 Layer 3 variable, 

defined. 72-5 
rd_modifier, data-display variable, 59-7. 59-18 

defined. 59-5 
remove, disk 1/0 routine, 65-3. 65-33 

dermed. 65-32 
rename, disk 1/0 routine, 65-3, 65-32 

defined, 65-31 
resend frame 

LAPD routine, defined, 77-10 
SOLC routine, defined, 73-10 
X.25 Layer 2 routine. defined. 71-10 

resend.,.packet. X.25 Layer 3 routine. defined, 
72-14 

reset nr 
LAPO routine. defined, 77-11 
SDLC routine, defined. 73-11 
X.25 Layer 2 routine. defined. 71-11 

reset ns 
LAPD routine. defined, 77-12 
SDLC routine. defined. 73-12 
X.25 Layer 2 routine. defined. 71-11 

Index to C Structures, Variables, and Routines 



reset-pr-ps. X.2S Layer 3 routine, defined, 
72-15 

restore_cursor, Display Window routine. 61-1, 
61-8. 61-22 

defined. 61-22 

rewind. disk 110 routine, 65-2, 65-4 
defined, 65-13 

rhJ>tr. SNA variable, defined, 74-3 

rindex. string routine, 56-22 
defined. 69-12 

rmt_break. remote port I/O event, defined, 
67-3 

rmt_flush_i, remote port 110 routine, 67-15 

rmt_flushi. remote port I/O routine, 67-9 
defined. 67-8 

rmt_flusho. remote port 1/0 routine, 67-17 
defined, 67-16 

rmtJet_baudJate. remote port 110 routine. 
67-25 

defined, 67-25 

rmtJet_bits. remote port I/O routine. 67-26 
defined. 67-25 

rmtJet_mode. remote port 110 routine. 67-27 
defined, 67-26 

rmtJet-parity. remote port 110 routine. 67-26 
defined, 67-26 

rmtJete, remote port 1/0 routine, 67-5. 67-9. 
67-19 

defined. 67-4 

rmtJetl, remote port 1/0 routine, 67-6 
defined. 67-5 

rmtJets, remote port I/O routine. defined, 
67-6 

rmt_input_almost_empty, remote port 1/0 event, 
67-2 

defined. 67-3 

rmt_input_almost_full, re$ote port 1/0 event. 
67-2 

defined. 67-3 

rmt_input_empty, remote port I/O event. 67-2 
defined, 67-3 

rmt_input_not_empty. remote port 1/0 event. 
67-2 

defined, 67-3 

rmt_input_overflow. remote port 1/0 event, 
67-2 

defined. 67-3 

rmt_lock. remote port I/O routine, 67-10 
defined. 67-9 

rmt_output_empty, remote port 1/0 event. 
defined. 67-3 

rmt-putb, remote port 1/0 routine. 67-16 
defined, 67-14 

rmtJ>ute, remote port 1/0 routine. 67-12. 
67-17 

defined, 67-11 

rmt-puts. remote port 110 routine. 67-14 
defined, 67-13 

rm~resumeo. remote port 1/0 routine. 67-19 
defined, 67-18 

rmt_send_break. remote port 1/0 routine, 
67-20 

defined. 67-19 

rmt_set_baud_rate. remote port 110 routine, 
67-22 

defined. 67-21 

rmt_set_bits. remote port 110 routine. 67-22 
defined. 67-22 

rmt_set_mode, remote port 110 routine. 67-25 
defined, 67-24 

rmt_setJ>arity. remote port 110 routine. 67-23 
defined. 67-23 

rmt_suspendo, remote port 1/0 routine, 67-18 
defined. 67-17 

rmt_unlock. remote port 110 routine, 67-11 
defined, 67-10 

ru....,ptr, SNA variable, defined, 74-3 

s 
SDLe 

events 
bee_error. 73-3 
dee_abort. 73-3 
dee_bad_bee, 73-3 
dee_frame. 73-3 
dceJood_bce. 73-3 
dte_abort. 73-3 
dte_bad_bee. 73-3 
dte_frame, 73-3 
dteJood_bec. 73-3 
frame_sent. 73-4 
invalid_frame. 73-3 
12_T1. 73-3 
nr_error, 73-3 
ns_error. 73-3 
revd_frame, 73-3 

Index to CStructures, Variables. and Routines 



routines 
12Jive_data. 73-9 
resend_frame, 73-10 
reset_nr. 73-11 
reset_ns, 73-12 
send_frame, 73-12 

structures, send_frame_structure, 73-2 
variables 

12_current_window_edge, 73-5 
12_enhance, 73-6 
12_1ower_window_edge, 73-5 
12_resend_edge. 73-5 
12_suppress. 73-6 
12_upper_window_edge. 73-5 
m_frame_addr, 73-4 
m_frame_bcc_type. 73-4 
m_frame_cntrl_byte_1. 73-4 
m_frameyf. 73-4 
m_frame_type. 73-4 
rcvd_frame_addr. 73-4 
revd_frame_bcc_type. 73-5 
rcvd_frame_bufCseg. 73-5 
rcvd_frame_cntrl_byte_l. 73-4 
rcvd_frame_nr. 73-5 
rcvd_frame_ns. 73-5 
rcvd_frameyf. 73-4 
rcvd_frame_sdu_offset. 73-5 
revd_fratne_sdu_size. 73-5 
rcvd_fratne_type. 73-4 

SNA 
events. See SDLC. events 
routines. See SDLC. routines 
structures. See SDLC, structures 
variables 

See also SDLC. variables 
tn-packet_daft 74-2 
m-packet_def, 74-2 
m-packet_dsaf, 74-2 
tn-packet_fi. 74-3 
tnyacket_fid_type, 74-2 
tn-packet_length, 74-2 
m-packet_lsid. 74-2 
m-packet_oaf. 74-2 
tn-packet_oef. 74-2 
tnyacket_osaf. 74-2 
tn-packetJri. 74-3 
tn-packet_rti. 74-3 
tn-packet_ru_category, 74-3 
m-packecsdi. 74-3 
rh-ptr, 74-3 
ru-ptr. 74-3 
thytr, 74-3 

SS#7 Layer 1, variables 
dce_flags, 79-5 
dee_frames_suppressed. 79-5 
dte_flags. 79-5 
dte_fratnes_suppressed, 79-5 

SS#7 Layer 2 
events 

dee_abort, 79-2 
dee_bad_bee. 79-2 
dee_frame. 79-2 
deeJood_bec. 79-2 
dte_abort, 79-2 
dte_bad_bcc, 79-2 
dte_fratnc, 79-2 
dteJood_bce, 79-2 

variables 
12_enhanee. 79-3 
12_suppress, 79-3 
tn_bib. 79-2 
tn_fib. 79-2 
tn_frame_bcc_type. 79-3 
tn_lit 79-3 
tn_soO, 79-3 
tn_unit_type, 79-2 

SS#7 Layer 3 
events 

dceyacket, 80-2 
dteyaeket. 80-2 

variables 
13_cnhanee. 80-6 
13_suppress. 80-6 
tn_cic. 80-6 
m_code_type. 80-2 
tn_label_dpc, 80-6 
tn_Iabel_opc, 80-6 
tn_label_sIs. 80-6 
tn_sio_nj. 80-2 
m_sio-priority, 80-2 
tn_sio_si. 80-2 

Stats display 
routines 

get_68kyhys_addr. 62-14 
send_stat_tnessage. 62-15 

structures. stat_ross, 62-5 

Status 
events, display_screen_changed. 61-2 
structures 

mpm_info, 66-5 
unit_config, 66-3 
unit_setup, 66-2 

variables 
cmt_display-screen, 61-2 
prey _display-screen, 61-3 

Index to C Structures. Variables, and Routines 



String 
routines 

index. 69-11 
rindex. 69-12 

send_d_frame 
ISDN routine. defined. 76-3 
transmit routine, 76-1 

send_d_frame_il. ISDN routine, defined, 76-4 

send_dlyrmtv_above. 051 Layer 2 routine. 
55-4 

defined, 63-46 

send_dl""'prmtv_below, 051 Layer 3 routine, 
55-8. 63-42 

defined. 63-53 

send_frame 
LAPD routine. defined. 77-12 
SDLC routine. defined, 73-12 
SNA routine, 74-5 
X.2S Layer 2 routine. defined. 71-12 

send_frame _structure 
LAPD structure, 77-13 

defined, 77-2 
SDLC structure, 73-13 

defined, 73-2 
SNA Layer 2 structure, 74-1 
X.25 Layer 2 structure. 71-13 

defined. 71-2 

send_key. keyboard routine, 3-11, 5-22; 61-4 
defined. 69-17 

send_m_dlyrmtv_above. 051 Layer 2 routine, 
defined. 63-48 

send_m_nyrmtv_above, OS1 Layer 3 routine. 
defined. 63-52 

send_m.....Pyrmtv_above. 051 Layer 6 routine. 
defined. 63-64 

send_m_syrmtv_above. 051 Layer 5 routine, 
defined, 63-60 

send_rn_t.....Prmtv_above. 051 Layer 4 routine. 
defined. 63-56 

send_n.....Prmtv_8bove. OSl Layer 3 routine, 
defined, 63-50 

send_n.....prmtv_below, 051 Layer 4 routine. 
55-7. 55-8. 63-41. 63-58 

defined, 63-57 

sendyyrmtv_above. 051 Layer 6 routine. 
defined. 63-62 

send.....Pyrmtv_below. 051 Layer 7 routine. 
defined, 63-66 

send.....Packet. X.25 Layer 3 routine. defined. 
72-16 

sendyacket_structure. X.2S Layer 3 structure. 
72-17 

defined, 72-2 

sendyhJ>rrntv_below. 051 Layer 2 routine, 
55-8. 63-:39, 63-43, 63-44 

dermed, 63-49 

sendJ>h_to_above. 051 Layer 1 routine. 63-46 
defined. 63-44 

send_syrmtv_above, 051 Layer 5 routine. 
defined, 63-58 

send_sJ>rffitv_below. OSI Layer 6 routine. 
defined. 63-65 

send_stat_message. stats-display routine, 62-15, 
62-16 

defined. 62-15 

send_tyrmtv_above, 051 Layer 4 routine. 
defined. 63-54 

send_tyrmtv_below. OSl Layer 5 routine, 
63-41 

defined. 63-61 

set_aux_ctUeads. aux port lIO routine. 68-6. 
68-8. 68-9 

defined. 68-6 

set_aux_direction. aux port I/O routine. 68-5, 
68-8, 68-9 

defined. 68-5 

set_auxJeg. aux port I/O routine, 68-11 
defined, 68-10 

_set_rue_type, disk 1/0 routine. 65-35 
defined. 65-34 

set_isdn_speaker_chan. ISDN routine. 76-2 
defined, 76-5 

_set_maint_buff_bit. OSI layer-independent 
routine. 55-4. 55-5, 63-39, 63-41, 63-42, 
63-43, 63-44, 63-46. 63-48, 63-50, 
63-51, 63-52. 63-54, 63-56, 63-57. 63-59 

defined. 63-37 

set.....Print_header. print routine. 64-1. 64-9 
dermed. 64-8 

set tcr b 
transnut routine. defined. 59-14 
X.21 routine, 70-8 

defined., 70-8 

Index to C Structures, Variables. and Routines 



signal. interrupt routine. 57-6 
defined. 69-15 

signal_name. interrupt event. defined. 69-4 

sound_alarm. alarm routine. defined, 69-16 

sprintf 
Display Window routine, defined, 61-13 
print routine. 61-13, 64-1, 64-7 

defined. 64-7 
used to specify precision for tracef, 67-16 

_start_il_bufClist. OSI layer-independent 
routine. 55-5. 55-8, 59-13, 63-36, 63-41, 
63-45, 71-13, 72-17. 73-13. 76-5, 77-13 

start_oCron_date, timer variable. defined. 
62-10 

start_oCron_time, timer variable, defined, 
62-10 

start_rcrdJ'lay 
playback routine. 65-3 
record routine, 14-6; 65-3 

defined, 69-16 

stat_msg. stats-display structure. 62-15 
defined, 62-5 

stracef. trace buffer routine, 61-13, 61-30 
defined, 61-29 

strcmp. user-defined routine, 58-6 

suspend Jcrd -play 
playback routine. 65-3 
record routine. 65-3 

defined. 69-17 

T 
Timeout 

events. timeout_name_expired. 69-4 
routines 

timeout_restart_action, 69-8 
timeout_stop_action. 69-10 

structures. timeout. 69-3 

Timer 
routines 

convert_tick_count. 62-18 
get_wall_time_286_ticks. 62-17 
get_wall_time_ticks. 62-16 

structures. timer_struct, 62-9 
variables 

l1_tick_count, 62-10 
start_oCron_date. 62-10 
start_of_run_time. 62-10 

Trace buffer 
routines 

stracef. 61-29 
tracec, 61-27 
tracef. 61-28 
traces. 61-31 

structures 
l1_trbuf. 61-25 
12 trbuf. 61-25 
13:trbuf. 61-25 
14_trbuf. 61-25 
15_trbuf, 61-26 
16_trbuf. 61-26 
17_trbuf. 61-26 
pro1Ltrbuf. 61-25 
trace_buf. 61-24 
trace_buffer _header. 61-24 

Transmit 
events. fevar_xmit_cmplt. 59-4 
routines 

idle action. 59-13 
11 if transmit, 55-4, 59-12 
l1=transmit. 59-11 
set_tcr_b, 59-14 

structures, xmit_list. 59-1 

td_modifier. data-display variable. 59-7. 59-17 
defined, 59-4 

temporary-prompt. user-defined routine. 58-4 

thJ'tr. SNA variable, defined, 74-3 

timeout. timeout structure, 58-5 
defined, 69-3 

timeout_nome_expired. timeout event, defined. 
69-4 

timeout restart action. timeout routine. 58-4. 
69-9 -

defined. 69-8 

timeout_stop_action, timeout routine, 69-10 
defined. 69-10 

timer struct, timer structure. 62-8 
defined. 62-9 

tm. real-time clock structure. defined, 69-2 

trace buf, trace buffer structure. 61-23. 61-29. 
61-30, 61-35 

defined, 61-24 

trace buffer header, trace buffer structure, 
61-23, 61-32 

defined, 61-24 

tracec. trace buffer routine. 61-1. 61-4, 61-28 
defined, 61-27 

tracef. trace buffer routine, 61-1, 61-4, 61-27, 
61-29. 61-32, 61-34. 61-35, 65-18 

defined, 61-28 

Index to C Structures. Variables. and Routines 



traces, trace buffer routine. 56-22. 61-1. 61-4 
defined, 61-31 

u 
ungetc. disk I/O routine, 65-1, 65-2. 65,...4, 

65-22 
defined. 65-21 

unit_config, status structure, 11-7; 66-1 
defined, 66-3 

unit_setup. status structure. 66-1 
defined, 66-2 

unlock 
disk 110 routine. 65-4 

defined. 65-16 
lock routine, defined, 69-14 

up_dl_il_buff, OSI Layer 2 variable. 63-38, 
63-42. 63-44, 63-50 

defined. 63-16 

up_dl"'pdu_seg, OSI Layer 2 variable, defmed, 
63-15 

up_dl"'pTmtv, OSI Layer 2 event. defined. 
63-14 

up_dl"'prmtv_code. OSI Layer 2 variable, 63-53 
defined, 63-16 

up_dl...pTtntv...path. OSI Layer 2 variable. 63-49 
defined. 63-16 

up_dl_sdu. OSI Layer 2 variable. 63-42. 63-44, 
63-50 

defined, 63-16 

up_n_il_buff, OSI Layer 3 variable. 55-7. 63-5. 
63-8, 63-9, 63-10.63-11. 63-42. 63-54 

defined. 63-19 

up_n"'pdu_seg, OSI Layer 3 variable. 63-8 
defined. 63-19 

up_nJ'rmtv. OSI Layer 3 event, 55-7 
defined. 63-17 

up_n..,prmtv_code. OSI Layer 3 variable, 63-8, 
63-57 

defined. 63-19 

up_nJ'rmtv"'path. OSI Layer 3 variable, 63-8, 
63-53 

defined. 63-19 

up_n_sdu. OSI Layer 3 variable. 55-7, 63-8. 
63-10. 63-42. 63-54 

defined. 63-19 

uPJ'_il_buff. OSI Layer 6 variable. 63-65, 
63-66 

defined, 63-28 

up"'p..,pdu_seg, OSI Layer 6 variable, defined, 
63-27 

up...p...pTtntv. OSI Layer 6 event. defined, 63-26 

up...p...pTtntv_code, OSI Layer 6 variable. 63-67 
defined, 63-28 

uPJ'J'Ttntv"'path. OSI Layer 6 variable. 63-65 
defined. 63-28 

up"'p_sdut OSI Layer 6 variable, 63-65, 63-66 
defined. 63-28 

up_s_il_buff. OSI Layer 5 variable. 63-61. 
63-62 

defined. 63-25 

up_s"'pdu_seg, OSI Layer 5 variable, defined, 
63-24 

up_s...pTtntv. OSI Layer 5 event. defined. 63-23 

up_s"'prmtv_code, OSI Layer 5 variable, 63-65 
defined. 63-25 

up_sJ'rmtv...path. OSI Layer 5 variable. 63-61 
defined. 63-25 

up_s_sdu. OSI Layer 5 variable. 63-61, 63-62 
defined, 63-25 

up_t_il_buff. OSI Layer 4 variable. 63-41, 
63-57 

defined, 63-22 

up_t..,Pdu_seg, OSI Layer 4 variable. defined. 
63-22 

up_tJ'rmtv. OSI Layer 4 event, defined. 63-20 

up_t"'prmtv_code, OS! Layer 4 variable, 63-61 
defined, 63-22 

up_t...pTtntv"'path. OSI Layer 4 variable,63-57 
defined, 63-22 

up_t_sdu. OSI Layer 4 variable. 63-41. 63-57 
defined. 63-22 

w 
window_color. Display Window variable. 61-4, 

61-32. 61-33. 61-35 
defined. 61-5 

window_modifier. Display Window variable. 
61-4. 61-32. 61-35 

defined, 61-7 

write aux, aux port 110 routine. 68-8. 68-9 
defined, 68-7 

Index to C Structures. Variab~t and Routines 



x 
X.21 

events, fevar_eis_changed, 70-3 
routines 

ctl eia. 70-4 
enter_calI..,phase, 70-9 
enter_data..,phase, 70-9 
set_ter_b, 70-8 
x21 idle action, 70-6 
x21-trammit call. 70-7 

structUres. xmi~list. 70-1 
variables 

current_eia_leads. 70-3 
previous_eia_leads. 70-3 

X.25 Layer 2 
events 

bee error, 71-3 
dee=:abort, 71-3 
dee_bad_bce. 71-3 
dee frame, 71-3 
dee:Jood_bce, 71-3 
dte abort, 71-3 
dte:bad_bee, 71-3 
dte frame. 71-3 
dte:Jood_bcc. 71-3 
frame sent, 71"";4 
invalid_frame, 71-3 
12_T1,71-3 
nr_error, 71-3 
ns error, 71-3 
rC;d_frame. 71-3 

routines 
12Jive_data. 71-9 
res end_frame , 71-10 
reset_nr, 71-11 
reset ns, 71-11 
send-frame. 71-12 

structures. send_frame_structure. 71-2 
variables 

12 current window edge. 71-5 
12-enhance. 71-5 -
12 -lower window edge, 71-5 
12:resencCedge, 71-5 
12_suppress. 71-5 
12_upper_window_edge, 71-5 
m frame addr t 71-4 
m -frame-bee type. 71-4 
m:frame:cntrl_byte_1. 71-4 
m_frame"'pf. 71-4 
m frame type. 71-4 
rcvd frame addr. 71-4 
rcvd -frame - bec type. 71-4 
rcvd-frame -buff seg, 71-5 
rcvd -frame - cntrl byte 1. 71-4 - - - -

rcvd frame nr. 71-4 
rcvd-frame-ns. 71-5 
rcv(:frameJ,f. 71-4 
rcvd _frame _sdu_ offset, 71-5 
rcvd frame sdu size, 71-5 
rcvd:frame:type, 71-4 

X.25 Layer 3 
events 

dce..,packet. 72-3 
dte..,packet. 72-3 
invalid..,paeket. 72-3 
packet_sent, 72-3 
pr_error, 72-3 
ps_error. 72-3 
rcvd..,packet, 72-3 

routines 
13_clear"'path, 72-11 
13_give_data, 72-10 
13 more to resend. 72-11 
13-window empty. 72-13 
13-window -full. 72-12 
resend..,packet. 72-14 
reset..,pr..,ps. 72-15 
send..,paeket. 72-16 

structure, send..,packet_structure. 72-2 
variables 

13 enhance, 72-7 
13:suppress. 72-7 
m"'packet_buff_seg, 72-5 
m..,packet_cause. 72-4 
m"'pseket_d, 72-3 
m"'pscket_diss...code. 72-4 
m"'packet_info_length, 72-5 
m"'paeket_info_offset, 72-5 
m..,packet_info..,Ptr. 72-6 
m"'paeket_info_seg, 72-5 
m"'paeket_lcn, 72-3 
m"'paeket_lcnJTP, 72-3 
m"'p3cket_length, 72-5 
m"'paeket_m, 72-3 
m..,paeket..,pr, 72-3 
m"'pscket..,ps, 72-3 
m"'paeket..,Ptr, 72-6 
m...packet_q, 72-3 
m"'paeket_sdu_offset. 72-5 
m...packet_type. 72-4 
m"'packet_type_byte. 72-4 
rcvd device"'path. 72-7 
rcvdJ,acket..,ptr, 72-6 
rcvd...packet_type, 72-5 
rcvd"'pkt_bufCseg, 72-6 
rcvd"'pkt_ cause, 72-4 
rcvd"'pkt_d, 72-4 
rcvd"'pkt_diagn, 72-4 
rcvd..,pkt_info_length, 72-6 
rcvd"'pkt_info_offset, 72-6 

Index to C Structures, Variables. and Routines 



rcvdykt_infoytr, 72-6 
rcvdykt_info_seg, 72 ... 6 
rcvdykt_lcn, 72-4 
rcvd....Pkt_length. 72-6 
rcvd....Pkt_m. 72-4 
rcvd-pkt-pr, 72-4 
rcvd""pkt..ps. 72-4 
rcvd-pkt_q, 72-4 
rcvd""pkt_sdu_offset, 72-6 
rcvdykt_type_byte, 72-5 

xl1_idle_action. X.21 routine. defined. 70-6 

x21_uansmit_caU, X.21 routine, 70-1, 70-7 
defined, 70-7 

xmit list 
ISDN structure. 76-3 

defined. 76-1 
transmit structure, 59-11 

defined, 59-1 
X.21 structure, 70-6. 70-7 

defined. 70-1 

Index to C Structures, Variables, and Routines 




	Theory of Operation
	51 Data Flow
	52 Program Main
	53 Regions in Spreadsheet
	54 Events
	55 Receiving and Transmitting Data

	C Language
	56 C Basics
	57 Variables
	58 Routines

	C Library
	59 Monitor/Transmit Line Data
	60 EIA
	61 Display Window and Trace
	62 Counters, Timers, and Accumulators
	63 OSI
	64 Print
	65 Disk I/O
	66 Status
	67 Remote Port I/O
	68 AUX Port I/O
	69 Other Library Tools

	Protocol Library
	70 X.21 Library
	71 X.25 Layer 2 Library
	72 X.25 Layer 3 Library
	73 SDLC Library
	74 SNA Library
	75 DDCMP Library
	76 ISDN D Channel Library
	77 LAPD Library
	78 Q.931 Library
	79 SS#7 Layer 2 Library
	80 SS#7 Layer 3 Library

	Appendixes
	Appendix A: Operator Messages
	Appendix A1: Interactive Messages
	Appendix A2: Error Messages Issued by C Translator
	Appendix A3: Error Messages Issued by C Compiler

	Appendix B: Glossary of Acronyms, Abbreviations and Mnemonics
	Appendix C: Selectable Data Speeds
	Appendix D: Code Charts
	Appendix D1: Keyboard-to-Hex Translation
	Appendix D2: Hex-to-Display Translation
	Appendix D3: User-Defined Codes

	Appendix E: Communications with the AR Division Factory
	Appendix F: Packing and Shipping Instructions
	Appendix G: Tack Mount (OPT-951-98-1)
	Appendix H: Optional Codes JIS7/JIS8
	Appendix I: Interface Specifications
	Appendix J: Field Service on the INTERVIEW 7000 Series
	Appendix J1: Eliminating Static Electricity
	Appendix J2: Removing Logic Boards
	Appendix J3: Installing Logic Boards
	Appendix J4: Installing Multiplexer Board
	Appendix J5: Replacing Firmware on the CPM Board
	Appendix J6: Installing Hard Disk Drive (OPT-951-01-1)
	Appendix J7: Servicing Other Components

	Appendix K: C Language Summary

	Index To ADD-951-10
	Index
	Index A
	Index B


