
[uropaisches Patentamt

iuropean Patent Office

)ffice europeen des brevets <y Publication number: J 4 Z 1 7 1 7 A Z

5) EUROPEAN PATENT A P P L I C A T I O N

5> Application number: 90310751.4 © Int. CI.5: G09G 1/14, bObK. Ib/U^J,
G09G 5 / 2 4

§) Date of filing: 02.10.90

£) Priority: 02.10.89 US 416211 @ Applicant: XEROX CORPORATION
Xerox Square - 020

«) Date of publication of application: Rochester New York 14644(US)
10.04.91 Bulletin 91/15

@ Inventor: Marshall, Sidney W.
S) Designated Contracting States: 1180 Hidden Valley Trail

DE FR GB Webster, New York 14580(US)

© Representative: Goode, Ian Roy et al
Rank Xerox Patent Department Albion
House, 55 New Oxford Street
London WC1A 1BS(GB)

S) Rapid halfbitting stepper.

g) In an electronic printing system having a memory for storing graphical objects in outline form as splines, the
-nethod of rapidly converting the graphical objects in outline form as splines to raster bit map form for imaging
Dixels on a raster device. The method comprises the steps of allocating a set of memory locations for output bit

naps and initializing the memory locations, operating a stepper routine for each spline in a set of splines
ncluding the step of resolving diagonal operations into either x-y or y-x orthogonal steps to produce a quasi-
Dutline of the graphical object and storing the quasi-outline in said memory locations, Exclusive OR Gating each
successive raster scan line of the object with the result of the Exclusive OR Gating of the preceding scan line to
fill in the graphical object, and producing the graphical object on said raster device.

CM
<

CM

LU

Xerox Uopy (Jentre

EP 0 421 717 A2

The invention generally relates to printing systems storing characters in outline form for printing and,
more particularly, to a method of rapid and efficient conversion of the characters before printing including a
procedure for resolving diagonal steps in the conversion process.

In many electronic printing systems, it is desirable to store characters in outline form and convert them
5 to raster form just before printing. This improves such things as font storage utilization and flexibility in size

and orientation of characters. One technique that can make raster characters look better is the technique of
halfbitting. This enables character scaling and anamorphic transformations to be performed on a single
contour character to generate several raster versions of the character. The printer then can offer a wide
variety of character sizes and looks without a large amount of storage space for the character rasters.

70 A difficulty with the prior art systems that store characters in contour form for conversion to raster form
on demand is the relatively slow and inefficient process of conversion. For example, it is known how to
represent characters in outline form which can be scaled and still retain the proper visual impact. This
technique requires scaling different parts of the outline differently which results in different transformations
for different parts of the character, and this is conventionally done in a relatively inefficient manner.

75 It is an object of the present invention, therefore, to provide a new and improved technique for the
conversion of contour characters to raster characters.

The invention accordingly provides a method of rapidly converting graphical objects in outline form to
raster bit map form for imaging pixels on a raster device by successive scan lines in an imaging system
having a memory for storing the graphical objects in outline form comprising the steps of:

20 allocating a set of memory locations for output bit maps and initializing the memory locations,
operating a stepper routine for each segment of the outline formto produce a quasi-outline of the graphical
object and storing the quasi-outline in said memory locations, said quasi-outline indicating the start and end
of each scan line of the graphical object, and
successively Exclusive OR-gating each scan line into the following scan line to produce a filled raster

25 object.
In another aspect, there is provided a method of rapidly converting graphical objects in outline form

represented as splines to raster bit map form suitable for imaging pixels on a raster device comprising the
steps of allocating a set of memory locations for output bit maps and initializing the memory locations,
operating a stepper routine for each spline in a set of splines including the step of resolving diagonal

30 operations into either x-followed-by-y or y-followed-by-x orthogonal steps to produce a quasi-outline of the
graphical object and storing the quasi-outline in said memory locations, exclusive ORing each successive
raster scan line of the object with the result of the exclusive ORing of the preceding scan line to fill in the
graphical object, and producing a bitmap of the graphical object suitable for imaging on said raster device.

A method in accordance with the invention will now be described, by way of example, with reference to
35 the accompanying drawings wherein the same reference numerals have been applied to like parts and

wherein:
Figure 1 is a spline stepper in accordance with the present invention;
Figure 2 illustrates lines of and initial outlined form with 1.5,2.0,2.5 and 3.0 pixels.
Figure 3 illustrates halfbitting sampling locations;

40 Figures 4, 5, and 6 illustrate disambiguation transition tables for no halfbitting, X-direction halfbitting, and
/-direction halfbitting respectively in accordance with the present invention; and
Figure 7 illustrates the XOR filling.
A general nth order Bezier spine is defined by its control points P, where /' ranges from 0 to n and

describes the curve
45

50

55

2

EP 0 421 717 A2

i
&u)= y c v a - t) (n_,)p.

= 0

5r equivalently

; — n .—a =0 y=0
where

s the binomial coefficient and the independent parameter t ranges between 0 and 1 . This representation tor
splines has the advantage that an affinely transformed spline has the control points given by affine
transforming its control points by the same affine transformation. This allows for rapid calculation of the
control points of a transformed spline. Note that the second expression is a polynomial in terms of the
differences

of the control points P,-. These differences can be quickly calculated using only additions and subtractions.
Defining these differences as

d ■ y ('.)(_ i f - - " p .
j z- yv j

we have

n

1 = 0

These differences can be calculated by means of the following tableau:

EP 0 421 717 A2

P0 = D0
Pi -Po = D1

Pi (P l -P0) - (P2-P l) = D2
P2 - Pi KP2 - Pi) - (P3 - P2)l - f(Pi - Po> - (P2 - Pi)J = D3

P2 (P2 -P l) - (P3"P2)
P 3 P 2

P3

etc.

Defining the difference operator

A°X(<) ■ X(t)

A*+1XW ■ A*X(<+6) + A*X(fl
and consequently

A4+/X(f)s Z (-l)</~-'Y.)A*Xu,+j8)

Where S = 2 * is a step size we get

k n i
AkX(t) - Z (*K- l)a"J> Z <?) X (j) < W - , D .

j=0 i=0 /=0

At t = 0 we have

A*X(0) « Y (?)8iD.*!S*
1=0

where

!S= i (- l) (t " W

The coefficients are called the Stirling numbers of the second kind. They satisfy the following
relationships:

EP0 421 717 A2

3 J = 0 , A * 0

S° = 0 , i * 0 i
w

15 Therefore, a stepper to step along a Bezier spline of order n with control points P, can be constructed
by first calculating the n + 1 differences
Do = Po
Di = Pi - Po
D2 = P2 - 2Pi + Po

20 D3 = P3 - 3P2 + 3Pi - Po
using the above difference tableau and then calculating the starting register pair values R,- from the set of
equations corresponding to the order of the spline. The register pair R, is a set of two registers, one for x
and one for y.

Forward differences for order n splines:
25 n = 1:

Ro = Do
Ri = Di5
n = 2:
Ro = Do

30 Ri = 2Di5 + D252
R2 = 2D252
n = 3:
Ro = Do
Ri = 3Di5 + 3D252 + D353

35 R2 = 6D252 + 6D3S3
R3 = 6D353

Backward differences are similar to forward differences except that the differences are of points with
negative f.

Backward differences for order n splines:
40 „ - 1:

Ro = Do
Ri = Di«
n = 2:
Ro = Do

45 Ri = 2D, 5 - D252
R2 = 2D252
n = 3:
Ro = Do
Ri = 3Di5 - 3D252 + D353

50 R2 = 6D2S2 - 6D353
R3 = 6D353

Once the register pair values are calculated successive values of the spline coordinates can be
calculated by:

Forward differences (using only the first n equations for an order n spline):
55 Ro-Ro + Ri

R1-R1 + R2
R2<_R2 + R3

5

EP 0 421 717 A2

Backward differences (using only the first n equations for an order n spline):

R2*~ R2 R3
R1--R1 + R2

5 R0«-Ro + Ri
where the R values stand for a pair [RX, RY] of registers. There must be as many register pairs as one
more than the order of the spline to be plotted.

Forward difference equations have the advantage that all additions can be performed simultaneously in
a hardware implementation while the backward difference scheme may be more efficient in software and

10 has the advantage that the starting point of the previous step is easy to compute.
It is important that these calculations be done exactly, with no roundoff error, or various assumptions

about the closure of contours will not be met. This sets a minimum register size which is a function of the
number of steps taken per spline and the order of the spline and the resolution that control points can be
expressed. The halfbitter requires that the position of contour points be known as the difference between

75 the actual position and the nearest even integer. This requires one binary place to the left of the binary
point. To satisfy the accuracy requirements we need nq + r places to the right of the binary point for a total
register length of nq + r + 1 bits in the registers where n is the order of the spline, q is the log2 number of
steps and r is the log2 accuracy of control points on the pixel grid. If this exceeds the length of the register
then the spline is subdivided into two splines and the algorithm applied to each piece recursively. A general

20 spline stepper can be implemented with two parallel sets of registes for x and y coordinates as shown in
Figure 1 .

For straight lines, if an order 1 spline is described by the points A, and B with A and B being the
endpoints of the segment, then the spline is the set of points X satisfying X(f) = (0)A(1 - t) + (\)Bt - A(1 -
t) + Bt

25 with f ranging between 0 and 1 . If t is stepped by S = 2~k and the control points are multiples of 2"r then all
calculations can be done in fixed point. To maintain accuracy of the curve shapes it is necessary to have
the pixel grid be something like 8 times the coordinate grid so that control points are moved less than 1/8 of
a pixel when quantitized to the grid making r = 3. Remembering that
Do = A

30 D1 = B - A
the initial values for the difference scheme are:
Ro = Do
Ri = Di5

Backward differences are the same as forward differences in the case of straight lines.
35 Once the register pair values are calculated, successive values of the spline coordinates can be

calculated by:
Either forward or backward differences:

Ro~-Ro + Ri.

40
Cubic Splines

(Although the following formulae are specifically for the cubic spline case, these formulae can be
generalized in an obvious way for higher or lower order splines.)

45 If a spline is described by the points A, B, C, and D with A and D being the endpoints of the segment
and B and C being the interior control points then the spline is the set of points X satisfying
X(f) = (§)A(1 - f)3 + (3)Bf(1 - tf + (|)Cf (1 1- f) + (1)Df
= A(1 - f)3 + 3Bf(1 - f)2 + 3C*2(1 - t) + Df3
with f ranging between 0 and 1 . If f is stepped by S = Zk and the control points are multiples of 2'r then all

50 calculations can be done in fixed point. To maintain accuracy of the curve shapes it is necessary to have
the pixel grid be something like 8 times the coordinate grid so that control points are moved less than 1/8 of
a pixel when quantitized to the grid. Remembering that
Do = A
D1 = B - A

55 D2 = C - 2B + A
D3 = D - 3C + 3B - A
the initial values for the difference scheme are:
Ro = Do

6

IP 0 421 717 A2

Ri = 3Di5 + 3D252 + D353
R2 = 6D252 + 6D353
R3 = 6D353

Backward differences would be:
5 Ro = Do

R, = 3Di5 - 3D252 + D353
R2 = 6D252 - 6D353
R3 = 6D353
Once the register pair values are calculated successive values of the spline coordinates can be calculated

o by:
Forward differences:

Ro«-Ro + Ri
Ri— Ri + R2
R2«-R2 + R3

-5 Backward differences:
R2<— R2 + R3
R1-R1 + R2
Ro—Ro + Ri

10
Disambiguation

One problem when calculating new values of x and y simultaneously is that the algorithm may indicate
stepping in x and y simultaneously without indicating which one to step first. To solve this problem we can

?5 do a further calculation if both x and y step during the same f-step. The issue here is to determine whether
to take the x step before the y step or vice versa. Let Xi and yi be the coordinates of the previous point
and x2 and y2 be the coordinates of the current point where the point (0, 0) is the current sampling point.
There are 2 preferred ways to do this additional calculation. These methods approximate the spline by short
line segments.

30 1) Calculate the sign of Xiy2 - x2yi as this will disambiguate the two cases. This solution requires a fast
multiply.
2) At the start Xi and x2 have different signs and so do yi and y2 (as this is the only case where a
simultaneous step in x and y occurs) then we can replace either Xi and yi or x2 and y2 with the
midpoint (Xi + x2)/2 and (yi + y2)/2 (with the remainder of the division ignored) and the sign of the

35 cross product remains the same. We always choose to replace the coordinate pair with the same signs
as the midpoint until this is impossible (neither pair has exactly the same signs as the midpoint) and then
the sign of the cross product will be obvious and one can step from (Xi, y) to the midpoint to (x2, y2)
without a simultaneous step. If either of the two new terms is zero then the sign is also obvious. If both of
the new terms goes to zero then the cross product is zero and an arbitrary (but consistent) choice must

40 be made. This method is guaranteed to terminate in log2 k steps where k is the number of bits in the
representation of x or y.

Choosing the step size
45

Differentiating X with respect to t we get
x'(f) = 3(1-f)2(B - A) + 6f(1 - f)(C - B) + 3^(D - C)
which is the equation of a spline with the control points 3(B-A), 3(C-B), 3(D-C).

Since a spline curve lies entirely within the convex hull of its control points we know that this derivative
so spline is entirely confined within the triangle 3(B-A), 3(C-B), 3(D-C). This triangle must have coordinates

bounded by 2" if stepping by 2"" is not to exceed a step size of one. This is necessary to avoid multiple
pixel steps in a single cycle. Choose the least k such that
2">3[(Bx - A»)|
2">3| (Cx - Bx)|

55 2">3| (Dx - Cx)|
2*>3| (By - Ay)|
2">3| (Cy - By)|
2ft>3| (Dy - Cy)|

EP 0 421 717 A2

If these inequalities can not be satisfied within the bound set by the available register length we can
subdivide the spline into two splines and repeat the algorithm on each half. Eventually this subdivision will
result in a set of splines that can be plotted with step sizes less than one.

If we are stepping t in units of 2"* then the initial differences for the spline with the control ponts A, B, C
5 and D are

A
3(B - A)5 + 3(C - 2B + A)52 + (D - 3C + 3B - A)«3
6(C - 2B + A)S2 + 6(D - 3C + 3B - A)53
6(D - 3C + 3B - A)53

10 where
5 = Zk
Once the starting differences are known successive points along the curve can be calculated as follows:
Initialization:
X~AX

W AX-3(BX - Ax)8 + 3(CX - 2BX + A x)& + (Dx - 3CX + 3BX - Ax)<5
A2X-6(CX - 2BX + Ax)52 + 6(DX - 3 Cx + 3BX - Ax)53
A3X-6(DX - 3CX + 3BX - Ax)53
Y—Ay
AY-3(By - Ay)S + 3(Cy - 2By + Ay)S2 + (Dy - 3Cy + 3By - Ay)53

20 A2Y-6(Cy - 2By + Ay)52 + 6(Dy - 3 Cy + 3By - Ay)S3
A3Y-6(Dy - 3Cy + 3By - Ay)53
Step f:
X-X + AX
AX-AX + A2X

25 A2X«-A2X + A3X
Y-Y + AY
AY- AY + A2Y
A2Y*-A2Y + A3Y

These equations would result in registers X and Y as the actual coordinates of successive points on the
30 spline. If only 3/f + r + 1 bits of the coordinates are retained and overflows are ignored then X and Y are

the correct modulus 2 values for the coordinates.

Halfbitting Strategies
35

Halfbitting is a technique for increasing the effective resolution of a printer for large coherent objects
such as lines and curves. It involves approximating some boundaries by alternating pixels.

Figure 2 shows lines with width 1.5, 2, 2.5, and 3 represented using halfbitting. There is a difficulty
when it is desired to halfbit in both the x and y directions. It appears that such techniques do unaesthetic

40 things to diagonal lines. This invention half bits in the x or y direction but changes from x-halfbitting to y-
halfbitting depending on the orientation of the boundary.

Implementation
45

A standard spline stepper is used to step along the curve. For each step a determination is made as to
whether the step is nearly horizontal, nearly vertical, or diagonal. For each case the appropriate halfbitting
sample points are used. If two adjacent steps have differing classifications then an output step may be
produced to allow for the shifting of the sampling points. The overall algorithm is as follows:

50 1. Set OLDDIRECTION to NOHALFBIT (= no halfbitting).
2. For each step of the stepper do:
3. If the step is not in the same halfbitting mode as the last step then output steps if necessary to make
halfbitting modes coincide.
4. Do the step and issue step commands according to the appropriate halfbitting table.

55 5. End of for loop.
6. Reset direction to NOHALFBIT issuing steps as necessary. State variables of the Halfbitter
RXO, RX1 , RX2, RX3
RYO, RY1, RY2, RY3

8

iP 0 421 717 A2

CurrentX
CurrentY
old direction {XHALFBIT, YHALFBIT, NOHALFBIT}
current direction {XHALFBIT, YHALFBIT, NOHALFBIT}

5 Directions are defined by the deltas of the current step. Precisely:
XHALFBIT if 4|5yj<|5x|
YHALFBIT if 4|5x|<|5yj
NOHALFBIT otherwise
With reference to Figure 3, sampling normally occurs at 0.1 02 and 1.102 but if the step direction is

o nearly horizontal or nearly vertical then the sampling is at 0.01 2 and 1.012 or 0.11 2 and 1.1 12 depending on
the integer part of the other coordinate.

The center circle of each triplet is the normal sampling point and the other circles are the halfbitting
sampling locations. A table of steps as a function of halfbitting strategy changes (direction changes) follows
(where * indicates either 0 or 1):

'5 NOHALFBIT to XHALFBIT
if x < 1 and y = *.01 then
STEP + Y
else if x £ 1 and y = MO then
STEP-Y

>o NOHALFBIT to YHALFBIT
if y < 1 and x = \01 then
STEP + X
else if y i, 1 and x = MO then
STEP-X

?5 XHALFBIT to NOHALFBIT
if x < 1 and y = *.01 then
STEP-Y
else if x k 1 and y = MO then
STEP + Y

30 XHALFBIT to NOHALFBIT
if y < 1 and x = *.01 then
STEP-X
else if y £ 1 and x = MO then
STEP + X

35 The length of the stepper's step is bounded by 1 .00 in both x and y. Since halfbitting is attempted only
when the slope of the step is within a slope of 1/4 to horizontal or vertical the step in the "small" direction is
bounded by 1/4. This distance is small enough that the halfbitting produces reasonable outlines. The
transition table for no halfbitting is illustrated in Figure 4, and for X and Y halfbitting illustrated in Figures 5
and 6.

40 Fine point: all disambiguation must disambiguate 0 consistently (i.e., boundaries that are coincident with
sampling points). This means that lines intersecting sampling points are assumed to pass above the points
and vertical lines are assumed to pass to the right as shown in the following algorithm

9

:P 0 421 717 A2

Mgorithm:

fdef ineNEtobe /* +X + Y*/

#defineSE to be /* + X-Y*/

#defineSW to be /*-X-Y*/

#define NW to be /* -X + Y */

MoState [X, Y) = State of point when not halfbitting

i i \ X->
0 1 2 3 4 5 6 7

3 0 0 1 1 1 1 0 0
1 0 0 1 1 1 1 0 0
2 2 2 3 3 3 3 2 2
3 2 2 3 3 3 3 2 2
4 2 2 3 3 3 3 2 2
5 2 2 3 3 3 3 2 2
5 0 0 1 1 1 1 0 0
7 0 0 1 1 1 1 0 0

XState [X, Y] = State of point when x halfbitting

Y i \ X-*
0 1 2 3 4 5 6 7

00 0 1 1 2 2 3 3
14 4 5 5 6 6 7 7
24 4 5 5 6 6 7 7
30 0 1 1 2 2 3 3
40 0 1 1 2 2 3 3
54 4 5 5 6 6 7 7
64 4 5 5 6 6 7 7
70 0 1 1 2 2 3 3

YState [X, Y] = State of point when y halfbitting
Y i \ X-*

0 1 2 3 4 5 6 7
02 6 6 2 2 6 6 2
12 6 6 2 2 6 6 2
23 7 7 3 3 7 7 3
33 7 7 3 3 7 7 3
40 4 4 0 0 4 4 0
50 4 4 0 0 4 4 0
61 5 5 1 1 5 5 1
71 5 5 1 1 5 5 1

XHalf bitting {X, Y] = Stepping required when changing to x halfbitting

Y i \ X-*
0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

10

J U (1 (

1 1 1 1 0 0 0 0
o o o o o o o o
o o o o o o o o
0 0 0 0 2 2 2 2
1 1 1 1 0 0 0 0
o o o o o o o o

Halfbitting [X, Y] = Stepping required wnen cnangingxoy ndiiuuu.K,

0 1 2 3 4 S o '
0 0 2 0 0 0 2 0
0 0 2 0 0 0 2 0
0 0 2 0 0 0 2 0
0 0 2 0 0 0 2 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
o i o o o i o o

loSampler [dir, oldstrategy, newstrategyj = action on no nauuuung >«m

ildstrategy 1 \ newstrategy -*
5 0 1 2 3 0 1 ^ 3

0 0 2 3 14 0 1 3 13
1 2 0 14 3 1 0 13 3
2 3 14 0 2 3 13 0 1
3 14 3 2 0 13 3 1 0

0 o 0 2 6 16 0 1 6 15
1 2 0 16 6 1 0 15 6
2 6 16 0 2 6 15 0 1
3 16 6 2 0 15 6 1 0

(Sampler [dir, oldstrategy, newstrategyj = action on x nanu.umy >ccH

jldstrategy I \ newstrategy-*
0 1 2 3 4 5 6 7 u i - £ 3 h ^ w «

3 0 X 2 0 3 X 2 0 0 1 1 X 3 17 19 X

2 0 X 2 29 3 X 31 X 0 0 1 X 3 0

2 2 0 0 X 29 3 0 X 1 X 0 1 4 X 0 1

3 X 2 2 0 X 5 2 0 0 1 X 0 3 17 X 0

4 0 X 32 0 0 X 12 6 0 1 1 X 0 1 7 X

2 5 x 2 2 0 X 8 X 0 0 20 X 0 6 11

6 10 3 3 X 10 3 0 X 18 X 3 18 4 X 0 1

7 X 30 30 3 X 5 2 0 3 9 X 3 3 9 X 0

50

0 0 X 2 0 O X / o
1 2 0 X 2 2 0 X
2 2 0 0 X 2 0 6
3 X 2 2 0 X 28 26
4 6 X 12 6 0 X 12
5 25 6 X 25 2 0 X
6 27 0 0 X 10 3 0

6 U 1 l a v i ' ~
8 X 0 0 1 X 0 6 22
X 1 X 0 1 24 X 6 22
6 0 1 X 0 0 1 X 6
6 6 21 21 X 0 1 7 X
8 X 6 6 11 X 0 6 11
X 1 X 0 1 4 X 0 1

55

EP 0 421 717 A2

70

75

20

7 X 0 23

YSampler[dir, oldstrategy, newstrategyj = action on y halfbitting step

oldstrategy i \ newstrategy -*

25

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0 0 3 3 X 2 46 4 8 X 0 3 3 X 0 3 9 X
1 X 0 0 3 X 2 0 3 X 0 0 3 X 0 1 33
2 3 X 0 3 10 X 0 3 3 X 0 3 35 X 1 33
3 0 3 X 0 2 46 X 0 0 3 X 0 0 3 X 1
4 0 3 3 X 0 3 9 X 1 34 34 X 0 3 9 X
5 X 0 0 47 X 0 1 4 X 1 1 4 X 0 1 4
6 45 X 2 45 10 X 0 3 3 X 0 3 10 X 0 3
7 2 5 X 2 2 5 X 0 0 36 X O 2 5 X 0

0 0 X 6 0 2 X 6 0 0 X 6 0 0 X 37 1
1 6 0 X 6 42 2 X 4 4 6 0 X 6 6 0 X 1 1
2 6 0 0 X 42 2 0 X 6 0 0 X 6 0 I X
3 X 6 6 0 X 12 6 0 X 6 6 0 X 39 37 1
4 0 X 43 0 0 X 7 1 1 X 7 1 0 X 7 1
5 6 0 X 6 6 0 X 11 38 1 X 38 6 0 X 11
6 8 2 2 X 8 2 0 X 40 0 0 X 8 2 0 X
7 X 41 41 2 X 12 6 0 X 6 6 0 X 12 6 0

xHalfBit = TRUE/* if halfbitting in x else FALSE */

30
yHalf Bit = TRUE/* if halfbitting in y else FALSE */

35

40

newstrategy = NOHALFBIT;

initialize RX0, RX1, RX2, RX3, RY0, RY1, RY2, RY3 for spline

/* Beginning of stepping loop using backward differences */

for i = 0 to n

45

50

55

oldX = RX0

oldY = RY0

RX2 «- RX2 + RX3

RX1 *-RX1 + RX2

RX0 <- RX0 + RX1

RY2*-RY2 + RY3

RY1 *- RY1 + RY2

RY0*-RY0 + RY1

12

EP0 421 717 A2

oldstrategy = newstrategy
if RX1 a OandRYl £ Othen

direction = NE

if RX1 2: OandRYl < Othen

direction = SE

if RX1 < OandRYl > Othen

direction = NW

if RX1 < OandRYl < Othen

direction = SW

if(|RYl| < |RX 1/4| and xHalf Bit) then

newStrategy = XHALFBIT

else if (|RX1| < |RY1 /4| and yHalfBit) then

newStrategy = YHALFBIT

else

newStrategy = NOHALFBIT

if (oldstrategy * newstrategy) then

if (oldstrategy = XHALFBIT) then

switch XHalfbitting[oldX, oldY] in

case 1:-Y;

case 2: +Y;

endcase;

if (oldstrategy = YHALFBIT) then

switch YHalfbitting[oldX, oldY] in

case 1 : -X;

case 2: +X;

endcase;

/* strategy is now NOHALF */

if (newstrategy = XHALFBIT) then

switch XHalfbitting[oldX, oldY] in

case 1: + Y;

case 2: -Y;

endcase;

if (newstrategy = YHALFBIT) then

switch YHalfbitting[oldX, oldY] in

case 1 : + X;

case 2: -X;

13

EP 0 421 717 A2

endcase;
switch (newStrategy) {

case NOHALFBIT:

action = NoSampler[direction, NoState(oldState], NoState(newStatel];

case XHALFBIT:

action = XSampler[direction,XState[oldState], XState[newState]];

case YHALFBIT:

action = YSampler[direction,YState[oldState], YState[newState]];

} /* end switch (newStrategy) */

/* The disambiguate entries mean to calculate x ^ - x2yi around the indicated point

knowing the direction. If the relation is true relative to zero then chose the first alternative,

otherwise choose the second. */

switch (action) {

caseO: /* no move*/

case 1 : + X

case 2: -X

case 3: +Y

case4: +X +Y

case 5: -X +Y

case 6: -Y

case 7: +X-Y

case 8: -X-Y

case 9: + Y + X

case 10: +Y-X

case 11: -Y +X

case 12: -Y-X

case 13: disambiguate around (*. 10,*. 10) NE > { + X +Y}else{ + Y +X}

case 14: disambiguate around (*.10,*.10) NW > { + Y -X} else {-X + Y}

case 15: disambiguate around (*.10,*.10)SE <s {-Y + X} else { + X -Y}

case 16: disambiguate around (MO,*. 10) SW > {-X -Y} else {-Y -X}

case 17: disambiguate around (0.10,*.01) NE 2 { + X +Y}else{ + Y +X}

case 18: disambiguate around (1. 10,*. 1 1) NE a { + X +Y}else{ + Y + X}

case 19: disambiguate around (0.10,*.01) NE a { + X}else{ + Y +X-Y}

case 20: disambiguate around (1.10,*. 11) NE is {-Y +X +Y}else{ + X}

case 21: disambiguate around (0.10,*.01)SE £ {-Y + X}else{ + X-Y}

case 22: disambiguate around(1. 10,*. 11)SE z. {-Y + X} else { + X -Y}

14

EP 0 421 717 A2

case 23: disambiguate around (0.1 0,*.01) SE a { + X}else{ + Y + X-Y}
case 24: disambiguate around (1.10,*. 11) SE a {-Y + X + Y}else{ + X}

case 25: disambiguate around (0. 10/.01) SW > {-X -Y} else {-Y -X}

case 26: disambiguate around (1.10,*. 1 1) SW > {-X -Y} else {-Y -X}
case 27: disambiguate around (0.10,*. 01) SW > { + Y -X -Y} else {-X}

case 28: disambiguate around (1.10,*. 11) SW > {-X} else {-Y-X +Y}
case 29: disambiguate around (0.10,*. 01) NW > { + Y-X}else {-X + Y}

case 30: disambiguate around (1.10,*. 1 1) NW > { + Y-X} else {-X +Y}
case 31 : disambiguate around (0. 10,*. 01) NW > { + Y -X -Y} else {-X}

case 32: disambiguate around (1.10,*. 1 1) NW > {-X} else {-Y-X +Y}
case 33: disambiguate around (*.01,0.10) NE > { + X +Y}else{ + Y +X}

case 34: disambiguate around (*.1 1,1.10) NE a { + X + Y} else { + Y + X}

case 35: disambiguate around (*.01,0.10) NE a { + X + Y -X} else { + Y}

case 36: disambiguate around (*.1 1,1.10) NE a { + Y} else{-X +Y + X}

case 37: disambiguate around (*.01,0. 10) SE a {-Y + X} else { + X -Y}

case 38: disambiguate around (*. 1 1 , 1 . 1 0) SE a {-Y + X} else { + X -Y}

case 39: disambiguate around (*.01, 0.10) SE a {-Y} else { + X -Y -X}

case 40: disambiguate around (*.1 1,1.10) SE a {-X-Y +X}else{-Y}

case 41: disambiguate around (*.01, 0.10) SW > {-X -Y} else {-Y -X}

case 42: disambiguate around (*.1 1,1.10) SW > {-X -Y} else {-Y -X}
case43: disambiguate around (*.01, 0.10) SW > {-Y} else { + X -Y -X}

case 44: disambiguate around (*.1 1,1.10) SW > {-X-Y +X}else{-Y}

case 45: disambiguate around (*.01, 0.10) NW >{ + Y-X} else {-X +Y}
case46: disambiguate around (*. 11,1. 10) NW > { + Y -X} else {-X +Y}

case 47: disambiguate around (*.01, 0.10) NW >{ + X + Y -X} else { + Y}

case 48: disambiguate around (*. 11, 1.10) NW > { + Y}else{-X +Y + X}

} /* end switch (action) */

} /* end for loop */

(* Now set the strategy back to NOHALFBIT */

if (oldstrategy # NOHALFBIT) then

if (oldstrategy = XHALFBIT) then

switch XHalfbittingloldX, oldY] in

case 1:-Y;

case 2: +Y;

endcase;

if (oldstrategy = YHALFBIT) then

switch YHalfbitting[oldX, oldY] in

15

EP 0 421 717 A2

w

15

20

25

30

50

case 1 : -X;

case 2: +X;

endcase;

/* end of algorithm */

Raster Fill Algorithm

The XOR fill algorithm consists of writing a one-bit at the start of every transition from black to white or
white to black in the pixel array. The area can then be filled by initializing a bit to zero and successively
XORing the next pixel into this bit and storing the result back into the pixel array. In the middle of a solid
black or white area the original pixel array will be zero and the temporary bit will not change when XORed
with the pixels from the pixel array. Whenever a boundary between black and white is crossed, a one-bit
will be found in the pixel array and XORing this one-bit with the temporary bit will invert the temporary bit's
sense and prepare it for filling the next run of the opposite polarity.

The basic idea of the cross-scan fill algorithm is to write a bit at the start of every cross-scan black run
and at the start of every vertical white run. It is then possible to fill the area by XORing successive scan
lines. In effect, the fill algorithm is done in parallel for each bit of the machine word. Since this can be done
a full word at a time the speed of the algorithm will be very high even on standard microprocessors. In
Figures 7a an 7b, the filled bitmap (7a) is the desired filled bitmap. The outlined bitmap (7b) is the form of
the outline to be filled by the present invention. In this example words are assumed to be 4 bits long and
run in the horizontal direction. In the example there is a run of black bits from A3 to A10. The outline bitmap
has a bit at the start of this run at A3 and a bit just beyond the end of this run at A1 1 . If e is the symbol for
exclusive OR then the algorithm proceeds as follows:

Operation A B C

T«-0 OOOOOOOO 0000

35 T«-T©A1 00000000 0000

A1«-T 00000000 0000

T <- T © A2 0000 0000 0000

A2«-T 00000000 0000
40

T « - T © A 3 01110000 0000

A3*-T 01110000 0000

T « - T © A 4 01100000 0000
45 A4«-T 01100000 0000

T * - T © A 5 01100000 0000

55

16

EP 0 421 717 A2

A5«-T 01100000 0000

1*«-T©A6 01100000 0000

A6«-T 01100000 0000

T«-TffiA7 01100000 0000

A7«-T 01100000 0000

T«-T©A8 01100000 1000

A8«-T 01100000 1000

r«_T©A9 01100001 1000

A9«-T 01100001 1000

T"«-T©A10 0111 1111 1000

A10«-T 01111111 1000

T «- T © A 1 1 0000 0000 0000

A11«-T 00000000 0000

T *- T © A1 2 0000 0000 0000

A12*-T OOOOOOOO 0000

The algorithm then proceeds to columns B and C in a similar fashion.
In order to use the XOR fill algorithm it is necessary to set the appropriate bits along the outline of the

filled regions. Assume that a stepper steps in the +X, +Y, -X, or -Y directions. Then at any time the current
location (X, Y) can be calculated. The algorithm for storing bits is as follows:

+ X: BM{X, Y] «— BM[X, Y] ffi 1

X«-X + 1

-X: X«-X- 1

BM(X, Y]*-BM[X,Y] © 1

+ Y: Y«-Y + 1

-Y: Y«-Y- 1

It is necessary that all contours be exactly closed. After using the above algorithm the bitmap BM is
prepared to be filled by the XOR fill algorithm described above. For efficiency reasons the stepping
algorithm can be rewritten to set multiple bits in the same word simultaneously. The more efficient
algorithm for hardware (given in pseudo code) is:

17

EP 0 421 717 A2

+ X: bitword «- bitword © bit ; Insert bit into cache word

bit «- bit > > 1 ; Shift bit position in word right

if (bit = = 0) ; If bit fell off of w o r d -

then

bit «- highbit ; Put back bit at other end of word

if (bitword ! = 0) ; If any bits in cache word

BM[X, YJ *- BM[X, Y] © bitword ; Put cached data into bitmap

X « - X + 1 ; Increment X word address

bitword *-0

-X: bit «- bit < < 1 ; Shift bit position in word left

if (bit = = 0) ; If bit fell off of w o r d -

then

bit «- lowbit ; Put back bit at other end of word

if (bitword ! = 0) ; If any bits in cache word

BM[X, Y] «- BM[X, Y] © bitword ; Put cached data into bitmap

X «- X - 1 ; Decrement X word address

bitword <— 0

bitword *- bitword © bit ; Insert bit into cache word

+ Y: if (bitword ! = 0) ; If any bits in cache word

then

BM(X, Y] «- BM[X, Y] © bitword ; Put cached data into bitmap

bitword «- 0

Y«-Y + 1

-Y: if (bitword ! = 0) ; If any bits in cache word

then

BM[X, Y] «- BM[X, Y] © bitword ; Put cached data into bitmap

bitword <- 0

Y«-Y- 1

This cross-scan fill algorithm is more efficient during the fill operation because each bit of the word is
independent and can be calculated rapidly and independently. This algorithm is also more efficient during
the writing of the edges because nothing has to be written for vertical edges and less than one bit per
scanline for nearly vertical lines.

While there has been illustrated and described what is at present considered to be a preferred
embodiment of the present invention, it will be appreciated that numerous changes and modifications are
likely to occur to those skilled in the art, and it is intended in the appended claims to cover all those
changes and modifications which fall within the scope of the present invention.

18

EP 0 421 717 A2

Claims

1 . A method of rapidly converting graphical objects in outline form to raster bit map form for imaging pixels
on a raster device by successive scan lines in an imaging system having a memory for storing the

s graphical objects in outline form comprising the steps of:
allocating a set of memory locations for output bit maps and initializing the memory locations,
operating a stepper routine for each segment of the outline form to produce a quasi-outline of the graphical
object and storing the quasi-outline in said memory locations, said quasi-outline indicating the start and end
of each scan line of the graphical object, and

io successively Exclusive OR-gating each scan line into the following scan line to produce a filled raster
object.
2. The method of claim 1 wherein the outline forms are splines.
3. The method of claim 1 or claim 2 wherein the step of operating a stepper routine includes the step of
resolving diagonal operations into either x-y or y-x orthogonal steps.

is 4. The method of any one of claims 1 to 3 wherein the step of operating the stepper routine includes the
step of half bitting by using a table look up to make edges appear on half pixel locations of the graphical
object produced on the raster device.
5. The method of claim 4 wherein the step of operating the stepper routine includes the step of using
integers to avoid round-off errors.

20 6. The method of claim 1 wherein the step of operating the stepper routine includes the step of adjusting
sample points.
7. The method of claim 1 wherein the step of operating the stepper routine includes the steps of converting
the segments to difference equations, calculating successive points along the segments using fixed point
arithmetic, and providing a table look up for said points to determine suitable x and y steps in the raster.

25 8. A method of rapidly filling in an outline of a graphical object on the display of an imaging system having
a memory for storing graphical objects in outline form comprising the steps of:
providing a sequence of raster scan lines for imaging the graphical object,
Exclusive OR-Grating each successive raster scan line of the raster with the result of the Exclusive OR-
Gating of the preceding scan line, and

30 filling in the outline form of the graphical object on the display.
9. A method of filling in the splines of a graphical object on the display of an imaging system having a
memory for storing graphical objects in outline form, the method including a halfbitting routine and
comprising the steps of:
running a stepper routine to generate successive x and y steps for displaying the object,

35 providing a table look-up for selected bits of a resulting position relative to the display to generate halfbitting
information, and
using a disambiguation technique to define the outline for pre-determined x and y step relationships.
10. A method of converting graphical objects in outline form as splines to raster bit map form for imaging
pixels on a raster device of a raster imaging system having a memory for storing graphical objects in

40 outline form as splines, comprising the steps of:
converting the splines to difference equations,
calculating successive points along the spline using fixed point arithmetic, and
providing a table look up for said points to determine suitable x and y steps in the raster.
11. The method of claim 10 wherein the step of converting splines to difference equations includes the step

45 of insuring that no operation is greater than one raster cell.
12. The method of claim 10 or claim 11 wherein the splines have control points including the step of
rounding the control points of the splines to a grid before converting to difference equations.
13. The method of any one of claims 10 to 12 including the step of determining the proper order of
simultaneous x-y steps on the raster device.

50 14. The method of claim 13 wherein the step of determining the proper order includes the step of
calculating by straight line approximation.
15. The method of claim 14 wherein the step of determining the proper order includes the step of
subdivision of the x-y step.

19

EP 0 421 717 A2

D 3 X

A d d e r

D 2 X
t

A d d e r

D X

C
A d d e r

L

D 3 Y

*
Adde r

D 2 Y

A d d e r

D Y

A d d e r

F / G . f

Halfbitted lines of width
1.5.2.0.2.5. and 3.0 pixels

F I G . 2

0 0 0 0 1 1 1 1 0

0.00
111
1.10
1.01
1.00
0.11
0.10
0.01
0.00

0 0 1 1
0 1 0 1

0 0 1 1 0
0 1 0 1 0

0 0 0 0 1

0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0

0.00
1.11
1. 10
1.01
1.00
0.1 1
0.10
0.01
0.00

F I G . 3

20

EP 0 421 717 A2

0 0 0 0 I 1 1 1 0

0 0 1 1
0 1 0 1

0 0 1 1
0 1 0 1

0 0 1 1 1 1 0 0
0 0 1 I 1 1 0 0
2 2 3 3 3 3 2 2
2 2 3 3 3 3 2 2
2 2 3 3 3 3 2 2
2 2 3 3 3 3 2 2
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1 0

0 0 1 1
0 1 0 1

0 0 1 1 0
0 1 0 1 0

0.00
1.11
1.10
1.01
1.00
0.11
0.10
0.01
0.00

F I G . 4

0 0 0 0 1 1 1 1 0

0 0 1 1
0 1 0 1

0 0 1 1
0 1 0 1

0.00
1.11 «
1.10
1.01
1.00
0.11 <
0.10
0.01
0.00

0 0 1 1 2 2 3 3
. 4 4 5 5 6 6 7 7

4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3
4 4 5 5 6 6 7 7
4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3

0 0 0 0 1 1 1 1 0

0 0 1 1
0 1 0 1

0 0 1 1 0
0 1 0 1 0

0.00
I I I
1.10
1.01
1.00
0.11
0.10
0.01
0.00

F I G . 5

>1

EP 0 421 717 A2

u.w ■
1.11 ■
1.10 «
1.01 •
1.00 ■
0.11 -
0.10 «
D.01 -
o.oo -

0 0 U 0 1 1 1 1 0

6 6 i i 6 6 i i 6
0 1 0 1 0 1 0 1 0

1 5 5 1 1 5 5 1
1 5 5 1 1 5 5 1
0 4 4 0 0 4 4 0
0 4 4 0 0 4 4 0
3 7 7 3 3 7 7 3
3 7 7 3 3 7 7 3
2 6 6 2 2 6 6 2
2 6 6 2 2 6 6 2

r - r i r r n r
J U U U 1 1 1 I

J U 1 I
9 1 0 1

l 1 l l u

) 0 1 1 0
) 1 0 1 0

0.00
1.11
1.10
1.01
1.00
0.11
0.10
0.O1
o.oo

F I G . 6

z

1 ■

1 ■

G. 7 A

c

z z s z z z

[Z z z z z

r r " " " " 5 Z Z Z

	bibliography
	description
	claims
	drawings

