
Combining Generational and Conservative Garbage
Collection: Framework and Implementations

Alan Demers
Mark Weiser
Barry Hayes
Hans Boehm

Daniel Bobrow
Scott Shenker

Xerox Palo Alto Research Center
Palo Alto, Ca 94304

SUMMARY
Two key ideas in garbage collection are generational

collection and conservative pointer-finding. Generational
collection and conservative pointer-finding are hard to use
together, because generational collection is usually
expressed in terms of copying objects, while conservative
pointer-finding precludes copying. We present a new
framework for defining garbage collectors. When applied
to generational collection, it generalizes the notion of
younger/older to a partial order. It can describe traditional
generational and conservative techniques, and lends itself to
combining different techniques in novel ways. We study in
particular two new garbage collectors inspired by this
framework. Both these collectors use conservative pointer-
finding. The first one is based on a rewrite of an existing
trace-and-sweep collector to use one level of generation.
The second one has a single parameter, which controls how
objects are partitioned into generations; the value of this
parameter can be changed dynamically with no overhead.
We have implemented both collectors and present
measurements of their performance in practice.

This appeared in the Conference Record of the 17th Annual ACM
Symposium on Principles of Programming Languages, January 17-19, 1990,
pp. 261-269.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a
fee and/or specific permission.

Copyright 1990 ACM.

I. Introduction

Garbage collectors fall into two general classes:
reference-counting and tracing. In this paper we consider
only tracing collectors. A tracing garbage collector works
by starting with a root set of memory objects, following the
pointers found there to other memory objects that should
be preserved, and so on recursively, until all objects
accessible from the roots have been found. Inaccessible
objects are garbage and can be reclaimed.

Garbage collection has a colorful past. It is considered
essential by some programming subcultures, such as those
from a Lisp heritage, and is considered superfluous or
dangerous by other subcultures, such as those from a
systems programming or real-time background. However,
there has been some use of garbage collection in systems
programming [Rovner85] [Weiser89] [Cardelli88], and even
real-time constraints are possible [Baker78] [Appel88]. In
general, interest in garbage collection is growing.

Garbage collection is almost never shared among
multiple language implementations. Instead, every
language with garbage collection does it differently, even
idiosyncratically, because collection usually depends on
implementation assumptions about the uses of pointers.
There is, however, a technique for identifying pointers that
is nearly language-independent. This technique, called
conservative pointer-finding, identifies a superset of the true
pointers, in effect by treating every word of a memory
object as if it might possibly contain a pointer [Boehm88].
Conservative pointer-finding precludes copying objects
when an object is copied, every pointer to that object must
be updated to refer to the new location, but conservative
pointer-finding cannot distinguish pointers from integers,

so updating them is not safe.
One can combine partially conservative with partially

copying collection [Bartlett88]. Other techniques, such as
calling language-dependent pointer-finding routines during
the trace (which we do), further relieve the problems of
conservative pointer knowledge.

A key method for achieving high performance garbage
collection is to concentrate reclamation effort on recently
allocated objects. This technique, a version of which was
used as early as 1975 in the SITBOL collector [Hanson77]
[Ripley78], has come to be known as "generational
collection", because it classifies objects by how old they are
[Lieberman83]. Generational collectors have always been
copying collectors, partly because copying results in more
compact storage (and thus fewer total pages in use), but
primarily because generations have always been defined
and implemented in terms of different memory spaces
segregated by object ages. Since generational collection has
become widely known, almost all new implementations use
this technique [Unger84] [Moon84] [Sobalvarro88]
[Courts87] [Wilson89]. It has substantial performance
benefits, and is compatible with real-time performance
requirements.

Conservative collection has great potential for being
the foundation of a language-independent system of
collection, but precludes copying in the general case.
Generational collection is extremely important for high-
performance collection, but seems to require copying of
objects. Combining the two is the challenge we took on,
and the result is two-fold: first, a better theoretical
framework for understanding garbage collection in general,
and generational collection in particular; second, several
new implementations of garbage collectors based on this
theoretical framework. Although our framework applies to
previous generational collectors as well, the new ones we
have implemented all have the property that they use
conservative pointers and so do not copy. Partially copying
collectors, in the style of Bartlett, are also possible, but we
haven’t done them.

II. Collector Theory

Storage model and partial garbage collection

We fix on a model of computer storage in which there
is a countably infinite set O of objects, with a distinguished
root object r ∈ O.
1: Definition. A storage state S is a pair <AS, P>, where AS,
the allocated set, is a finite subset of O, and P ⊆ O × O, the
points-to relation, is a reflexive binary relation on O. ♦
2: Definition. A storage state is valid if it satisfies the
following invariants:

I0 : r ∈ AS.
I1 : ((<a, b> ∈ P) ∧ (a ∈ AS)) ⇒ (b ∈ AS).
I2 : ((<a, b> ∈ P) ∧ (a ∉ AS)) ⇒ (b = a). ♦

Reflexivity of P is required for technical reasons. Since the
garbage collectors described below are essentially

computing the reflexive transitive closure P*, the
assumption that P is reflexive has no effect on their
operation.
3: Remark. In any valid storage state, all objects reachable
from the root are allocated; that is, P*(r) ⊆ AS. ♦

The client program, or mutator, repeatedly makes
changes to the storage state. The only assumption we make
about these changes is that they preserve validity.

The garbage collector, which runs repeatedly and
atomically with respect to the mutator, reclaims selected
objects by deleting them from AS; the collector is valid if it
accomplishes this without changing P on allocated objects
and without violating the invariants. Formally,
4: Definition. A garbage collection of storage state <AS, P>
is a a storage state <AS’, P’> such that

AS’ ⊆ AS, and
(a ∈ AS’) ⇒ (P’(a) = P(a)).

The collection is valid if
(<AS, P> valid) ⇒ (<AS’, P’> valid).

A (valid) garbage collector is a function mapping storage
states to (valid) garbage collections. ♦

Stated in these terms, a garbage collector is completely
characterized by the strategy it uses to choose AS’, the set of
retained objects. Clearly, choosing AS’ to be exactly the
reachable set P*(r) yields a valid collection. We call this
collection precise, because of the following:
5: Lemma. If <AS’, P’> is a valid garbage collection of <AS,
P>, then

AS’ = P*(AS’) ⊇ P*(r). ♦
A collection that retains a proper superset of P*(r) is

called partial (since it reclaims only part of the unreachable
memory). As we discuss below, there can be compelling
practical reasons for building a valid partial garbage
collector rather than a precise one.

Not every superset of P*(r) yields a valid partial
collection according to our theory. By Lemma 5 above, we
require that the retained set AS’ be closed under P. It is
possible to argue that every tracing collector must identify a
"reachable" set that is closed under P. However, one can
imagine building a collector that does not reclaim all the
objects it identifies as unreachable (e.g. because some of
them are on nonresident pages). Our theory would not
apply to such a collector. In addition, the theory says
nothing about running time, which is in any event
implementation-dependent. The theory does enable us to
determine formally sets of objects that can be collected and
sets of objects that may safely be ignored during a
collection.

We can characterize those supersets of P*(r) that yield
valid partial collections with the help of the following:
6: Definition. Let <AS, P> and <AS, Q> be valid storage
states. Then <AS, Q> is a pointer augmentation of <AS, P>
if Q ⊇ P. ♦
7: Theorem. Let <AS, P> be a valid storage state. AS’ ⊆
AS yields a valid garbage collection iff AS’ = Q*(r), where
<AS, Q> is a pointer augmentation of <AS, P>. ♦
This theorem states that, for the class of garbage collectors

we are considering, every valid partial collection is
equivalent to a precise collection on a pointer augmentation
of the true state.

Posets, embeddings and pointer augmentation

Here we define an embedding of a storage state in a
partially-ordered set. We argue that any pointer
augmentation can be induced by an appropriately-chosen
embedding. By Theorem 7 above, every valid partial
collection is equivalent to a pointer augmentation plus a
precise collection. Combining these results, we are assured
that one can fully explore the space of valid partial garbage
collections by exploring the space of embeddings.
8: Definition. A pointed partially ordered set, (hereafter
poset), is a triple <D, ≥, ⊥>, where D is a nonempty set, ≥
is a reflexive, transitive and antisymmetric relation on D,
and ⊥ ∈ D such that ∀x∈D x≥⊥. ♦
9: Definition. Let D = <D, ≥, ⊥> be a poset, and let S =
<AS, P> be a valid storage state. An embedding of S into D
is a pair <F, A> of functions from O into D such that

∀ a, b ∈ O <a, b> ∈ P ⇒ F(a) ≥ A(b).
An embedding <F, A> determines an induced points-to
relation PF,A on Ο by

<a, b> ∈ PF,A iff F(a) ≥ A(b)
∧ ((a = b) ∨ ((a ∈ AS) ∧ (b ∈ AS))).

The embedding is said to be lossless if PF,A = P. ♦
A natural correspondence between embeddings and

pointer augmentations is given by the following two
lemmas. Lemma 10 states that every embedding induces a
pointer augmentation; lemma 11 states that every pointer
augmentation is induced by some embedding.
10: Lemma. Let S = <AS, P> be a valid storage state, and
let <F, A> be an embedding of S in poset D = <D, ≥, ⊥>.
Then <AS, PF,A> is a pointer augmentation of <AS, P>, and
<F, A> is a lossless embedding of <AS, PF,A> in D. ♦
11: Lemma. Let S = <AS, P> be a valid storage state, and
let S’ = <AS, P’> be a pointer augmentation of S. Then
there exists a poset D = <D, ≥D, ⊥D> and an embedding
<F, A> of S in D such that PF,A = P’. That is, <F, A> is a
lossless embedding of S’ in D. ♦

Pointer augmentations can be performed directly on
embeddings with the aid of the following:
12: Definition. Let D = <D, ≥D, ⊥D> and E = <E, ≥E,
⊥E> be posets. A function h from D to E is a
homomorphism from D to E if it is strict and monotonic. ♦
13: Lemma. Let D = <D, ≥D, ⊥D> and E = <E, ≥E, ⊥E>
be posets, and let h be a homomorphism from D to E. Let
S = <AS, P> be a valid storage state, and <F, A> an
embedding of S in D. Then <h°F, h°A> is an embedding
of S in E with Ph°F,h°A ⊇ PF,A ⊇ P. ♦
In the above lemma, <AS, Ph°F,h°A> is a pointer
augmentation of <AS, P>. Further, <AS, Ph°F,h°A> is
losslessly embedded in E by <h°F, h°A>. Thus, a
homomorphism on the range of an embedding induces a
pointer augmentation. As before, we can prove something
very close to the converse:
14: Lemma. Let S = <AS, P> be a valid storage state.

There exists a poset D = <D, ≥D, ⊥D>, called a canonical
poset for S, and a lossless embedding <F, A> of S in D,
called a canonical embedding for S, with the following
property. For any pointer augmentation S’ = <AS, P’>,
there exists a poset D’ = <D’, ≥D’, ⊥D’> and a
homomorphism h from D to D’ such that <h°F, h°A> is a
lossless embedding of S’ in D’.
Proof (sketch): To construct a canonical embedding for
storage state S = <AS, P>, we let

D = {⊥D} ∪ (O × {0, 1}),
and let ≥D be the reflexive closure of the relation

{ <<a, 0>, <b, 1>> | <a, b> ∈ P }.
It is easy to verify that ≥D so defined is transitive and
antisymmetric, so D = <D, ≥D, ⊥D> is a poset. It is also
easy to verify that the pair of functions <F, A> given by

F(a) = <a, 0> A(a) = <a, 1>
is a lossless embedding of S in D. Now if S’ = <AS, P’> is
any pointer augmentation of S, the identity function on
(O×{0, 1}) yields the required homomorphism between
the canonical posets for S and S’. ♦
Thus, any pointer augmentation on a storage state S can be
induced by a suitably chosen homomorphism on the
canonical embedding for S.

Constructing partial collectors from embeddings

In practice, there are two basic reasons to build a
partial collector rather than a precise one. First, the actual
points-to relation may be unavailable. This comes about in
languages like C, where the typing system provides too little
information to identify all the pointers, making it necessary
to use a conservative pointer-finding strategy. Second,
some easily-identified subset of the allocated objects may
be richer in collectable objects than the entire allocated set.
In that case, collecting from only that subset can reclaim a
large fraction of the unreachable objects at substantially less
cost than a full collection. This is the basis of generational
collection schemes. The savings that result can be dramatic
on machines with virtual memory a well-designed
generational collector can cause far fewer page faults than a
full collector. Either of these sources of imprecision, or
their combination, can be expressed in a natural way as the
pointer augmentation induced by an embedding.

It is straightforward to express conservative pointer-
finding: the conservative points-to relation is simply a
pointer augmentation of the true points-to relation, and so
by Lemma 11 can be expressed as the induced points-to
relation of an embedding. Our storage model disallows
pointers to unallocated objects, and the conservative
pointer-finding collectors described below do the same
roughly, a bit pattern is not treated as a pointer unless its
value is the address of an allocated object.

Describing a generational garbage collector is only
slightly more involved. Informally, a generational collector
works by partitioning the allocated objects into threatened
objects, which are candidates for collection, and immune
objects, which will not be collected. Optionally, the
collector may then be able to identify efficiently a set of

objects called the bystanders, which are guaranteed not to
contain pointers into the threatened set. The identified
bystander set need not include all objects without pointers
into the threatened set, but it is advantageous to identify as
many bystanders as possible, since the collector does not
need to trace through bystanders.

For a garbage collection described by an embedding,
immune and bystander sets are easily identified as follows.
Let S = <AS, P> be a valid storage state, let D = <D, ≥,
⊥> be a poset, and let <F, A> be an embedding of S in D.
Consider the collection described by <F, A>, that is, the
precise collection on <AS, PF,A>. The immune set consists
of all allocated objects in A-1(⊥). Similarly, the bystander
set consists of all allocated objects in F-1(⊥). To see this,
consider the points-to relation PF,A. The pairs in this
relation that are of interest to us are the ones between
allocated objects, since these are the only ones that affect
the reachable set. By Definition 9, if a and b are allocated
objects and b ∈ A-1(⊥), then <a, b> ∈ PF,A. That is, every
allocated object in A-1(⊥) is pointed to by every allocated
object. In particular, every allocated object in A-1(⊥) is
directly pointed to by the root object r. Thus, no such
object can be collected, and we can identify AS ∩ A-1(⊥)
as the immune set. Again by Definition 9, if a ∈ F-1(⊥)
and <a, b> ∈ PF,A then b ∈ A-1(⊥). That is, the only
nontrivial pointers from objects in F-1(⊥) go to allocated
objects in A-1(⊥). Since there are no pointers from objects
in F-1(⊥) to objects in the threatened set (which is given by
AS - A-1(⊥)), we can identify AS ∩ F-1(⊥) as the
bystander set.

To describe generational garbage collection, we would
like to be able first to choose an immune set and then to
introduce a pointer augmentation that determines exactly
the chosen immune set. Here we describe a useful family of
immune sets for which this process is particularly easy.
15: Definition. An ideal in a poset D = <D, ≥, ⊥> is a
nonempty downward-closed subset of D. ♦
As before, we begin with an embedding <F, A> of storage
state S in poset D. We choose an ideal I ⊆ D such that AS
∩ A-1(I) is the desired immune set. Define the function h
from D to D by

⊥ x ∈ I
h(x) =

x otherwise
Clearly h yields a homomorphism from D to D. Thus, by
Lemma 13, <AS, Ph°F,h°A> is a pointer augmentation of
<AS, PF,A>, and <h°F, h°A> is a lossless embedding of <AS,
Ph°F,h°A> into D. Straightforward computation yields

Ph°F,h°A = PF,A ∪ { <a, b> | a ∈ AS ∧
b ∈ AS ∧ b ∈ (h°A)-1(⊥) }.

That is, Ph°F,h°A consists exactly of PF,A augmented by
pointers from all allocated objects to the objects in the
chosen immune set. A precise garbage collection of <AS,
Ph°F,h°A> is the best one possible, given the choice of
immune set, in the following sense: for any valid collection
<AS’, P’> of <AS, PF,A>,

AS’ ⊇ (AS ∩ A-1(I)) ⇒

AS’ ⊇ (Ph°F,h°A)*(r).
That is, any valid collection of <AS, PF,A> that retains all
the chosen immune objects must retain all the objects in
(Ph°F,h°A)*(r).

Combining collection strategies

Here we show how the collections described by two
different embeddings can be combined in a natural way by
combining the embeddings.
16: Definition. Let D1 = <D1, ≤1, ⊥1> and D2 = <D2, ≤2,
⊥2> be posets. The (strict) Cartesian product D1×D2 is the
poset D = <D, ≤, ⊥> where

D = {⊥} ∪ { <x1, x2> | x1 ∈ D1 - {⊥1}
∧ x2 ∈ D2 - {⊥2} },

⊥ ≤ ⊥,
⊥ ≤ <x1, x2>, and
<x1, x2> ≤ <y1, y2> iff x1 ≤1 y1 ∧ x2 ≤2 y2.

Below we use the notational convention that pairing is a
strict operation; i.e., that

<x1, ⊥> = <⊥, x2> = <⊥, ⊥> = ⊥. ♦
17: Definition. Let f : S →D and g : S →E be functions;
we define f⊗g : S →D×E by

(f⊗g)(x) = <f(x), g(x)> ∀ x ∈ S. ♦
18: Remark. If f(x) = ⊥ or g(x) = ⊥ then (f⊗g)(x) = ⊥.
In particular,

(f⊗g)-1(⊥) = f-1(⊥) ∪ g-1(⊥). ♦
19: Lemma. Let S = <AS, P> be a valid storage state; let
<F, A> and <F’, A’> be embeddings of S into D and D’,
respectively. Then <F⊗F’, A⊗A’> is an embedding of S
into D × D’. Further,

PF⊗F’,A⊗A’ = PF,A ∩ PF’,A’
∪ { <a, b> | (a ∈ AS) ∧
(b ∈ AS) ∧ ((A⊗A’)(b) = ⊥) }. ♦

The last term in the expression for PF⊗F’,A⊗A’ above arises
from strictness of the pairing operation. Intuitively,
PF⊗F’,A⊗A’ consists of PF,A ∩ PF’,A’ augmented by pointers
from all allocated objects to the objects in the union of the
immune sets determined by A and by A’. Thus, a precise
collection of <AS, PF⊗F’,A⊗A’> has the effect of using the
union of the immune sets together with all the pointer
information available from PF,A and PF’,A’.

Taking the Cartesian product of two embeddings in
this way is a particularly powerful tool for defining a
generational collector. For example, let <F, A> be an
embedding of S into poset D that induces the most accurate
points-to information available. Without loss of generality,
assume that A-1(⊥) = ∅. (It is easy to exclude ⊥ from the
range of A, by adding a new bottom element and "lifting"
D if necessary). Let <F’, A’> be an embedding of S into D’
such that (AS ∩ A’-1(⊥)) is the desired immune set.
Consider the precise collection of <AS, PF⊗F’,A⊗A’>. For
all threatened objects the induced points-to relation
PF⊗F’,A⊗A’ is at least as accurate as PF,A. The immune and
threatened sets, however, are determined entirely by PF’,A’.
Thus, we can make <F’, A’> as simple (and as easy to
compute) as we desire without losing any of the pointer
information encoded in<F, A>.

III. Introduction to Practice

We have implemented two collectors described by the
theory presented above. For each collector, we first explain
its operation in terms of an intuitive partial order and A and
F functions. We then summarize the implementation and
present some performance numbers to indicate that the
theory leads to practical new strategies.

Both our implementations use total orders, rather than
strictly partial orders. We believe there are important uses
of partial orders, but our first order of business was to show
that our theory led to new and practical collectors in more
conventional domains, and this led us to generational
collection, where the natural partial order is linear time.

Both our implementations use a trick of
implementation of A’s and F’s motivated by temporal
causality of pointers, as follows: A pointer written at time t
cannot point to an object allocated at time t’ > t. Therefore,
if F(a) is the time at which a last had a pointer written to it,
and A(b) is the time of allocation of b, then the invariant

∀ a, b ∈ O <a, b> ∈ P ⇒ F(a) ≥ A(b)

is true by causality. Naturally this is not as precise as
possible, since the pointer written at time F(a) might have
been to an object with allocation time well before F(a). On
the other hand, standard virtual memory support, such as
page write-protection or dirty bits, is sufficient to enable us
to maintain the invariant.

Another practical issue in our implementations is using
summary, per-"card", information rather than per-object
information. A card is a single contiguous region of
memory together with information about the objects
contained in that region. There are usually several cards
per physical page of memory. Cards are used to reduce the
per-object overhead of information like A and F, by storing
the information only once per card. We use the term "card
pollution" to refer to the imprecision that results from
maintaining information on a per-card rather than a per-
object basis. For example, when keeping A and F values
per card, the invariant ∀ a, b ∈ O <a, b> ∈ P ⇒ F(a) ≥
A(b) requires that A(c) be the minimum A, and F(c) be the
maximum F, for all the objects on card c. Pollution then
results as A(c) gets smaller than max(A(a)) for all a on c,
and as F(c) gets larger than min(F(a)) for all a on c.

One basic technique to avoid pollution is to remove
cards from use by the allocator when their objects have
lasted for a few generations. This keeps max(A) from
growing. It also has an indirect effect on F pollution by
avoiding turnover of objects on the card, and so keeping the
F values stable and not growing to point to objects with
later birthdays. Each collector below has its own scheme
for avoiding pollution.

IV. Collector I
As one experiment, we modified an existing trace-and-

sweep collector (a descendant of the one described in
[Boehm88]) to be generational. The strategy for a partial
collection can be described in terms of the following
embedding of the storage state. Consider the poset B =
<{0,1}, ≥, 0>, with the intuition that 0 represents "old"
objects, allocated before the last collection, and 1 represents
"new" objects. We define A(a)=1 if a was allocated since
the last collection, and 0 otherwise; F(a)=0 if it is known
that a has not been altered since the last collection, and 1
otherwise. By the causality argument above, this definition
of A’s and F’s preserves our invariants, and so is a
legitimate embedding. Poset B has only one interesting
ideal, namely {0}. As discussed in Section II above, the
immune set associated with this embedding, A-1(0), consists
of all objects allocated before the last collection.

The actual collection strategy used by Collector I is
described by the Cartesian product of the above embedding
with an embedding for conservative pointer-finding. We
now show that this strategy allows a simple and efficient
implementation.

Sticky Mark Bits

Collector 1 may be viewed as a modification of a
conventional mark-sweep collector, in which we sometimes
neglect to reset the mark bits between collections. In this
way, every object that survived the last collection has its
mark bit set, and thus the mark bit can also be interpreted
as the A value of the object corresponding to the poset B.
Therefore we dubbed this approach "sticky mark bit"
collection.

The algorithm for a full garbage collection in a
conventional mark-sweep collector can be expressed as
follows:

1. Clear all mark bits.
2. Mark all objects reachable from the roots.
3. Reclaim all unmarked objects.

The algorithm for a partial garbage collection is only
slightly different. We attempt to reclaim only those objects
allocated since the last collection (i.e., not marked by it).
Thus, for partial collections, we do not perform step 1. This
implicitly establishes the A values corresponding to the
poset B. The bystanders are those objects with F value of 0,
that is, those objects that have not been altered since the last
collection. These do not need to be considered. We
assume that all other immune objects are reachable, and
treat then as additional roots. This is implemented by
replacing step 1 by:

1’. Mark from all modified marked objects.
As in Collector II below, we have no way of identifying
modified objects other than through the paging hardware.
Thus step 1’ must be implemented as:

1’’. Mark from all marked objects on dirty cards.
This is the only substantial difference between full and
partial collections. In practice it is important to intersperse
partial collections with full collections, since a significant

number of short-lived objects will survive a single
collection.

We can state A and F more precisely now in terms of
our implementation: Every object has two properties: M(a)
is true if a is marked, and D(a) is true if a is on a page that
has been dirtied. Then the following mapping expresses A
and F values in terms of the information maintained by the
algorithm:

M(a) ⇒ A(a) = 0
~M(a) ⇒ A(a) = 1
M(a) ∧ D(a) ⇒ F(a) = 1
M(a) ∧ ~D(a) ⇒ F(a) = 0
~M(a) ⇒ F(a) = 1

Results from Collector I

We replaced the standard garbage collector and
allocator in Ibuki Common Lisp [IBUKI87] with our
Collector I, using a card size of 4096 bytes. We measured
collection times for the Boyer benchmark from the Gabriel
benchmarks [Gabriel85], and for the Ibuki Common Lisp
compiler compiling its two largest modules of about 1000
lines each. The heap size was fixed at 2.5M, and full trace-
and-sweep was performed just before measurement began.
The tests were performed on a Sun-3/260 with 24MB ram.
All programs fit in real memory, and the machine was
essentially unloaded during the tests. Measured times are
in seconds of Unix user+system time.

We compared collection times for two different
collection policies:

Policy 1: All collections are full trace-and-sweep,
triggered when the heap is full.
Policy 2: A partial collection is triggered after
approximately every 100 Kbytes of allocation. Such
collections ignore cards that are more than 3/4 full.
A full collection is triggered when all cards are more
than 3/4 full.

Under both policies, the sweep phase is deferred
almost entirely until allocation time. This may save some
time, since some cards are never swept, and it always
reduces garbage collection pauses. Dirty bits are simulated
by checksumming cards. We excluded the deferred sweep
time and the (substantial) checksumming overhead from
the measurements.

For the Boyer benchmark under policy 1, a typical run
took 3 collections, with a total time of 8.5 seconds. (About
2.7 additional seconds were spent sweeping during
allocation.) Essentially the full heap of more than 600
pages was touched during every collection.

Under policy 2 there were typically 30 partial
collections, plus an average of 1.4 full collections. An
average of only 42 cards were touched per partial collection.
Total collection time per iteration was 21.5 seconds (plus
about 3.2 seconds delayed sweep overhead). The new
collector was therefore slower in cpu time, but it touched
far fewer pages during most collections. For applications
running in limited physical memory, this advantage would
certainly outweigh the increase in cpu time. Also, garbage

collection pauses were reduced from about 3 seconds
(under policy 1) to about 1/2 second, and thus would have
been unnoticeable on a slightly faster machine.

The number of remaining full collections is relatively
high in this example, since the heap becomes close to full.
One explanation is that the heap is sufficiently full that
even a complete collection may free only a third of the
heap. We would also no doubt benefit from collecting
slightly less frequently, thus reducing the number of short-
lived objects that "accidentally" survive until the next full
collection. This would also substantially reduce the
required cpu time. We observed that if we also postpone
partial collections until the heap fills up, we incur only
about a 40% cpu time overhead, but still keep the number
of pages touched in a partial collection down to about half.

For the compilation benchmark we obtained similar
performance results. Policy 1 resulted in an average of 2.8
collections per benchmark iteration, with a garbage
collection time of 7.3 seconds. Policy 2 reduced the number
of full collections to exactly one per iteration, but added 26
partial collections. Total collection time went up to 20.7
seconds. About 57 cards were touched by each partial
collection.

V. Collector II.

Our second collector, rather than using a single bit for
time, uses the integers starting at zero. CurrentTime
increases by one each collection. Rather than implicit A
and F functions as in Collector I, we use explicit A and F
functions related to object birthdays: A(a) is the time at
which a was first created, and F(a) is the latest creation time
of any object directly pointed to by a.

For efficiency, A and F values are maintained per-card
rather than per-object, as discussed above. The A-value of
a card is set when the card is used for the first time and
never altered until the card is completely empty. The F-
value is computed by remembering its value when we are
scanning the pointers on the card during a collection. To
maintain the F-values, cards with a valid F-value are write-
protected. When a write occurs on a physical page, we turn
off the protection and remember that the cards on that page
no longer have valid F-values. At the next collection these
cards will be considered to point into the threatened cards
and so will be rescanned, recomputing their F-values.

A collection begins with the identification of a
threatening boundary (TB), which is simply an integer
between 0 and currentTime. Objects on cards with A-
values strictly less than TB are immune; objects on cards
with F-values strictly less than TB are bystanders. Thus,
TB=0 does a full trace-and-sweep, TB>0 does a
generational collection back some distance into the past.

To reduce card pollution, Collector II removes a card
from consideration for allocation when it is three-fourths
full and its A-value is two generations old. If it later
becomes half full, it is again available for use by the
allocator. To reduce paging overhead, Collector II also uses

a version of trace-queueing, described in Section VI.

Results from Collector II

Measurements of Collector II used the same setup and
benchmarks as measurements of Collector I, with the
exception that cards were reduced to 512 bytes.
Measurements of Collector II were done on a Sun-4/260, a
faster machine than the Sun 3, with a significantly different
architecture. Therefore, no direct comparison should be
made between the times given in the previous section and
those in this section.

We compared collection times for two different
collection policies:

Policy 1: Trace-and-Sweep. TB always 0, collect
when heap is three-fourths full.

Policy 2: Generational. TB = currentTime-1,
collect every 100k bytes allocated.

For Boyer, the generational collector did 31
collections, using a total time for all GC’s of 43 seconds. It
touched on the average only 57 physical pages per
collection. By comparison, the trace-and-sweep collector
did 11 collections totalling 75 seconds of GC time, and
touched an average of 285 physical pages per collection.
Generational wins on every count.

For the compiler, our generational collector was more
typical of generational schemes: it used more cpu, but
touched fewer pages. It did 24 collections, using a total GC
time of 46 seconds, touching an average of 126 physical
pages at each collection. The trace-and-sweep collector ran
only 4 times, using a total time of 29 seconds, touching an
average of 430 pages at each collection.

The above numbers indicate that this collector is on
the right track. The generational version of Collector II
touches far fewer pages than the full trace-and-sweep
version. Particularly remarkable is the use of less cpu time
for generational collection than for full trace-and-sweep, at
least in the Boyer benchmark. This is not usually true of
generational collectors, which tend to trade cpu-time for a
smaller working set. Overall, Collector II’s times are still
much slower than the normal Ibuki system, and slower than
Collector I, but we have done none of the usual system
tuning one needs in a production quality collector and
allocator. We believe our collection times can be improved
by a factor of 2-10 by some straightforward performance
tuning.

VI. Other Fancy Tricks

There are many other tricks to making our collector
implementations effective. Below we discuss four which
are of particular interest: parallelism, trace queueing,
lifetime prediction and application hints.

Parallelism

To reduce the pauses that result from garbage
collections over large sets of objects, we have built an
experimental implementation of Collector II in which
tracing of the heap is incremental. The basic technique is to
make a virtual snapshot of the heap when the collector
starts. We do this by simulating a kind of "copy-on-write"
behavior we write-protect the entire heap and copy pages
as they are written by the application program during
parallel collection. This is similar to techniques suggested
by Shaw [Shaw87]. It takes only 3 milliseconds on a Sun-4
to take the write fault, copy the page, and unprotect it. In
practice we have seen a maximum of only 20 page faults per
second of application time (during the Ibuki compiler),
although of course a much worse "toy" application is easy
to construct.

Now when the collector is invoked it finds all of the
pointers from the stack, registers, global data, and non-
threatened cards into threatened cards. These pointers are
remembered for tracing later. All cards are then write-
protected, starting the virtual snapshot, and control is given
back to the mutator. Objects allocated after the start of a
parallel collection are not considered for collection.

Tracing now occurs incrementally during allocations.
At each allocation request a single card of the heap is
traced. Pointers off the card are saved for later. Notice that
there is an upper bound on the time each allocation will
take, and the expense of a large garbage collection can be
amortized over a longer time.

Trace Queueing

It is a goal of generational collection to keep the size of
the set of objects being traced small, thereby keeping
collections short and unintrusive. Unfortunately,
generational collection also allows accumulation of old but
unreachable objects. In a long-lived program, such as an
operating system, it is necessary occasionally to collect the
entire heap. While this large collection is running,
performance of the mutator degrades, but the program can
continue running with no a priori limits on storage imposed
by the collector.

If done naively, full collections can degrade mutator
performance beyond usability. The problem arises in
systems with virtual memory when the number of pages
accessed by the collector is much larger than the number of
available pages of physical memory. A naive depth-first
trace of all live objects accesses nonresident pages
frequently and repeatedly. Consequently, the collector
generates a large number of page faults, swapping out the
mutator’s working set.

The trace of the heap must keep track of all objects
that have been reached but not yet explored. A simple
depth-first search keeps these unexplored objects on a stack
and explores the object on the top of the stack when it finds
itself at a leaf. Instead, the collector can partition the
unexplored objects into buckets based on their addresses,
and choose to explore objects that are already in memory
whenever possible.

We implement trace queueing in Collector I by
bucket-sorting the stack of references to be explored. In
Collector II we trace all of the references on a single card at
each allocation request. This gives the desired locality on
the trace and a form of pseudo-parallelism. There is an
upper bound on the time each allocation will take, since the
collector is accessing only one card.

Trace queueing can cause unexpected performance
penalties. For instance, the anomalous fact that Collector II
uses less cpu time for generational collections than for full
trace-and-sweep is largely explained by the greater number
of off-page pointers followed during full trace-and-sweep.
Turning off page queueing resulted in collection times
more nearly proportional to the number of bytes actually
traced by each collector.

Lifetime Prediction

With a copying collector, all new objects are allocated
in a new space, and those surviving collection are copied to
a different area. This results in a high density of live objects
in memory. A non-copying collector, however, does not
have this advantage. Objects that will soon die are allocated
alongside objects that will be tenured. This natural
intermingling of objects of different lifetimes results in
fragmentation of the tenured storage. Allocating new
objects in the holes in tenured storage fills the holes, but
collecting those new objects is inefficient.

If we can predict object lifetimes in advance, then we
can allocate long-lived and short-lived objects on separate
cards. A reasonable predictor of object lifetimes is the
allocation site. Static lifetime prediction algorithms
typically rely on this assumption [Hudak86]. However, it is
not clear exactly what constitutes an allocation site. The
value of the program counter at the point of call to the
memory allocation routine is a bad choice many LISP
systems perform essentially all allocation from inside a
routine implementing "cons." We need to identify the
allocation site by information that simultaneously is cheap
to compute and is a reasonable summary of the entire call
stack. The stack pointer is a plausible candidate.

We built a modification of collector I that used the 11
low-order bits of the stack pointer to summarize the
allocation site. It tracks lifetimes of a few objects, namely
those that are the first allocation from a site and those that
initiate allocation from a new card. If more than 3/4 of the
tracked objects from a site survive the first collection, it
declares the site to be long-lived. Cards that are more than
half (but less than 3/4) full are reserved for allocations from
such sites.

This scheme can be successful. On contrived test
programs that exhibited exceptionally clean "generational"
behavior, it eventually led to accumulation of a majority of
all the long-lived objects on separate cards. This in turn led
to significantly faster collection times, since the cards that
were actually being examined by the collector contained
few surviving objects. As a result, total collection times
decreased to essentially those for the nongenerational
collector.

Unfortunately, the success of the method is both
machine- and application-dependent. It failed on a Sun 4,
for example: on that processor, nearly every activation
record has size exactly 96 bytes, so the stack pointer value
contains little information.

On the compiler benchmark the strategy appeared to
be marginally successful at concentrating long-lived objects,
but not successful enough to show a performance
improvement. Precise comparisons are difficult, since the
partial collector effectively retires pages once they are 1/2
instead of 3/4 full. Nevertheless, at least the number of
collections did not increase. On the Boyer benchmark some
performance degradation was observed. However, given
that this is a theorem proving benchmark, it is perhaps not
surprising that object lifetime prediction is hard.

Application Hints

Our Collector II can accept hints from the application
in the form of advice about TB values. For instance, the
application can remember currentTime just before
performing some storage-intensive operation. Then, when
the operation is done, the application can request a
collection back to the remembered time, which will reclaim
the temporary objects created for that operation.

To test this idea, we made a run of Collector II
compiling the two large lisp modules, with the following
change: before compiling the first module currentTime was
remembered, and between compiling the two modules a
collection was done with TB of the remembered time.
Total collection time was cut from 46 to 35 seconds still
not as good as the trace-and-sweep (29 seconds) but much
closer. Fascinating but not unexpected, the number of
physical pages accessed during that collection in the middle
was still only 129 pages, about the same as all the other
generational collections. So with the right hints, at no loss
of working set, collection time can be greatly improved.

VI. Conclusions
Our theory describes a large space of interesting

garbage collectors. It is also a predictive theory so far, it
has led us to two unique implementations of generational
collectors with reasonable performance. There is much
work to do to apply the theory to more kinds of collectors,
and to explore further the space of implementations,
particularily to take full advantage of the flexibility of
partial orders.

VII. Acknowledgements
Hans Boehm was partially supported by DARPA/NSF

grant CCR 87-20277. Barry Hayes was partially supported
by the Northern California Chapter of ARCS Foundation,
Inc., and by DARPA contract N000014-87-K-0828.

References
[Appel88] A. Appel, J. Ellis, and K. Li. Real-time

Concurrent Garbage Collection on Stock
Multiprocessors. Proceedings of the SIGPLAN ’88
Conference on Programming Language Design and
Implementation, SIGPLAN Notices 23,7 (July 88), pp.
11-20.

[Baker78] Henry G. Baker , Jr. List Processing in Real Time
on a Serial Computer, Communications of the ACM 21,
4 (April 1978), pp. 280-294.

[Bartlett88] Joel F. Bartlett. Compacting Garbage Collection
with Ambiguous Roots. Western Research Laboratory
Research Report 88/2, Digital Equipment Corp.,
February 1988.

[Boehm88] Hans-Juergen Boehm and Mark Weiser.
Garbage Collection in an Uncooperative Environment.
to appear in Software: Practice and Experience. 1988.

[Cardelli88] Luca Cardelli, James Donahue, Lucille
Glassman, Mick Jordan, Bill Kalsow and Greg Nelson.
Modula-3 Report. Olivetti Research Center Technical
Report ORC-1, 1988.

[Courts87] Bob Courts. Improving Locality of Reference in
a Garbage-Collecting Memory Management System.
Internal TI memo, November 1987.

[Fitzgerald86] Robert Fitzgerald and Richard Rashid. The
Integration of Virtual Memory Management and
Interprocess Communication in Accent. ACM
Transactions on Computer Systems. Vol. 4, No. 2. pp.
147-177, May 1986.

[Gabriel85] Richard Gabriel. Performance and Evaluation
of Lisp Systems. MIT Press, 1985.

[Hanson77] David R. Hanson. Storage Management for an
Implementation of SNOBOL4. Software: Practice and
Experience. Vol. 7, No. 2. pp. 179-192, March 1977.

[Hudak86] Paul Hudak. A Semantic Model of Reference
Counting and its Abstraction. Proceedings of the 1986
Conference on Lisp and Functional Programming. pp.
351-363, Aug. 1986.

[IBUKI87] IBUKI Common Lisp, IBLC Release 01/01.
IBUKI, Mountain View, Ca, 1987.

[Lieberman83] Henry Lieberman and Carl Hewitt. A Real-
Time Garbage Collector Based on the Lifetimes of
Objects. Communications of the ACM, Vol. 26, No. 6,
pp. 419-429, June 1983.

[Moon84] David A. Moon. Garbage Collection in a Large
Lisp System. ACM Symposium on Lisp and Functional
Languages, August 1984.

[Ripley78] G. David Ripley, Ralph E. Griswold, David R.
Hanson. Performance of Storage Management in an
Implementation of SNOBOL4. IEEE Transactions on
Software Engineering, SE-4, No. 2, pp. 130-137, March
1978.

[Rovner85] Paul Rovner. On Adding Garbage Collection
and Runtime Types to a Strongly-Typed, Statically-
Checked, Concurrent Language. Xerox PARC Report
CSL-84-7, 1985.

[Shaw87] Robert A. Shaw. Improving Garbage Collector
Performance in Virtual Memory. Computer Systems
Laboratory Technical Report: CSL-TR-87-323,
Stanford University, March 1987.

[Sobalvarro88] Patrick G. Sobalvarro. A Lifetime-based
Garbage Collector for LISP Systems on General-
Purpose Computers. Bachelors Thesis, Electrical
Engineering and Computer Science, Massachusetts
Institute of Technology. September 1988.

[Unger84] David Unger. Generation Scavenging: A Non-
disruptive High Performance Storage Reclamation
Algorithm. in ACM SIGSOFT/SIGPLAN Practical
Programming Environments Conference, 157-167,
April 1984.

[Weiser89] Mark Weiser, Alan Demers, and Carl Hauser.
The Portable Common Runtime Approach to
Interoperability. Proceedings 13th ACM Symposium
on Operating System Principles, December 1989.

[Wilson89] Paul R. Wilson. A Simple Bucket-Brigade
Advancement Mechanism for Generation-Based
Garbage Collection. SIGPLAN Notices, 24:5, May
1989.

