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S)  Rapid  halfbitting  stepper. 

g)  In  an  electronic  printing  system  having  a  memory  for  storing  graphical  objects  in  outline  form  as  splines,  the 
-nethod  of  rapidly  converting  the  graphical  objects  in  outline  form  as  splines  to  raster  bit  map  form  for  imaging 
Dixels  on  a  raster  device.  The  method  comprises  the  steps  of  allocating  a  set  of  memory  locations  for  output  bit 

naps  and  initializing  the  memory  locations,  operating  a  stepper  routine  for  each  spline  in  a  set  of  splines 
ncluding  the  step  of  resolving  diagonal  operations  into  either  x-y  or  y-x  orthogonal  steps  to  produce  a  quasi- 
Dutline  of  the  graphical  object  and  storing  the  quasi-outline  in  said  memory  locations,  Exclusive  OR  Gating  each 
successive  raster  scan  line  of  the  object  with  the  result  of  the  Exclusive  OR  Gating  of  the  preceding  scan  line  to 
fill  in  the  graphical  object,  and  producing  the  graphical  object  on  said  raster  device. 
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The  invention  generally  relates  to  printing  systems  storing  characters  in  outline  form  for  printing  and, 
more  particularly,  to  a  method  of  rapid  and  efficient  conversion  of  the  characters  before  printing  including  a 
procedure  for  resolving  diagonal  steps  in  the  conversion  process. 

In  many  electronic  printing  systems,  it  is  desirable  to  store  characters  in  outline  form  and  convert  them 
5  to  raster  form  just  before  printing.  This  improves  such  things  as  font  storage  utilization  and  flexibility  in  size 

and  orientation  of  characters.  One  technique  that  can  make  raster  characters  look  better  is  the  technique  of 
halfbitting.  This  enables  character  scaling  and  anamorphic  transformations  to  be  performed  on  a  single 
contour  character  to  generate  several  raster  versions  of  the  character.  The  printer  then  can  offer  a  wide 
variety  of  character  sizes  and  looks  without  a  large  amount  of  storage  space  for  the  character  rasters. 

70  A  difficulty  with  the  prior  art  systems  that  store  characters  in  contour  form  for  conversion  to  raster  form 
on  demand  is  the  relatively  slow  and  inefficient  process  of  conversion.  For  example,  it  is  known  how  to 
represent  characters  in  outline  form  which  can  be  scaled  and  still  retain  the  proper  visual  impact.  This 
technique  requires  scaling  different  parts  of  the  outline  differently  which  results  in  different  transformations 
for  different  parts  of  the  character,  and  this  is  conventionally  done  in  a  relatively  inefficient  manner. 

75  It  is  an  object  of  the  present  invention,  therefore,  to  provide  a  new  and  improved  technique  for  the 
conversion  of  contour  characters  to  raster  characters. 

The  invention  accordingly  provides  a  method  of  rapidly  converting  graphical  objects  in  outline  form  to 
raster  bit  map  form  for  imaging  pixels  on  a  raster  device  by  successive  scan  lines  in  an  imaging  system 
having  a  memory  for  storing  the  graphical  objects  in  outline  form  comprising  the  steps  of: 

20  allocating  a  set  of  memory  locations  for  output  bit  maps  and  initializing  the  memory  locations, 
operating  a  stepper  routine  for  each  segment  of  the  outline  formto  produce  a  quasi-outline  of  the  graphical 
object  and  storing  the  quasi-outline  in  said  memory  locations,  said  quasi-outline  indicating  the  start  and  end 
of  each  scan  line  of  the  graphical  object,  and 
successively  Exclusive  OR-gating  each  scan  line  into  the  following  scan  line  to  produce  a  filled  raster 

25  object. 
In  another  aspect,  there  is  provided  a  method  of  rapidly  converting  graphical  objects  in  outline  form 

represented  as  splines  to  raster  bit  map  form  suitable  for  imaging  pixels  on  a  raster  device  comprising  the 
steps  of  allocating  a  set  of  memory  locations  for  output  bit  maps  and  initializing  the  memory  locations, 
operating  a  stepper  routine  for  each  spline  in  a  set  of  splines  including  the  step  of  resolving  diagonal 

30  operations  into  either  x-followed-by-y  or  y-followed-by-x  orthogonal  steps  to  produce  a  quasi-outline  of  the 
graphical  object  and  storing  the  quasi-outline  in  said  memory  locations,  exclusive  ORing  each  successive 
raster  scan  line  of  the  object  with  the  result  of  the  exclusive  ORing  of  the  preceding  scan  line  to  fill  in  the 
graphical  object,  and  producing  a  bitmap  of  the  graphical  object  suitable  for  imaging  on  said  raster  device. 

A  method  in  accordance  with  the  invention  will  now  be  described,  by  way  of  example,  with  reference  to 
35  the  accompanying  drawings  wherein  the  same  reference  numerals  have  been  applied  to  like  parts  and 

wherein: 
Figure  1  is  a  spline  stepper  in  accordance  with  the  present  invention; 
Figure  2  illustrates  lines  of  and  initial  outlined  form  with  1.5,2.0,2.5  and  3.0  pixels. 
Figure  3  illustrates  halfbitting  sampling  locations; 

40  Figures  4,  5,  and  6  illustrate  disambiguation  transition  tables  for  no  halfbitting,  X-direction  halfbitting,  and 
/-direction  halfbitting  respectively  in  accordance  with  the  present  invention;  and 
Figure  7  illustrates  the  XOR  filling. 
A  general  nth  order  Bezier  spine  is  defined  by  its  control  points  P,  where  /'  ranges  from  0  to  n  and 

describes  the  curve 
45 

50 

55 
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i 
&u)=  y   c v a   -  t ) (n_,)p.  

=  0 

5r  equivalently 

;  —  n  .—a =0  y=0 
where 

s  the  binomial  coefficient  and  the  independent  parameter  t  ranges  between  0  and  1  .  This  representation  tor 
splines  has  the  advantage  that  an  affinely  transformed  spline  has  the  control  points  given  by  affine 
transforming  its  control  points  by  the  same  affine  transformation.  This  allows  for  rapid  calculation  of  the 
control  points  of  a  transformed  spline.  Note  that  the  second  expression  is  a  polynomial  in  terms  of  the 
differences 

of  the  control  points  P,-.  These  differences  can  be  quickly  calculated  using  only  additions  and  subtractions. 
Defining  these  differences  as 

d  ■  y   ('.)(_  i f   - - " p .  
j  z-  yv  j 

we  have 

n 

1  =  0 

These  differences  can  be  calculated  by  means  of  the  following  tableau: 
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P0  =  D0 
Pi -Po  =  D1 

Pi  (P l -P0) - (P2-P l )   =  D2 
P2  -  Pi  KP2  -  Pi)  -  (P3  -  P2)l  -  f(Pi  -  Po>  -  (P2  -  Pi)J  =  D3 

P2  (P2 -P l ) - (P3"P2)  
P 3 P 2  

P3 

etc. 

Defining  the  difference  operator 

A°X(<)  ■  X(t) 

A*+1XW  ■  A*X(<+6)  +  A*X(fl 
and  consequently 

A4+/X(f)s  Z   (-l)</~-'Y.)A*Xu,+j8) 

Where  S  =  2  *  is  a  step  size  we  get 

k  n  i 
AkX(t)  -  Z   (*K-  l)a"J>  Z   <?)  X  ( j ) < W - , D .  

j=0  i=0  /=0 

At  t  =  0  we  have 

A*X(0)  «  Y  (?)8iD.*!S* 
1=0 

where  

*!S*=  i ( - l ) ( t " W  

The  coefficients  are  called  the  Stirling  numbers  of  the  second  kind.  They  satisfy  the  following 
relationships: 
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3  J  =  0  ,  A  *  0 

S°  =  0 , i * 0  i 
w 

15  Therefore,  a  stepper  to  step  along  a  Bezier  spline  of  order  n  with  control  points  P,  can  be  constructed 
by  first  calculating  the  n  +  1  differences 
Do  =  Po 
Di  =  Pi  -  Po 
D2  =  P2  -  2Pi  +  Po 

20  D3  =  P3  -  3P2  +  3Pi  -  Po 
using  the  above  difference  tableau  and  then  calculating  the  starting  register  pair  values  R,-  from  the  set  of 
equations  corresponding  to  the  order  of  the  spline.  The  register  pair  R,  is  a  set  of  two  registers,  one  for  x 
and  one  for  y. 

Forward  differences  for  order  n  splines: 
25  n  =  1: 

Ro  =  Do 
Ri  =  Di5 
n  =  2: 
Ro  =  Do 

30  Ri  =  2Di5  +  D252 
R2  =  2D252 
n  =  3: 
Ro  =  Do 
Ri  =  3Di5  +  3D252  +  D353 

35  R2  =  6D252  +  6D3S3 
R3  =  6D353 

Backward  differences  are  similar  to  forward  differences  except  that  the  differences  are  of  points  with 
negative  f. 

Backward  differences  for  order  n  splines: 
40  „  -  1: 

Ro  =  Do 
Ri  =  Di« 
n  =  2: 
Ro  =  Do 

45  Ri  =  2D,  5  -  D252 
R2  =  2D252 
n  =  3: 
Ro  =  Do 
Ri  =  3Di5  -  3D252  +  D353 

50  R2  =  6D2S2  -  6D353 
R3  =  6D353 

Once  the  register  pair  values  are  calculated  successive  values  of  the  spline  coordinates  can  be 
calculated  by: 

Forward  differences  (using  only  the  first  n  equations  for  an  order  n  spline): 
55  Ro-Ro  +  Ri 

R1-R1  +  R2 
R2<_R2  +  R3 

5 
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Backward  differences  (using  only  the  first  n  equations  for  an  order  n  spline): 

R2*~  R2  R3 
R1--R1  +  R2 

5  R0«-Ro  +  Ri 
where  the  R  values  stand  for  a  pair  [RX,  RY]  of  registers.  There  must  be  as  many  register  pairs  as  one 
more  than  the  order  of  the  spline  to  be  plotted. 

Forward  difference  equations  have  the  advantage  that  all  additions  can  be  performed  simultaneously  in 
a  hardware  implementation  while  the  backward  difference  scheme  may  be  more  efficient  in  software  and 

10  has  the  advantage  that  the  starting  point  of  the  previous  step  is  easy  to  compute. 
It  is  important  that  these  calculations  be  done  exactly,  with  no  roundoff  error,  or  various  assumptions 

about  the  closure  of  contours  will  not  be  met.  This  sets  a  minimum  register  size  which  is  a  function  of  the 
number  of  steps  taken  per  spline  and  the  order  of  the  spline  and  the  resolution  that  control  points  can  be 
expressed.  The  halfbitter  requires  that  the  position  of  contour  points  be  known  as  the  difference  between 

75  the  actual  position  and  the  nearest  even  integer.  This  requires  one  binary  place  to  the  left  of  the  binary 
point.  To  satisfy  the  accuracy  requirements  we  need  nq  +  r  places  to  the  right  of  the  binary  point  for  a  total 
register  length  of  nq  +  r  +  1  bits  in  the  registers  where  n  is  the  order  of  the  spline,  q  is  the  log2  number  of 
steps  and  r  is  the  log2  accuracy  of  control  points  on  the  pixel  grid.  If  this  exceeds  the  length  of  the  register 
then  the  spline  is  subdivided  into  two  splines  and  the  algorithm  applied  to  each  piece  recursively.  A  general 

20  spline  stepper  can  be  implemented  with  two  parallel  sets  of  registes  for  x  and  y  coordinates  as  shown  in 
Figure  1  . 

For  straight  lines,  if  an  order  1  spline  is  described  by  the  points  A,  and  B  with  A  and  B  being  the 
endpoints  of  the  segment,  then  the  spline  is  the  set  of  points  X  satisfying  X(f)  =  (0  )A(1  -  t)  +  (\  )Bt  -  A(1  - 
t)  +  Bt 

25  with  f  ranging  between  0  and  1  .  If  t  is  stepped  by  S  =  2~k  and  the  control  points  are  multiples  of  2"r  then  all 
calculations  can  be  done  in  fixed  point.  To  maintain  accuracy  of  the  curve  shapes  it  is  necessary  to  have 
the  pixel  grid  be  something  like  8  times  the  coordinate  grid  so  that  control  points  are  moved  less  than  1/8  of 
a  pixel  when  quantitized  to  the  grid  making  r  =  3.  Remembering  that 
Do  =  A 

30  D1  =  B  -  A 
the  initial  values  for  the  difference  scheme  are: 
Ro  =  Do 
Ri  =  Di5 

Backward  differences  are  the  same  as  forward  differences  in  the  case  of  straight  lines. 
35  Once  the  register  pair  values  are  calculated,  successive  values  of  the  spline  coordinates  can  be 

calculated  by: 
Either  forward  or  backward  differences: 

Ro~-Ro  +  Ri. 

40 
Cubic  Splines 

(Although  the  following  formulae  are  specifically  for  the  cubic  spline  case,  these  formulae  can  be 
generalized  in  an  obvious  way  for  higher  or  lower  order  splines.) 

45  If  a  spline  is  described  by  the  points  A,  B,  C,  and  D  with  A  and  D  being  the  endpoints  of  the  segment 
and  B  and  C  being  the  interior  control  points  then  the  spline  is  the  set  of  points  X  satisfying 
X(f)  =  (§  )A(1  -  f)3  +  (3  )Bf(1  -  tf  +  (|  )Cf  (1  1-  f)  +  (1  )Df 
=  A(1  -  f)3  +  3Bf(1  -  f)2  +  3C*2(1  -  t)  +  Df3 
with  f  ranging  between  0  and  1  .  If  f  is  stepped  by  S  =  Zk  and  the  control  points  are  multiples  of  2'r  then  all 

50  calculations  can  be  done  in  fixed  point.  To  maintain  accuracy  of  the  curve  shapes  it  is  necessary  to  have 
the  pixel  grid  be  something  like  8  times  the  coordinate  grid  so  that  control  points  are  moved  less  than  1/8  of 
a  pixel  when  quantitized  to  the  grid.  Remembering  that 
Do  =  A 
D1  =  B  -  A 

55  D2  =  C  -  2B  +  A 
D3  =  D  -  3C  +  3B  -  A 
the  initial  values  for  the  difference  scheme  are: 
Ro  =  Do 

6 
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Ri  =  3Di5  +  3D252  +  D353 
R2  =  6D252  +  6D353 
R3  =  6D353 

Backward  differences  would  be: 
5  Ro  =  Do 

R,  =  3Di5  -  3D252  +  D353 
R2  =  6D252  -  6D353 
R3  =  6D353 
Once  the  register  pair  values  are  calculated  successive  values  of  the  spline  coordinates  can  be  calculated 

o  by: 
Forward  differences: 

Ro«-Ro  +  Ri 
Ri—  Ri  +  R2 
R2«-R2  +  R3 

-5  Backward  differences: 
R2<—  R2  +  R3 
R1-R1  +  R2 
Ro—Ro  +  Ri 

10 
Disambiguation 

One  problem  when  calculating  new  values  of  x  and  y  simultaneously  is  that  the  algorithm  may  indicate 
stepping  in  x  and  y  simultaneously  without  indicating  which  one  to  step  first.  To  solve  this  problem  we  can 

?5  do  a  further  calculation  if  both  x  and  y  step  during  the  same  f-step.  The  issue  here  is  to  determine  whether 
to  take  the  x  step  before  the  y  step  or  vice  versa.  Let  Xi  and  yi  be  the  coordinates  of  the  previous  point 
and  x2  and  y2  be  the  coordinates  of  the  current  point  where  the  point  (0,  0)  is  the  current  sampling  point. 
There  are  2  preferred  ways  to  do  this  additional  calculation.  These  methods  approximate  the  spline  by  short 
line  segments. 

30  1)  Calculate  the  sign  of  Xiy2  -  x2yi  as  this  will  disambiguate  the  two  cases.  This  solution  requires  a  fast 
multiply. 
2)  At  the  start  Xi  and  x2  have  different  signs  and  so  do  yi  and  y2  (as  this  is  the  only  case  where  a 
simultaneous  step  in  x  and  y  occurs)  then  we  can  replace  either  Xi  and  yi  or  x2  and  y2  with  the 
midpoint  (Xi  +  x2)/2  and  (yi  +  y2)/2  (with  the  remainder  of  the  division  ignored)  and  the  sign  of  the 

35  cross  product  remains  the  same.  We  always  choose  to  replace  the  coordinate  pair  with  the  same  signs 
as  the  midpoint  until  this  is  impossible  (neither  pair  has  exactly  the  same  signs  as  the  midpoint)  and  then 
the  sign  of  the  cross  product  will  be  obvious  and  one  can  step  from  (Xi,  y)  to  the  midpoint  to  (x2,  y2) 
without  a  simultaneous  step.  If  either  of  the  two  new  terms  is  zero  then  the  sign  is  also  obvious.  If  both  of 
the  new  terms  goes  to  zero  then  the  cross  product  is  zero  and  an  arbitrary  (but  consistent)  choice  must 

40  be  made.  This  method  is  guaranteed  to  terminate  in  log2  k  steps  where  k  is  the  number  of  bits  in  the 
representation  of  x  or  y. 

Choosing  the  step  size 
45 

Differentiating  X  with  respect  to  t  we  get 
x'(f)  =  3(1-f)2(B  -  A)  +  6f(1  -  f)(C  -  B)  +  3^(D  -  C) 
which  is  the  equation  of  a  spline  with  the  control  points  3(B-A),  3(C-B),  3(D-C). 

Since  a  spline  curve  lies  entirely  within  the  convex  hull  of  its  control  points  we  know  that  this  derivative 
so  spline  is  entirely  confined  within  the  triangle  3(B-A),  3(C-B),  3(D-C).  This  triangle  must  have  coordinates 

bounded  by  2"  if  stepping  by  2""  is  not  to  exceed  a  step  size  of  one.  This  is  necessary  to  avoid  multiple 
pixel  steps  in  a  single  cycle.  Choose  the  least  k  such  that 
2">3[  (Bx  -  A»)| 
2">3|  (Cx  -  Bx)| 

55  2">3|  (Dx  -  Cx)| 
2*>3|  (By  -  Ay)| 
2">3|  (Cy  -  By)| 
2ft>3|  (Dy  -  Cy)| 
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If  these  inequalities  can  not  be  satisfied  within  the  bound  set  by  the  available  register  length  we  can 
subdivide  the  spline  into  two  splines  and  repeat  the  algorithm  on  each  half.  Eventually  this  subdivision  will 
result  in  a  set  of  splines  that  can  be  plotted  with  step  sizes  less  than  one. 

If  we  are  stepping  t  in  units  of  2"*  then  the  initial  differences  for  the  spline  with  the  control  ponts  A,  B,  C 
5  and  D  are 

A 
3(B  -  A)5  +  3(C  -  2B  +  A)52  +  (D  -  3C  +  3B  -  A)«3 
6(C  -  2B  +  A)S2  +  6(D  -  3C  +  3B  -  A)53 
6(D  -  3C  +  3B  -  A)53 

10  where 
5  =  Zk 
Once  the  starting  differences  are  known  successive  points  along  the  curve  can  be  calculated  as  follows: 
Initialization: 
X~AX 

W  AX-3(BX  -  Ax)8  +  3(CX  -  2BX  +  A  x)&  +  (Dx  -  3CX  +  3BX  -  Ax)<5 
A2X-6(CX  -  2BX  +  Ax)52  +  6(DX  -  3  Cx  +  3BX  -  Ax)53 
A3X-6(DX  -  3CX  +  3BX  -  Ax)53 
Y—Ay 
AY-3(By  -  Ay)S  +  3(Cy  -  2By  +  Ay)S2  +  (Dy  -  3Cy  +  3By  -  Ay)53 

20  A2Y-6(Cy  -  2By  +  Ay)52  +  6(Dy  -  3  Cy  +  3By  -  Ay)S3 
A3Y-6(Dy  -  3Cy  +  3By  -  Ay)53 
Step  f: 
X-X  +  AX 
AX-AX  +  A2X 

25  A2X«-A2X  +  A3X 
Y-Y  +  AY 
AY-  AY  +  A2Y 
A2Y*-A2Y  +  A3Y 

These  equations  would  result  in  registers  X  and  Y  as  the  actual  coordinates  of  successive  points  on  the 
30  spline.  If  only  3/f  +  r  +  1  bits  of  the  coordinates  are  retained  and  overflows  are  ignored  then  X  and  Y  are 

the  correct  modulus  2  values  for  the  coordinates. 

Halfbitting  Strategies 
35 

Halfbitting  is  a  technique  for  increasing  the  effective  resolution  of  a  printer  for  large  coherent  objects 
such  as  lines  and  curves.  It  involves  approximating  some  boundaries  by  alternating  pixels. 

Figure  2  shows  lines  with  width  1.5,  2,  2.5,  and  3  represented  using  halfbitting.  There  is  a  difficulty 
when  it  is  desired  to  halfbit  in  both  the  x  and  y  directions.  It  appears  that  such  techniques  do  unaesthetic 

40  things  to  diagonal  lines.  This  invention  half  bits  in  the  x  or  y  direction  but  changes  from  x-halfbitting  to  y- 
halfbitting  depending  on  the  orientation  of  the  boundary. 

Implementation 
45 

A  standard  spline  stepper  is  used  to  step  along  the  curve.  For  each  step  a  determination  is  made  as  to 
whether  the  step  is  nearly  horizontal,  nearly  vertical,  or  diagonal.  For  each  case  the  appropriate  halfbitting 
sample  points  are  used.  If  two  adjacent  steps  have  differing  classifications  then  an  output  step  may  be 
produced  to  allow  for  the  shifting  of  the  sampling  points.  The  overall  algorithm  is  as  follows: 

50  1.  Set  OLDDIRECTION  to  NOHALFBIT  (=  no  halfbitting). 
2.  For  each  step  of  the  stepper  do: 
3.  If  the  step  is  not  in  the  same  halfbitting  mode  as  the  last  step  then  output  steps  if  necessary  to  make 
halfbitting  modes  coincide. 
4.  Do  the  step  and  issue  step  commands  according  to  the  appropriate  halfbitting  table. 

55  5.  End  of  for  loop. 
6.  Reset  direction  to  NOHALFBIT  issuing  steps  as  necessary.  State  variables  of  the  Halfbitter 
RXO,  RX1  ,  RX2,  RX3 
RYO,  RY1,  RY2,  RY3 

8 
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CurrentX 
CurrentY 
old  direction  {XHALFBIT,  YHALFBIT,  NOHALFBIT} 
current  direction  {XHALFBIT,  YHALFBIT,  NOHALFBIT} 

5  Directions  are  defined  by  the  deltas  of  the  current  step.  Precisely: 
XHALFBIT  if  4|5yj<|5x| 
YHALFBIT  if  4|5x|<|5yj 
NOHALFBIT  otherwise 
With  reference  to  Figure  3,  sampling  normally  occurs  at  0.1  02  and  1.102  but  if  the  step  direction  is 

o  nearly  horizontal  or  nearly  vertical  then  the  sampling  is  at  0.01  2  and  1.012  or  0.11  2  and  1.1  12  depending  on 
the  integer  part  of  the  other  coordinate. 

The  center  circle  of  each  triplet  is  the  normal  sampling  point  and  the  other  circles  are  the  halfbitting 
sampling  locations.  A  table  of  steps  as  a  function  of  halfbitting  strategy  changes  (direction  changes)  follows 
(where  *  indicates  either  0  or  1  ): 

'5  NOHALFBIT  to  XHALFBIT 
if  x  <  1  and  y  =  *.01  then 
STEP  +  Y 
else  if  x  £  1  and  y  =  MO  then 
STEP-Y 

>o  NOHALFBIT  to  YHALFBIT 
if  y  <  1  and  x  =  \01  then 
STEP  +  X 
else  if  y  i,  1  and  x  =  MO  then 
STEP-X 

?5  XHALFBIT  to  NOHALFBIT 
if  x  <  1  and  y  =  *.01  then 
STEP-Y 
else  if  x  k  1  and  y  =  MO  then 
STEP  +  Y 

30  XHALFBIT  to  NOHALFBIT 
if  y  <  1  and  x  =  *.01  then 
STEP-X 
else  if  y  £  1  and  x  =  MO  then 
STEP  +  X 

35  The  length  of  the  stepper's  step  is  bounded  by  1  .00  in  both  x  and  y.  Since  halfbitting  is  attempted  only 
when  the  slope  of  the  step  is  within  a  slope  of  1/4  to  horizontal  or  vertical  the  step  in  the  "small"  direction  is 
bounded  by  1/4.  This  distance  is  small  enough  that  the  halfbitting  produces  reasonable  outlines.  The 
transition  table  for  no  halfbitting  is  illustrated  in  Figure  4,  and  for  X  and  Y  halfbitting  illustrated  in  Figures  5 
and  6. 

40  Fine  point:  all  disambiguation  must  disambiguate  0  consistently  (i.e.,  boundaries  that  are  coincident  with 
sampling  points).  This  means  that  lines  intersecting  sampling  points  are  assumed  to  pass  above  the  points 
and  vertical  lines  are  assumed  to  pass  to  the  right  as  shown  in  the  following  algorithm 

9 
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Mgorithm: 

fdef ineNEtobe  /*  +X  +  Y*/ 

#defineSE  to  be  /*  +  X-Y*/ 

#defineSW  to  be  /*-X-Y*/ 

#define  NW  to  be  /*  -X  +  Y  */ 

MoState  [X,  Y)  =  State  of  point  when  not  halfbitting 

i  i  \  X-> 
0  1  2  3  4  5  6  7 

3  0  0  1  1  1  1  0  0 
1 0 0 1 1 1 1 0 0  
2 2 2 3 3 3 3 2 2  
3 2 2 3 3 3 3 2 2  
4 2 2 3 3 3 3 2 2  
5  2  2  3  3  3  3  2  2 
5  0  0  1  1  1  1  0  0 
7  0  0  1  1  1  1  0  0 

XState  [X,  Y]  =  State  of  point  when  x  halfbitting 

Y  i  \  X-* 
0  1  2  3  4  5  6  7 

00  0  1  1  2  2  3  3 
14  4  5  5 6 6 7 7  
24  4  5  5 6 6 7 7  
30  0  1  1  2  2  3  3 
40  0  1  1  2  2  3  3 
54  4 5 5 6 6 7 7  
64  4 5 5 6 6 7 7  
70  0  1  1  2  2  3  3 

YState  [X,  Y]  =  State  of  point  when  y  halfbitting 
Y  i  \  X-* 

0  1  2  3  4  5  6  7 
02  6 6 2   2 6 6 2  
12  6  6  2  2 6 6 2  
23  7 7 3 3 7 7 3  
33  7  7  3  3  7  7  3 
40  4  4  0  0 4 4 0  
50  4 4 0 0 4 4 0  
61  5  5  1  1 5   5  1 
71  5  5  1  1 5   5  1 

XHalf  bitting  {X,  Y]  =  Stepping  required  when  changing  to  x  halfbitting 

Y  i  \  X-* 
0  1  2  3  4  5  6  7 

0 0 0 0 0 0 0 0 0  

10 
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1 1 1 1 0 0 0 0  
o o o o o o o o  
o o o o o o o o  
0 0 0 0 2 2 2 2  
1  1  1 1 0   0  0  0 
o o o o o o o o  

Halfbitting  [X,  Y]  =  Stepping  required  wnen  cnangingxoy  ndiiuuu.K, 

0  1  2  3  4  S  o  '  
0 0 2 0 0 0 2 0  
0 0 2 0 0 0 2 0  
0 0 2 0 0 0 2 0  
0 0 2 0 0 0 2 0  
0  1  0  0  0  1  0  0 
0  1  0  0  0  1  0  0 
0 1 0 0 0 1 0 0  
o i o o o i o o  

loSampler  [dir,  oldstrategy,  newstrategyj  =  action  on  no  nauuuung  >«m 

ildstrategy  1  \  newstrategy  -* 
5  0  1  2  3  0  1  ^ 3  

0  0  2  3  14  0  1  3  13 
1  2  0  14  3  1  0  13  3 
2  3  14  0  2  3  13  0  1 
3  14  3  2  0  13  3  1  0 

0  o  0  2  6  16  0  1  6  15 
1  2  0  16  6  1  0  15  6 
2  6  16  0  2  6  15  0  1 
3  16  6  2  0  15  6  1  0 

(Sampler  [dir,  oldstrategy,  newstrategyj  =  action  on  x  nanu.umy  >ccH 

jldstrategy  I  \  newstrategy-* 
0 1 2 3 4 5 6 7   u i - £ 3 h ^ w «  

3  0  X  2  0  3  X  2  0  0  1  1  X  3  17  19  X 

2  0  X  2  29  3  X  31  X  0  0  1  X  3  0 

2  2  0  0  X  29  3  0  X  1  X  0  1  4  X  0  1 

3  X  2  2  0  X  5  2  0  0  1  X  0  3  17  X  0 

4 0 X   32  0 0 X   12  6  0 1   1 X 0 1 7 X  

2  5 x   2  2  0  X  8  X  0  0  20  X  0  6  11 

6  10  3  3  X  10  3  0  X  18  X  3  18  4  X  0  1 

7  X  30  30  3  X  5  2  0  3 9 X 3 3 9 X 0  

50 

0 0 X   2  0  O X / o  
1  2  0  X  2  2  0  X 
2 2 0 0 X 2 0 6  
3  X  2  2  0  X  28  26 
4  6  X  12  6  0  X  12 
5  25  6  X  25  2  0  X 
6  27  0  0  X  10  3  0 

6  U  1  l  a  v  i  '  ~ 
8  X 0 0 1 X 0 6   22 
X  1  X  0  1  24  X  6  22 
6  0  1  X  0  0  1  X 6  
6  6  21  21  X  0  1  7  X 
8  X 6 6   11  X 0 6   11 
X  1 X 0 1 4 X 0 1  

55 
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70 

75 

20 

7  X 0  23 

YSampler[dir,  oldstrategy,  newstrategyj  =  action  on  y  halfbitting  step 

oldstrategy  i  \  newstrategy  -* 

25 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7  
0 0 3 3 X 2   46  4 8 X 0 3 3 X 0 3 9 X  
1 X 0 0 3 X 2 0 3 X 0 0 3 X 0 1   33 
2 3 X 0 3   10  X 0 3 3 X 0 3   35  X  1  33 
3 0 3 X 0 2   46  X 0 0 3 X 0 0 3 X 1  
4 0 3 3 X 0 3 9 X 1   34  34  X 0 3 9 X  
5 X 0 0   47  X 0 1 4 X 1   1 4 X 0 1 4  
6  45  X  2  45  10  X  0  3  3 X   0  3  10  X  0  3 
7 2 5 X 2 2 5 X 0 0   36  X O 2 5 X 0  

0 0 X   6  0 2 X 6 0 0 X 6 0 0 X   37  1 
1 6   0  X  6  42  2 X 4 4   6 0 X   6  6  0 X 1 1  
2 6 0 0 X   42  2 0 X 6 0 0 X 6 0   I X  
3 X 6 6 0 X   12  6 0 X 6 6 0 X   39  37  1 
4 0 X   43  0 0 X 7 1   1 X 7 1   0 X 7 1  
5 6 0 X 6 6 0 X   11  38  1 X   38  6 0 X   11 
6 8 2   2 X 8 2 0 X   40  0 0 X 8 2 0 X  
7 X   41  41  2 X   12  6 0 X 6 6 0 X   12  6 0  

xHalfBit  =  TRUE/*  if  halfbitting  in  x  else  FALSE  */ 

30 
yHalf  Bit  =  TRUE/*  if  halfbitting  in  y  else  FALSE  */ 

35 

40 

newstrategy  =  NOHALFBIT; 

initialize  RX0,  RX1,  RX2,  RX3,  RY0,  RY1,  RY2,  RY3  for  spline 

/*  Beginning  of  stepping  loop  using  backward  differences  */ 

for  i  =  0  to  n 

45 

50 

55 

oldX  =  RX0 

oldY  =  RY0 

RX2  «-  RX2  +  RX3 

RX1  *-RX1  +  RX2 

RX0  <-  RX0  +  RX1 

RY2*-RY2  +  RY3 

RY1  *-  RY1  +  RY2 

RY0*-RY0  +  RY1 

12 
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oldstrategy  =  newstrategy 
if  RX1  a  OandRYl  £  Othen 

direction  =  NE 

if  RX1  2:  OandRYl  <  Othen 

direction  =  SE 

if  RX1  <  OandRYl  >  Othen 

direction  =  NW 

if  RX1  <  OandRYl  <  Othen 

direction  =  SW 

if(|RYl|  <  |RX  1/4|  and  xHalf  Bit)  then 

newStrategy  =  XHALFBIT 

else  if  (|RX1|  <  |RY1  /4|  and  yHalfBit)  then 

newStrategy  =  YHALFBIT 

else 

newStrategy  =  NOHALFBIT 

if  (oldstrategy  *  newstrategy)  then 

if  (oldstrategy  =  XHALFBIT)  then 

switch  XHalfbitting[oldX,  oldY]  in 

case  1:-Y; 

case  2:  +Y; 

endcase; 

if  (oldstrategy  =  YHALFBIT)  then 

switch  YHalfbitting[oldX,  oldY]  in 

case  1  :  -X; 

case  2:  +X; 

endcase; 

/*  strategy  is  now  NOHALF  */ 

if  (newstrategy  =  XHALFBIT)  then 

switch  XHalfbitting[oldX,  oldY]  in 

case  1:  +  Y; 

case  2:  -Y; 

endcase; 

if  (newstrategy  =  YHALFBIT)  then 

switch  YHalfbitting[oldX,  oldY]  in 

case  1  :  +  X; 

case  2:  -X; 

13 
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endcase; 
switch  (newStrategy)  { 

case  NOHALFBIT: 

action  =  NoSampler[direction,  NoState(oldState],  NoState(newStatel]; 

case  XHALFBIT: 

action  =  XSampler[direction,XState[oldState],  XState[newState]]; 

case  YHALFBIT: 

action  =  YSampler[direction,YState[oldState],  YState[newState]]; 

}  /*  end  switch  (newStrategy)  */ 

/*  The  disambiguate  entries  mean  to  calculate  x ^   -  x2yi  around  the  indicated  point 

knowing  the  direction.  If  the  relation  is  true  relative  to  zero  then  chose  the  first  alternative, 

otherwise  choose  the  second.  */ 

switch  (action)  { 

caseO:  /*  no  move*/ 

case  1  :  +  X 

case  2:  -X 

case  3:  +Y 

case4:  +X  +Y 

case  5:  -X  +Y 

case  6:  -Y 

case  7:  +X-Y 

case  8:  -X-Y 

case  9:  +  Y  +  X 

case  10:  +Y-X 

case  11:  -Y  +X 

case  12:  -Y-X 

case  13:  disambiguate  around  (*.  10,*.  10)  NE  >  {  +  X  +Y}else{  +  Y  +X} 

case  14:  disambiguate  around  (*.10,*.10)  NW  >  {  +  Y  -X}  else  {-X  +  Y} 

case  15:  disambiguate  around  (*.10,*.10)SE  <s  {-Y  +  X}  else  {  +  X  -Y} 

case  16:  disambiguate  around  (MO,*.  10)  SW  >  {-X  -Y}  else  {-Y  -X} 

case  17:  disambiguate  around  (0.10,*.01)  NE  2  {  +  X  +Y}else{  +  Y  +X} 

case  18:  disambiguate  around  (1.  10,*.  1  1)  NE  a  {  +  X  +Y}else{  +  Y  +  X} 

case  19:  disambiguate  around  (0.10,*.01)  NE  a  {  +  X}else{  +  Y  +X-Y} 

case  20:  disambiguate  around  (1.10,*.  11)  NE  is  {-Y  +X  +Y}else{  +  X} 

case  21:  disambiguate  around  (0.10,*.01)SE  £  {-Y  +  X}else{  +  X-Y} 

case  22:  disambiguate  around(1.  10,*.  11)SE  z.  {-Y  +  X}  else  {  +  X  -Y} 

14 
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case  23:  disambiguate  around  (0.1  0,*.01)  SE  a  {  +  X}else{  +  Y  +  X-Y} 
case  24:  disambiguate  around  (1.10,*.  11)  SE  a  {-Y  +  X  +  Y}else{  +  X} 

case  25:  disambiguate  around  (0.  10/.01)  SW  >  {-X  -Y}  else  {-Y  -X} 

case  26:  disambiguate  around  (1.10,*.  1  1)  SW  >  {-X  -Y}  else  {-Y  -X} 
case  27:  disambiguate  around  (0.10,*.  01)  SW  >  {  +  Y  -X  -Y}  else  {-X} 

case  28:  disambiguate  around  (1.10,*.  11)  SW  >  {-X}  else  {-Y-X  +Y} 
case  29:  disambiguate  around  (0.10,*.  01)  NW  >  {  +  Y-X}else  {-X  +  Y} 

case  30:  disambiguate  around  (1.10,*.  1  1)  NW  >  {  +  Y-X}  else  {-X  +Y} 
case  31  :  disambiguate  around  (0.  10,*.  01)  NW  >  {  +  Y  -X  -Y}  else  {-X} 

case  32:  disambiguate  around  (1.10,*.  1  1)  NW  >  {-X}  else  {-Y-X  +Y} 
case  33:  disambiguate  around  (*.01,0.10)  NE  >  {  +  X  +Y}else{  +  Y  +X} 

case  34:  disambiguate  around  (*.1  1,1.10)  NE  a  {  +  X  +  Y}  else  {  +  Y  +  X} 

case  35:  disambiguate  around  (*.01,0.10)  NE  a  {  +  X  +  Y  -X}  else  {  +  Y} 

case  36:  disambiguate  around  (*.1  1,1.10)  NE  a  {  +  Y}  else{-X  +Y  +  X} 

case  37:  disambiguate  around  (*.01,0.  10)  SE  a  {-Y  +  X}  else  {  +  X  -Y} 

case  38:  disambiguate  around  (*.  1  1  ,  1  .  1  0)  SE  a  {-Y  +  X}  else  {  +  X  -Y} 

case  39:  disambiguate  around  (*.01,  0.10)  SE  a  {-Y}  else  {  +  X  -Y  -X} 

case  40:  disambiguate  around  (*.1  1,1.10)  SE  a  {-X-Y  +X}else{-Y} 

case  41:  disambiguate  around  (*.01,  0.10)  SW  >  {-X  -Y}  else  {-Y  -X} 

case  42:  disambiguate  around  (*.1  1,1.10)  SW  >  {-X  -Y}  else  {-Y  -X} 
case43:  disambiguate  around  (*.01,  0.10)  SW  >  {-Y}  else  {  +  X  -Y  -X} 

case  44:  disambiguate  around  (*.1  1,1.10)  SW  >  {-X-Y  +X}else{-Y} 

case  45:  disambiguate  around  (*.01,  0.10)  NW  >{  +  Y-X}  else  {-X  +Y} 
case46:  disambiguate  around  (*.  11,1.  10)  NW  >  {  +  Y  -X}  else  {-X  +Y} 

case  47:  disambiguate  around  (*.01,  0.10)  NW  >{  +  X  +  Y  -X}  else  {  +  Y} 

case  48:  disambiguate  around  (*.  11,  1.10)  NW  >  {  +  Y}else{-X  +Y  +  X} 

}  /*  end  switch  (action)  */ 

}  /*  end  for  loop  */ 

(*  Now  set  the  strategy  back  to  NOHALFBIT  */ 

if  (oldstrategy  #  NOHALFBIT)  then 

if  (oldstrategy  =  XHALFBIT)  then  

switch  XHalfbittingloldX,  oldY]  in 

case  1:-Y; 

case  2:  +Y; 

endcase; 

if  (oldstrategy  =  YHALFBIT)  then 

switch  YHalfbitting[oldX,  oldY]  in 

15 
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case  1  :  -X; 

case  2:  +X; 

endcase; 

/*  end  of  algorithm  */ 

Raster  Fill  Algorithm 

The  XOR  fill  algorithm  consists  of  writing  a  one-bit  at  the  start  of  every  transition  from  black  to  white  or 
white  to  black  in  the  pixel  array.  The  area  can  then  be  filled  by  initializing  a  bit  to  zero  and  successively 
XORing  the  next  pixel  into  this  bit  and  storing  the  result  back  into  the  pixel  array.  In  the  middle  of  a  solid 
black  or  white  area  the  original  pixel  array  will  be  zero  and  the  temporary  bit  will  not  change  when  XORed 
with  the  pixels  from  the  pixel  array.  Whenever  a  boundary  between  black  and  white  is  crossed,  a  one-bit 
will  be  found  in  the  pixel  array  and  XORing  this  one-bit  with  the  temporary  bit  will  invert  the  temporary  bit's 
sense  and  prepare  it  for  filling  the  next  run  of  the  opposite  polarity. 

The  basic  idea  of  the  cross-scan  fill  algorithm  is  to  write  a  bit  at  the  start  of  every  cross-scan  black  run 
and  at  the  start  of  every  vertical  white  run.  It  is  then  possible  to  fill  the  area  by  XORing  successive  scan 
lines.  In  effect,  the  fill  algorithm  is  done  in  parallel  for  each  bit  of  the  machine  word.  Since  this  can  be  done 
a  full  word  at  a  time  the  speed  of  the  algorithm  will  be  very  high  even  on  standard  microprocessors.  In 
Figures  7a  an  7b,  the  filled  bitmap  (7a)  is  the  desired  filled  bitmap.  The  outlined  bitmap  (7b)  is  the  form  of 
the  outline  to  be  filled  by  the  present  invention.  In  this  example  words  are  assumed  to  be  4  bits  long  and 
run  in  the  horizontal  direction.  In  the  example  there  is  a  run  of  black  bits  from  A3  to  A10.  The  outline  bitmap 
has  a  bit  at  the  start  of  this  run  at  A3  and  a  bit  just  beyond  the  end  of  this  run  at  A1  1  .  If  e  is  the  symbol  for 
exclusive  OR  then  the  algorithm  proceeds  as  follows: 

Operation  A  B  C 

T«-0  OOOOOOOO  0000 

35  T«-T©A1  00000000  0000 

A1«-T  00000000  0000 

T  <-  T  ©  A2  0000  0000  0000 

A2«-T  00000000  0000 
40 

T « - T © A 3   01110000  0000 

A3*-T  01110000  0000 

T « - T © A 4   01100000  0000 
45  A4«-T  01100000  0000 

T * - T © A 5   01100000  0000 

55 
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A5«-T  01100000  0000 

1*«-T©A6  01100000  0000 

A6«-T  01100000  0000 

T«-TffiA7  01100000  0000 

A7«-T  01100000  0000 

T«-T©A8  01100000  1000 

A8«-T  01100000  1000 

r«_T©A9  01100001  1000 

A9«-T  01100001  1000 

T"«-T©A10  0111  1111  1000 

A10«-T  01111111  1000 

T  «-  T  ©  A  1  1  0000  0000  0000 

A11«-T  00000000  0000 

T  *-  T  ©  A1  2  0000  0000  0000 

A12*-T  OOOOOOOO  0000 

The  algorithm  then  proceeds  to  columns  B  and  C  in  a  similar  fashion. 
In  order  to  use  the  XOR  fill  algorithm  it  is  necessary  to  set  the  appropriate  bits  along  the  outline  of  the 

filled  regions.  Assume  that  a  stepper  steps  in  the  +X,  +Y,  -X,  or  -Y  directions.  Then  at  any  time  the  current 
location  (X,  Y)  can  be  calculated.  The  algorithm  for  storing  bits  is  as  follows: 

+  X:  BM{X,  Y]  «—  BM[X,  Y]  ffi  1 

X«-X  +  1 

-X:  X«-X-  1 

BM(X,  Y]*-BM[X,Y]  ©  1 

+  Y:  Y«-Y  +  1 

-Y:  Y«-Y-  1 

It  is  necessary  that  all  contours  be  exactly  closed.  After  using  the  above  algorithm  the  bitmap  BM  is 
prepared  to  be  filled  by  the  XOR  fill  algorithm  described  above.  For  efficiency  reasons  the  stepping 
algorithm  can  be  rewritten  to  set  multiple  bits  in  the  same  word  simultaneously.  The  more  efficient 
algorithm  for  hardware  (given  in  pseudo  code)  is: 
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+  X:  bitword  «-  bitword  ©  bit  ;  Insert  bit  into  cache  word 

bit  «-  bit  >  >  1  ;  Shift  bit  position  in  word  right 

if  (bit  =  =  0)  ;  If  bit  fell  off  of  w o r d -  

then 

bit  «-  highbit  ;  Put  back  bit  at  other  end  of  word 

if  (bitword  !  =  0)  ;  If  any  bits  in  cache  word 

BM[X,  YJ  *-  BM[X,  Y]  ©  bitword  ;  Put  cached  data  into  bitmap 

X « - X + 1   ;  Increment  X  word  address 

bitword  *-0 

-X:  bit  «-  bit  <  <  1  ;  Shift  bit  position  in  word  left 

if  (bit  =  =  0)  ;  If  bit  fell  off  of  w o r d -  

then 

bit  «-  lowbit  ;  Put  back  bit  at  other  end  of  word 

if  (bitword  !  =  0)  ;  If  any  bits  in  cache  word 

BM[X,  Y]  «-  BM[X,  Y]  ©  bitword  ;  Put  cached  data  into  bitmap 

X  «-  X  -  1  ;  Decrement  X  word  address 

bitword  <—  0 

bitword  *-  bitword  ©  bit  ;  Insert  bit  into  cache  word 

+  Y:  if  (bitword  !  =  0)  ;  If  any  bits  in  cache  word 

then 

BM(X,  Y]  «-  BM[X,  Y]  ©  bitword  ;  Put  cached  data  into  bitmap 

bitword  «-  0 

Y«-Y  +  1 

-Y:  if  (bitword  !  =  0)  ;  If  any  bits  in  cache  word 

then 

BM[X,  Y]  «-  BM[X,  Y]  ©  bitword  ;  Put  cached  data  into  bitmap 

bitword  <-  0 

Y«-Y-  1 

This  cross-scan  fill  algorithm  is  more  efficient  during  the  fill  operation  because  each  bit  of  the  word  is 
independent  and  can  be  calculated  rapidly  and  independently.  This  algorithm  is  also  more  efficient  during 
the  writing  of  the  edges  because  nothing  has  to  be  written  for  vertical  edges  and  less  than  one  bit  per 
scanline  for  nearly  vertical  lines. 

While  there  has  been  illustrated  and  described  what  is  at  present  considered  to  be  a  preferred 
embodiment  of  the  present  invention,  it  will  be  appreciated  that  numerous  changes  and  modifications  are 
likely  to  occur  to  those  skilled  in  the  art,  and  it  is  intended  in  the  appended  claims  to  cover  all  those 
changes  and  modifications  which  fall  within  the  scope  of  the  present  invention. 
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Claims 

1  .  A  method  of  rapidly  converting  graphical  objects  in  outline  form  to  raster  bit  map  form  for  imaging  pixels 
on  a  raster  device  by  successive  scan  lines  in  an  imaging  system  having  a  memory  for  storing  the 

s  graphical  objects  in  outline  form  comprising  the  steps  of: 
allocating  a  set  of  memory  locations  for  output  bit  maps  and  initializing  the  memory  locations, 
operating  a  stepper  routine  for  each  segment  of  the  outline  form  to  produce  a  quasi-outline  of  the  graphical 
object  and  storing  the  quasi-outline  in  said  memory  locations,  said  quasi-outline  indicating  the  start  and  end 
of  each  scan  line  of  the  graphical  object,  and 

io  successively  Exclusive  OR-gating  each  scan  line  into  the  following  scan  line  to  produce  a  filled  raster 
object. 
2.  The  method  of  claim  1  wherein  the  outline  forms  are  splines. 
3.  The  method  of  claim  1  or  claim  2  wherein  the  step  of  operating  a  stepper  routine  includes  the  step  of 
resolving  diagonal  operations  into  either  x-y  or  y-x  orthogonal  steps. 

is  4.  The  method  of  any  one  of  claims  1  to  3  wherein  the  step  of  operating  the  stepper  routine  includes  the 
step  of  half  bitting  by  using  a  table  look  up  to  make  edges  appear  on  half  pixel  locations  of  the  graphical 
object  produced  on  the  raster  device. 
5.  The  method  of  claim  4  wherein  the  step  of  operating  the  stepper  routine  includes  the  step  of  using 
integers  to  avoid  round-off  errors. 

20  6.  The  method  of  claim  1  wherein  the  step  of  operating  the  stepper  routine  includes  the  step  of  adjusting 
sample  points. 
7.  The  method  of  claim  1  wherein  the  step  of  operating  the  stepper  routine  includes  the  steps  of  converting 
the  segments  to  difference  equations,  calculating  successive  points  along  the  segments  using  fixed  point 
arithmetic,  and  providing  a  table  look  up  for  said  points  to  determine  suitable  x  and  y  steps  in  the  raster. 

25  8.  A  method  of  rapidly  filling  in  an  outline  of  a  graphical  object  on  the  display  of  an  imaging  system  having 
a  memory  for  storing  graphical  objects  in  outline  form  comprising  the  steps  of: 
providing  a  sequence  of  raster  scan  lines  for  imaging  the  graphical  object, 
Exclusive  OR-Grating  each  successive  raster  scan  line  of  the  raster  with  the  result  of  the  Exclusive  OR- 
Gating  of  the  preceding  scan  line,  and 

30  filling  in  the  outline  form  of  the  graphical  object  on  the  display. 
9.  A  method  of  filling  in  the  splines  of  a  graphical  object  on  the  display  of  an  imaging  system  having  a 
memory  for  storing  graphical  objects  in  outline  form,  the  method  including  a  halfbitting  routine  and 
comprising  the  steps  of: 
running  a  stepper  routine  to  generate  successive  x  and  y  steps  for  displaying  the  object, 

35  providing  a  table  look-up  for  selected  bits  of  a  resulting  position  relative  to  the  display  to  generate  halfbitting 
information,  and 
using  a  disambiguation  technique  to  define  the  outline  for  pre-determined  x  and  y  step  relationships. 
10.  A  method  of  converting  graphical  objects  in  outline  form  as  splines  to  raster  bit  map  form  for  imaging 
pixels  on  a  raster  device  of  a  raster  imaging  system  having  a  memory  for  storing  graphical  objects  in 

40  outline  form  as  splines,  comprising  the  steps  of: 
converting  the  splines  to  difference  equations, 
calculating  successive  points  along  the  spline  using  fixed  point  arithmetic,  and 
providing  a  table  look  up  for  said  points  to  determine  suitable  x  and  y  steps  in  the  raster. 
11.  The  method  of  claim  10  wherein  the  step  of  converting  splines  to  difference  equations  includes  the  step 

45  of  insuring  that  no  operation  is  greater  than  one  raster  cell. 
12.  The  method  of  claim  10  or  claim  11  wherein  the  splines  have  control  points  including  the  step  of 
rounding  the  control  points  of  the  splines  to  a  grid  before  converting  to  difference  equations. 
13.  The  method  of  any  one  of  claims  10  to  12  including  the  step  of  determining  the  proper  order  of 
simultaneous  x-y  steps  on  the  raster  device. 

50  14.  The  method  of  claim  13  wherein  the  step  of  determining  the  proper  order  includes  the  step  of 
calculating  by  straight  line  approximation. 
15.  The  method  of  claim  14  wherein  the  step  of  determining  the  proper  order  includes  the  step  of 
subdivision  of  the  x-y  step. 
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