J. Ranade Workstation Series

LEININGER

AIX/6000 Developer’s
Tool Kit

J. Ranade Workstation Series

BAMBARA/ALLEN e PowerBuilder: A Guide for Developing Client / Server Applications,
0-07-005413-4

CHAKRAVARTY o Power RISC System /6000: Concepts, Facilities, and Architecture,
0-07-011047-6

CHAKRAVARTY/CANON o PowerPC: Concepts, Architecture, and Design, 0-07-011192-8
DEROEST o AIX for RS/6000: System and Administration Guide, 0-07-036439-7
GRAHAM e Solaris 2.X: Internals and Architecture, 0-07-911876-3

HENRY/GRAHAM e Solaris 2.X System Administrator’s Guide, 0-07-029368-6

JOHNSTON e OS/2 Connectivity and Networking: A Guide to Communication
Manager /2, 0-07-032696-7

JOHNSTON e OS/2 Productivity Tool Kit, 0-07-912029-6

LAMB ¢ MicroFocus Workbench and Toolset Developer’s Guide, 0-07-036123-3
LEININGER « Solaris Developer’s Tool Kit, 0-07-911851-8

LEININGER e UNIX Developer’s Tool Kit, 0-07-911646-9

LOCKHART ¢ OSF DCE: Guide to Developing Distributed Applications, 0-07-911481-4
PETERSON » DCE: A Guide to Developing Portable Applications, 0-07-911801-1
RANADE/ZAMIR ¢ C++ Primer for C Programmers, Second Edition, 0-07-051487-9
SANCHEZ/CANTON e Graphics Programming Solutions, 0-07-911464-4
SANCHEZ/CANTON e PC Programmer’s Handbook, Second Edition, 0-07-054948-6

WALKER/SCHWALLER e CPI-C Programming in C: An Application Developer’s Guide to
APPC, 0-07-911733-3

WIGGINS o The Internet for Everyone: A Guide for Users and Providers, 0-07-067019-8

To order or receive additional information on these or

any other McGraw-Hill titles, please call 1-800-822-8158

in the United States. In other countries, contact

your local McGraw-Hill representative. BC15XXA

AIX/6000 Developer’s
Tool Kit

Kevin E. Leininger

McGraw-Hill

New York San Francisco Washington, D.C. Auckland Bogota
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Leininger, Kevin E.
AIX/6000 developer’s tool kit / Kevin E. Leininger.
p. cm. — (J. Ranade workstation series)
Includes index.
ISBN 0-07-911992-1 (set : hc). — ISBN 0-07-911993-X (set : sc)
1. Operating systems (Computers) 2. AIX (Computer file) 3. IBM
RS/6000 Workstation—Programming. I. Title. II. Series.
QAT76.76.063L4473 1995
005.26—dc20 95-18964

- CIP
&2

The McGraw-Hill Companies

Copyright © 1996 by The McGraw-Hill Companies, Inc. All rights re-
served. Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this publica-
tion may be reproduced or distributed in any form or by any means, or
stored in a data base or retrieval system, without the prior written per-
mission of the publisher.

1234567890 DOC/DOC 90098765 (PBK)
1234567890 DOC/DOC 90098765 (HC

P/N 0-07-037679-4 P/N 0-07-037678-6

PART OF PART OF

ISBN 0-07-911993-X (PBK) ISBN 0-07-911992-1 (HC)

The sponsoring editor for this book was Jerry Papke, the editing
supervisor was Nancy Young, and the production supervisor was
Pamela A. Pelton. This book was set in Century Schoolbook by Carol
Woolverton Studio in cooperation with Warren Publishing Services.

Printed and bound by R. R. Donnelley & Sons Company.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The authors and publisher have exercised care in preparing this
book and the programs contained in it. They make no repre-
sentation, however, that the programs are error-free or suitable for
every application to which the reader may attempt to apply them.
The authors and publisher make no warranty of any kind, ex-
pressed or implied, including the warranties of merchantability or
fitness for a particular purpose, with regard to these programs or
the documentation or theory contained in this book, all of which are
provided “as is.” The authors and publisher shall not be liable for
damages in amount greater than the purchase price of this book, or
in any event for incidental or consequential damages in connection
with, or arising out of the furnishing, performance, or use of these
programs or the associated descriptions or discussions.

Readers should test any program on their own systems and com-
pare results with those presented in this book. They should then
construct their own test programs to verify that they fully under-
stand the requisite calling conventions and data formats for each of
the programs. Then they should test the specific application thor-
oughly.

Contents

Preface «xi
Acknowledgments xiii

Part 1 AIX: Getting Started

Chapter 1. The AIX Software Development Environment

1.1 The History of AIX
1.2 AIX3.1.5

1.3 AIX3.2

1.4 AIX4.1

1.5 Standards

1.6 AIX Futures

Chapter 2. AIX Devices

2.1 Introduction
2.2 Tape Devices
2.3 CD Devices
2.4 Disk Devices

Chapter 3. Program Development Under AIX

3.1 Introduction

3.2 Linking and Loading

3.3 Process-Related System Calls

3.4 Memory Management System Calls
3.5 The XL C Compiler

3.6 The Linkage Editor

3.7 Conclusion

Chapter 4. Native AIX Software Development Tools

4.1 Introduction
4.2 dbx

0 oo U uw W

1

1
13
15
15

17

17
17
23
25
26
36
39

41

M
41

Vi

Contents

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

lint

prof and gprof
ar

nm

strip

The r commands
install

cb

cflow

cxref

tn3270

Chapter 5. Native AIX Software Development Scripting Tools

5.1
5.2
5.3
5.4
5.5
5.6

Part 2

Introduction
awk

sed

make

lex

yacc

Nonnative AIX Tools

Chapter 6. The Internet

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

What Is the Internet?

Tools of the Internet

Who Uses the Internet?

Why Use the Internet?

How to Access the Internet

The Structure of Internet Software

GNU and Their Paradigm

How to Locate and Retrieve Software from the Internet
How to Build Software from the Internet
Understanding Internet Software Documentation
FAQ

Internet Futures

Chapter 7. Nonnative Software Development Tools

71
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

gzip

gcc
libg++
configure
make
flex
bison
patch
gas

52
55
58
63
65
67
73
75
76

79

87

87
87
98
107
123
130

135

137

137
143
154
155
155
157
162
163
177
178
179
179

181

182
187
205
208
212
215
224
227
233

7.10
7.1
7.12
7.13
7.14
7.15
7.16
717

gdb

gawk

RCS

CVs

Smalitalk

f2c

Ftncheck

imake and xmkmf

Chapter 8. General Tools

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.1
8.12
8.13
8.14
8.15

oleo
perl
texinfo
bsplit
less
bash
diff
screen
fax
mtools
cpio
ispell
monitor
sysinfo
xzap

Chapter 9. The GNU emacs Editor

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.1
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20

Introduction

Installation

Usage

The emacs Screen

emacs Modes

emacs Commands

Help and the Tutorial
emacs apropos

Getting Current Information
Reading in a File

Making Changes to a File
Undoing Commands
Working with Text Blocks
Using Multiple Buffers
Halting the Execution of emacs Commands
Saving a File

Exiting emacs

Suspending emacs
Autosave Files

Multiple Windows in emacs

Contents

vii

235
239
243
254
259
263
269
272

277

277
281
283
290
291
294
302
308
31
316
321
325
327
329
330

333

333
334
337
338
339
340
340
342
343
344
345
347
347
349
350
350
351
351
351
352

viii Contents

9.21 Searching for and Replacing Text 353
9.22 Text Formatting and Its Relation to emacs 358
9.23 Shell Commands 361
9.24 emacs Customization 361
9.25 X Windows Support 362
9.26 Spell Checking 362
9.27 Printing from within emacs 362
9.28 Other Things You Can Do in emacs 363
9.29 emacs and Programming Languages 363
9.30 Multiuser File-Level Locking Support 367
9.31 Conclusion 368
Chapter 10. Nonnative Output Format and Display Tools 369
10.1 Ghostscript 370
10.2 Ghostview 378
10.3 groff 382
10.4 pbmplus 387
10.5 gnuplot 393
10.6 Tcl 399
10.7 xloadimage 404
10.8 mpeg_play 408
10.9 xearth 410
Chapter 11. Nonnative Communication Tools 413
11.1 Kermit 414
11.2 xmodem 429
11.3 zmodem 432
Chapter 12. Games 437
12.1 Introduction 437
12.2 Games Overview 437
Chapter 13. Nonnative Internet Tools 439
13.1 Archie 439
13.2 Xarchie , 442
13.3 xrn 444
13.4 Xgopher 446
13.5 Mosaic 450
Appendix A. How to Get Software from the CD 455
Appendix B. General Notes About the Software on the CD 457
B.1 Archives 457

B.2 Makefiles and Installation Notes 458

B.3 xmkmf/imake 458

Contents ix

B.4 M.LT. and IBM X11 Libraries and Include Files 458

B.5 Tool Locations and Choices 459

B.6 Common Errors 459
Appendix C. General Licenses 461
C.1 GNU General Public License 461

C.2 GNU Library General Public License 465

C.3 Most Recent GETTING.GNU.SOFTWARE File 472

C.4 Author’s Disclaimer 473

C.5 M.LT.’s Disclaimer 473

C.6 The Regents of the University of California Disclaimer 473

C.7 AT&T/BeliCore Copyright 474

C.8 pbmplus Copyright 474

C.9 gnuplot Copyright 475
C.10 GNU Manifesto 475
C.11 aixpdslib Warnings File 481
Appendix D. Where to Go to Get More Information 483
D.1 Some Recommended Books 483

D.2 Where You Can Get Help 483
Appendix E. Internet Access Providers 485

Index 493

Preface

In my first book, UNIX Developer’s Tool Kit, I provided a generic intro-
duction to the UNIX development environment and the paradigm of
UNIX tools. I also provided a fairly focused overview of the Internet
and how you can use it to get software from the Internet. I have in-
cluded a condensed chapter on the Internet and how to get software
from it in this book. However, if you want more information, see UNIX
Developer’s Tool Kit or any of a number of other good books on the In-
ternet.

This book focuses exclusively on AIX tools. The first book provided
tools for SunOS and AIX environments as well as a general discussion
of other UNIX platforms and their capabilities. This book is exclusively
focused on some of the tools available in the AIX environment and how
you can get, use, and build them for the AIX environment.

I have added sections on nonnative Internet tools to those in the first
book and hope these will be of as much value to you as they have been
to me.

Finally, differences between AIX 3.x and AIX 4.1 are discussed at
some length. There are some significant differences between these two
versions, and you should carefully examine them before migrating.

I hope this book assists you with your migration to AIX since it will
probably be as arduous and difficult as you are currently thinking.
Good luck.

Kevin E. Leininger

Xi

Acknowledgments

I would like to thank my wife, Karen, and my sons, Alex and Michael,
for their understanding and patience during the production of this
book. Only one more to go.

xili

Part

AIX: Getting Started

Chapter

The AIX Software
Development Environment

1.1 The History of AIX

AIX stands for Advanced Interactive Executive and is IBM’s primary
UNIX offering. Contrary to popular opinion, IBM has been involved
with UNIX for many years and, in fact, released the first commercial
UNIX offering in the early 1970s. While they never marketed AIX or
were successful in selling AIX, it wasn’t simply because AIX was infe-
rior. There were obviously other forces at work causing IBM’s lack of
interest in selling UNIX into their customer base.

AIX was introduced for the workstation platform on the ill-fated RT
platform beginning in 1986. The RT was the first Reduced Instruction
Set Computer (RISC) IBM offered and came with their new version of
System V known as AIX 2.1. For a variety of reasons, the RT was a
disaster and IBM sold very few machines. It was underpowered and
marketed poorly and to the wrong marketplaces. This failure caused
IBM to significantly rethink their UNIX strategy and announce a new
machine in 1990 known as the RS/6000.

The initial RS/6000 offerings were targeted at the technical market-
place and subsequently had very good floating-point performance num-
bers relative to their integer performance. Along with the RS/6000,
IBM’s first announced AIX version was 3.1 in 1990. They had signifi-
cant problems with early versions of AIX 3.1, including massive instal-
lation problems, standards support issues, and a plethora of kernel
problems. In fact, AIX didn’t stabilize until Version 3.1.5 in 1992. With
this version of AIX, however, IBM had finally hit upon an operating
system that was commercially viable and with this version of AIX, the
RS/6000 took off.

4

AIX: Getting Started

AIX 2.1 was the first true port of UNIX System V onto the RISC
hardware that IBM developed. Underlying the “UNIX-like” component
of AIX 2.1 was a lower-level operating system known as Virtual Re-
source Manager (VRM). The VRM was responsible for managing all the
low-level capabilities of the RISC hardware, and the AIX kernel essen-
tially functioned as a guest operating system running on top of VRM
(much like a guest operating system can run on top of VM). However,
as work begin on AIX 3.x, IBM folded much of the low-level VRM tech-
nology into the kernel and began to build a low-level, powerful kernel
integrated with much more of the higher-level functionality they
needed in a commercial operating system.

The initial components of AIX 3.x included BSD 4.3, X11, NFS, NCS,
and some portions of System V Release 3. Combining all of these differ-
ent technologies proved to be a significant challenge; however, IBM did
a fairly good job in pulling together a commercially viable and stable
operating environment.

AIX 3.2.x consists of a fairly large kernel which provides rich func-
tionality and increased capabilities such as the virtual memory man-
agement subsystem, resource controller subsystems, and other
powerful features. It also contained a new, revolutionary filesystem
known as the Journalled File System (JFS), which provides a much
more reliable and robust filesystem than the standard UNIX filesys-
tem (ufs). There is also an enhanced system administration environ-
ment which provides tools such as smit and the Licensed Program
Products (Ipp) subsystem which make it considerably easier to admin-
ister and manage an AIX system. Finally, AIX is very sophisticated as a
development environment and includes bundled C compilers (no longer
true in AIX 4.1), debugging and performance analysis tools, shared li-
brary tools, and sophisticated memory management tools which pro-
vide a very sophisticated development environment. All of these
capabilities have given AIX a significant competitive advantage with
respect to the commercial UNIX environment.

Given the technical market focus of the RS/6000, early machines
were sold primarily to engineering and technical markets. However, in
1994 IBM got serious about the commercial capabilities of AIX and
started offering machines and software systems that provide a total so-
lution to the commercial marketplace. With the announcement of AIX
4.1, IBM increased their committment to standards and commercial ca-
pabilities and now claim to be the leading commercial UNIX vendor in
the industry today. Also, their new PowerPC-based technology is offer-
ing world-class integer performance for the commercial marketplace.
With a new, improved version of ATX and new, extremely powerful proc-
essors, IBM is poised to leap forward in the UNIX market.

The other issue which needs to be addressed with AIX 4.1 is the sup-

1.2 AIX3.1.5

1.3 AIX3.2

The AIX Software Development Environment 5

port for multiprocessing. This will be discussed in more detail later on
in the book, but it is important to note that with AIX 4.1, IBM is now
providing large symmetric multiprocessing machines to the market-
place. This is important to note for commercial shops that have a need
for large multiprocessing solutions. IBM also offers the SP2 machine,
which is a large multiprocessing system. It has been largely focused on
the technical marketplace with the POWER2 instead of the PowerPC
architecture. IBM will continue to focus the SP2 on the technical mar-
ketplace but will increase its presence in the commercial marketplace
along with their uniprocessor and SMP-based solutions.

IBM'’s first stable version of their operating system was AIX 3.1.5. This
was the first release of their operating system that ran reliably and
was widely distributed. There are still many machines running AIX
3.1.5 and experiencing no difficulties. However, there were several
problems with AIX 3.1.5, and IBM is recommending that users upgrade
to at least AIX 3.2.5 or later to begin to take advantage of several new
features included in the new version of the operating system. AIX 3.1.5
support from third-party vendors is waning as well, and it is in most
users best interest to upgrade as soon as possible.

AIX 3.2.x is IBM’s most installed UNIX operating system and encom-
passes most of IBM’s recent UNIX-related work. IBM has signficantly
enhanced AIX from 3.1.x to 3.2.x, including increased support for
standards, increased kernel sophistication, and significantly enhanced
software packaging and support capabilities.

Due to the standards focus of AIX 3.2.x, most companies have up-
graded from AIX 3.1.5 to AIX 3.2.5. Along with more stable and reliable
technology, AIX 3.2.x offers a more consistent UNIX implementation
which allows for much higher application portability, scalability, and
integrity. The standards supported by AIX 3.2.5 are outlined in Sec.
1.5.

AIX 3.2.x is clearly the operating system of choice for the near future
on the RS/6000 platform due to its reliability and software support.
However, if you have higher-performance needs, particularly relating
to multiprocessing, or a need for new standards support such as COSE
and Single UNIX Specification, you will need to move to the new AIX
4 x platform.

6 AIX: Getting Started

14 AIX4.1

There is more discussion of the native development tools and envi-
ronment of both AIX 3.2.x and AIX 4.1 in Chap. 4.

With AIX 4.1, IBM significantly increased its emphasis on the com-
mercial marketplace. With support of COSE and Single UNIX Specifi-
cation (formerly known as SPEC 1170), symmetric multiprocessing,
and other commercial enhancements, IBM is positioning AIX 4.1 as the
new standard operating environment for the RS/6000. AIX 4.1 also
supports some of the upgraded standards and features which makes
it a very powerful UNIX environment. Advanced features of AIX 4.1
include:

NFS 4.2

Motif 1.2

Display Postscript

Logical Volume Manager

Mirroring

Disk Striping

POSIX threads

C2 Security

System V Curses

SOM/DSOM

FDDI

Fibre Channel

ATM

Symmetric Multiprocessing Support

COSE

Common Mode

Single UNIX Specification (formerly known as SPEC 1170)
There are a variety of other standards and features which are being
followed by AIX 4.1, and IBM will continue to evolve as the market
changes. The standards supported by AIX are described in Sec. 1.5.

The important new standards to software developers in AIX 4.1 are
related to Motif, SOM/DSOM, POSIX threads, System V Curses, and
the Common Mode.

COSE stands for Common Open Software Environment. COSE was
formed by various UNIX vendors in an attempt to create a series of

The AIX Software Development Environment 7

uniform standards for UNIX. This consists of both operating interface
specifications, originally known as SPEC 1170 and a user interface
known as Common Desktop Environment (CDE).

AIX 4.1 supports both SPEC 1170 (and Single UNIX Specification
soon) and XPG4. XPG4 is based on POSIX 1003.1 and 1003.2 with
additions from SVID 3 and other standards. Because some vendors
thought that XPG4 was incomplete, SPEC 1170 was born.

Motif 1.2 supports a variety of standards for X-based development
which will significantly enhance the portability of X Windows-based
applications across platforms. Motif 1.2 supports a variety of new
standard X11R5 and beyond constructs which are commonly provided
and supported by most, if not all, UNIX vendors.

POSIX 1003.4a Draft 7 threads define a standard way to develop
multithreaded applications. These applications can then take advan-
tage of true symmetric multiprocessing machines. These threads also
conform to the OSF/1 locking model to ensure portability of the lock
code across diverse systems. POSIX thread support ensures that any
thread-related code you develop under AIX 4.1 will be supported by
most or all of the other UNIX vendors. POSIX thread support is clearly
the leader in terms of thread architecture and will be the standard by
which all others are judged. AIX 4.1 libp threads implementation is
based on the DCE implementation of threads. This will ensure maxi-
mum portability across diverse platforms.

AIX 4.1 also provides support for 64-bit-long long int and 128-bit-
long double types, which signficantly enhance your ability to manipu-
late and create portable code.

SOM/DSOM is System Object Model/Distributed System Object
Model. IBM is making a hard push into the object-oriented develop-
ment world with their SOM/DSOM standard. SOM/DSOM allows dis-
tributed objects to be shared not only between machines but between
different object-oriented languages. Through support of CORBA 2.0
and the future OMG standards, AIX 4.1 will provide a robust object-ori-
ented development platform which ensures portability across different
object-oriented environments.

IBM is the first commercial vendor to offer a full implementation of
COSE with AIX 4.1. This will provide not only a uniform user interface
to the operating system but also a uniform API for developing applica-
tions that are GUI related.

System V Curses is the AIX 4.1 update to the libcurses/terminal in-
terfaces package. Because SPEC 1170 was incomplete during AIX 4.1
development, IBM chose System V R31R4 curses because this con-
tained most of the requested changes to the libcurses system.

Finally, Common Mode is an environment which allows binaries to
be created that will run across the entire AIX hardware line: PowerPC,
POWER2, and POWER. This will allow you to build efficient ex-

8 AIX: Getting Started

1.5 Standards

ecutables that run on all platforms with a single compilation and link.
Common Mode is also available for AIX 3.2.5 and should be utilized
immediately to begin to prepare for the newest IBM hardware technol-
ogy. This is discussed in more detail in Chap. 3.

One important point is that AIX 4.1 maintains binary compatibility
with AIX 3.2.x, and as such your applications should run virtually un-
modified on AIX 4.1. This is critical for the short-term issues involved
in the migration to AIX 4.1. There are a variety of changes which occur
in AIX 4.1; however, you should be able to continue to operate your ap-
plications without a recompile until you deem it necessary to recompile
for other reasons.

IBM has a clear focus on standards conformance and is working hard
on both defining and conforming to industry standards. Standards are
continuing to evolve and will mature to some final state sometime in
the mid- to late 1990s. The most visible standards are those related to
the X/Open group. Single UNIX Specification outlines a set of operat-
ing interface calls which will support portability across a variety of
platforms. X/Open is also responsible for branding UNIX for all ven-
dors. IBM is clearly the vendor driving the UNIX standardization proc-
ess.

The other relevant technology is the XPG branding process. The first
XPG standard, known as XPG3, has been conformed to by most ven-
dors in the UNIX market. XPG4 is the successor to XPG3 and has be-
come the standard by which all UNIX implementations are judged.
Single UNIX Specification was the successor to XPG4 and is more com-
plete than XPG4. As mentioned earlier, however, there are a variety of
standards which need to be conformed to in order to be considered
UNIX or compatible with UNIX. Contrary to popular opinion, IBM has
a very compliant UNIX implementation. In fact, a recent report on
standards has IBM in front in most areas. Table 1.1 lists the standards
supported. While there are many other standards available for this en-
vironment that are not listed in the table, most are implemented with
third-party products and are not appropriate for the operating systems
environment; therefore, there are standards such as XTI and others
which are not discussed.

AIX 4.1 supports all the standards listed in Table 1.1 as well as sev-
eral new ones, which are listed in Table 1.2. These new standards are
the key to ensuring maximum portability for AIX software systems.
Through the adherence to standards, AIX 4.1 is providing a platform
which will maximize portability and minimize the need for “kludged”
code to force portability.

The AIX Software Development Environment 9

TABLE 1.1 Standards Supported by AIX 3.2.5

Standard Supported Standard Supported
POSIX 1003.1 Yes PEX 5.1 Yes

POSIX 1003.2 Yes Motif Yes

POSIX 1003.4 Yes X11 Yes

SVID Issue 2 Yes COSE Committed to
SVID Issue 3 No SNMP Yes

XPG3 Base Yes CMIS/CMIP Committed to
XPG3 Plus No ONC/NFS Yes

XPG4 Base Committed to CPI-C Committed to
OSF/AES Yes SQL Yes

BSD Yes DCE Yes

FIPS 151-1 Yes SNA-LU6.2 Yes

FIPS 151-2 Yes CORBA Yes

SPEC 1170 Committed to FTAM Yes

ADA Yes X.400 Yes

C Yes X.500 Yes

C++ Yes X.25 Yes

COBOL Yes Token Ring Yes
FORTRAN Yes Ethernet Yes

Pascal Yes TCP/IP Yes

PHIGS Yes DECnet Yes

GKS Yes SNA Yes

GL Yes Appletalk Yes

X11R5 Yes IPX/SPX Yes

OpenGL Yes LAN Manager Yes

1.6 AIX Futures

AIX continues to evolve as the market changes. There is a clear focus
on standards support and the commercial market. Because of this,
technologies such as COSE and others will continue to be supported
and will evolve along with their capabilities. A clear move to an object-
oriented environment is in the works, and IBM has structured an envi-
ronment known as PowerOpen. The goal is to provide a microkernel
environment with different personalities. For example, OS/2, UNIX,
and other operating environments will be supported with a single-ker-
nel environment. This is no different from other companies that are
moving to support different environments from within the same oper-
ating environment. Finally, the COSE environment will be fully sup-
ported to provide commercial UNIX users with the best possible
operating environment for their needs.

IBM is one of the leaders in standards support and advanced tech-
nology. Clearly, nothing is going to change in the near future with re-
spect to these capabilities or focus issues.

10 AIX: Getting Started

TABLE 1.2 Additional Standards Supported by AIX 4.1

Standard Supported
XPG4 Base Yes
COSE Yes*

Single UNIX Specification
(formerly known as SPEC 1170) Yes*

System V Curses Yes
FIPS 158-1 Yes
FIPS 160 Yes
FIPS 189 Yes
UNIX93 Yes
POSIX 1003.4a, Draft 7 Yes

*The standard is supported at the current freeze release of the stand-
ard. Some of these standards are not yet finalized, and IBM is making
every effort to follow and implement the working and final standard.

2.1 Introduction

Chapter

AIX Devices

As with any other operating system, it is critically important to under-
stand the devices and how to access and control them on a machine.
This is going to be your primary I/O mechanism to the operating sys-
tem. The fundamental thing to remember about UNIX devices is that
they all look exactly the same to the operating system. They are simply
bitstreams with no preformatted structure. This makes it easy to write
the underlying kernel, but it relies on specific device drivers to access a
specific device. Each type of device supports a different type of inter-
face; however, the basic operating is the same. To examine all devices
available on the system, use the command:

$ lsdev -C
sys0
sysplanar0
ioplanar0
bus0

sio0
scsi0
scsil
scsi2
ent0
sysunit0
fpal

mem0

fdal
siokb0
siotb0
sa0

sal

tok0
hdisk0
hdiskl
1lvdd

Available
Available
Available
Available
Available
Available
Defined

Defined

Available
Available
Available
Available
Available
Available
Available
Available
Available
Defined

Available
Available
Available

00-00

00-00

00-00

00-00

00-00
00-00-0s
00-01

00-02
00-00-0E
00-00

00-00

00-0C
00-00-0D
00-00-0K
00-00-0T
00-00-s1
00-00-s2
00-03
00-00-0s-00
00-00-0s-10

System Object

CPU Planar

I/0 Planar

Microchannel Bus

Standard I/O Planar
Standard SCSI I/O Controller
SCSI I/0 Controller

SCSI I/O Controller
Standard Ethernet Adapter
System Unit

Floating Point Processor

32 MB Memory Card

Standard I/0 Diskette Adapter
Keyboard Adapter

Tablet Adapter

Standard I/0 Serial Port 1
Standard I/O Serial Port 2
Token-Ring High-Performance
1.0 GB SCSI Disk Drive

1.0 GB SCSI Disk Drive

N/A

1

12 AIX: Getting Started

fdo Available 00-00-0D-00 Diskette Drive

kbdo Defined 00-00-0K-00 United States keyboard

hds Defined Logical volume

hd? Defined Logical volume

tty0 Available 00-00-S1-00 Asynchronous Terminal

hds Defined Logical volume

hd4 Defined Logical volume

hd2 Defined Logical volume

hd9var Defined Logical volume

hd3 Defined Logical volume

hdl Defined Logical volume

ppal Available 00-00-0P Standard I/O Parallel Port
Adapter

mous0 Defined 00-00-0M-00 3 button mouse

pty0 Available Asynchronous Pseudo-Terminal

inet0 Available Internet Network Extension

100 Available Loopback Network Interface

en0 Available Standard Ethernet Network
Interface

et0 Defined IEEE 802.3 Ethernet Network

hdisk2 Defined 00-01-00-00 1.37 GB SCSI Disk Drive

hdisk3 Defined 00-01-00-10 1.37 GB SCSI Disk Drive

hdisk4 Defined 00-02-00-00 1.37 GB SCSI Disk Drive

hdisk5 Defined 00-02-00-10 1.37 GB SCSI Disk Drive

1v00 Defined Logical volume

db2space Defined Logical volume

trl Stopped Token Ring Network Interface

chna0 Defined 00-02 IBM S/370 Channel Emulator/
A Adapter

ppr0 Available 00-03 POWER Gt3i Graphics Adapter

hft0 Available High Function Terminal
Subsystem

rmtl Defined 00-00-0S-20 2.3 GB 8mm Tape Drive

cd0 Defined 00-00-0S-50 CD-ROM Drive

rmt2 Available 00-00-0S-60 2.3 GB 8mm Tape Drive

afp0 Defined 00-02-00 IBM S/370 Channel Emulator/
A Printer Driver

rmt3 Defined 00-00-0S-40 Other SCSI Tape Drive

cdl Available 00-00-0S-50 CD-ROM Drive

rmt0 Defined 00-00-0S-60 5.0 GB 8mm Tape Drive

Note that there is a difference between available and defined. Available
means that there are actually devices that are attached to the system
and are available for use. Defined devices are those contained in the
Object Data Manager (ODM) database but are not actually attached to
the system. You can only use devices that are available.

As mentioned earlier, all device information is contained and control-
led from the system-level database known as the ODM. This contains
all predefined and available system-level resources such as devices,
communications, and kernel characteristics. It is critically important
to understand the basic functioning of the ODM before you can begin to
develop in the AIX environment.

There are a series of complex and powerful commands which control
the ODM. These are beyond the scope of this book; see the AIX InfoEx-
plorer system for more details on the ODM.

AIX Devices 13

You can query a specific type of device with the command:

$ lsdev -C -c tape

rmtl Defined 00-00-0S-20 2.3 GB 8mm Tape Drive
rmt2 Available 00-00-0S-60 2.3 GB 8mm Tape Drive
rmt3 Defined 00-00-0S-40 Other SCSI Tape Drive
rmt0 Defined 00-00-0S-60 5.0 GB 8mm Tape Drive

This tells you that there are four defined tape devices, rmt0 through
rmt3; however, only one is actually attached to the system and avail-
able: rmt2. This means that you need to access the tape drive with the
filename (a.k.a. device name) /dev/rmt2. The section below outlines
this in more detail.

2.2 Tape Devices

Tape devices are your primary external I/O mechanism to the operat-
ing system. Each UNIX implementation has a different convention for
naming the device interfaces, and AIX is no different. As mentioned
above, you need to query the ODM database to find out which tape de-
vice is actually available and to discover the associated name. Once you
have found the available tape device name, there are some specifics
you must be aware of. The basic syntax for the complete device name
is:

/dev/rmtn.m

where n is the logical device name assigned when the kernel is built.
m controls the behavior and characteristics of the device.

Again, to examine the tape devices on the system, use the command:

$ lsdev -C -c tape

rmtl Defined 00-00-0S-20 2.3 GB 8mm Tape Drive
rmt2 Available 00-00-0S-60 2.3 GB 8mm Tape Drive
rmt3 Defined 00-00-0S-40 Other SCSI Tape Drive
rmt0 Defined 00-00-08-60 5.0 GB 8mm Tape Drive

This shows that the tape device available is /dev/rmt2, and you can ac-
cess it using this filename. To control specific types of behavior on the
tape device, you must use the full filename as specified above. The suf-
fix on the device name (designated by the m in the syntax description
above) controls the behavior of the device itself. There are eight possi-
ble suffix values as shown in Table 2.1. Each category controls three
particular aspects of the device: (1) rewind on close specifies that the
tape is rewound after each command operation, (2) retension on open
specifies that the tape should be retentioned before each command op-

14 AIX: Getting Started

TABLE 2.1 Tape Special File Characteristics

Rewind Retension

Filename on close on open Bytes per inch

/dev/rmt* Yes No Density setting #1
/dev/rmt*.1 No No Density setting #1
/dev/rmt*.2 Yes Yes Density setting #1
/dev/rmt*.3 No Yes Density setting #1
/dev/rmt*.4 Yes No Density setting #2
/dev/rmt*.5 No No Density setting #2
/dev/rmt*.6 Yes Yes Density setting #2
/dev/rmt*.7 No Yes Density setting #2

eration, and (3) bytes per inch specifies a density based on the type of
tape device physically attached to the processor. Each of these can be
used to control a particular tape device and the type of behavior you
wish. For example, to use a device and not rewind the tape after the
operation, use the command:

$ mt -f /dev/rmt0.1 fsf 1

This will skip the first file on the tape and leave the tape positioned at
the end of the first file. Note that the default device (with no suffix) will
rewind the tape at the end of each operation. This means that if you
execute the following command:

$ mt -f /dev/rmt0 fsf 1

you will skip the first file, the mt command will end, and the operating
system will rewind the device to the beginning of the tape. Obviously,
this defeats the purpose of the skip command in the first place and
needs to be clearly understood.

If you have two tar files on tape and you need to access both, you
need to use a series of commands such as:

$ tar xvf /dev/rmt0.1
$ tar xvf /dev/rmt0

This will read the first tar file, pause the tape, and then read the sec-
ond tar file on the tape. Again, if you simply use the device name
/dev/rmt0, you would simply read the first tar file twice. Keep this in
mind as you begin to use tape devices.

For more information on the rmt devices, see the man page on rmt.

2.3 CD Devices

AIX Devices 15

AIX has been behind with respect to CD support. The UNIX standard
has been High Sierra with support for long filenames and other non-
ISO constructs. AIX 3.2.5 does not fully support the High Sierra stand-
ard, but AIX 4.1 does. This may be one reason to upgrade to AIX 4.1.

To see what CD devices are defined and available on your machine,
use the command:

$ lsdev -C -c cdrom
cdo Defined 00-00-0S-50 CD-ROM Drive
cdl Available 00-00-0S-50 CD-ROM Drive

This tells you that /dev/cdl is available and that this is the filename
you should use to access the CD device.

Given its lack of High Sierra support, you may have to play some
games with filenames and extensions to get most of your CDs to work
correctly. The command you use to mount up a CD is:

$ mount -r -v cdrfs /dev/cdl /cdrom

where /cdrom is an arbitrary mount point, and /cdrom is an empty di-
rectory which you can create anywhere.

2.4 Disk Devices

The disk structure in AIX is different than in most other versions of
UNIX. AIX has structures called logical volumes which consist of logi-
cally defined partitions which may or may not correlate to physical
disks. Logical volumes can span physical volumes or be wholely con-
tained within one physical disk. They can also be mirrored and striped
to enhance reliability and performance. This entire filesystem struc-
ture is called the JFS.

While it is beyond the scope of this book to document the AIX JF'S,
there are a few basic concepts you need to understand in order to help
your system administrator manage your disk space effectively.

To see what disk drives are available on your system, you can use the
command:

$ lsdev -C -c disk

hdisk0 Available 00-00-0S-00 1.0 GB SCSI Disk Drive
hdiskl Available 00-00-08-10 1.0 GB SCSI Disk Drive
hdisk2 Defined 00-01-00-00 1.37 GB SCSI Disk Drive
hdisk3 Defined 00-01-00-10 1.37 GB SCSI Disk Drive

As you can see, this machine has four disk drives defined but only two
attached. This means that there are probably external disks that have

16

AIX: Getting Started

been removed for any number of reasons. Once you have examined the
physical disks attached to the system, you need to understand the logi-
cal volume structure of the disks before you can make intelligent deci-
sions concerning software placement. Use the command:

$ lsvg
dbasevg
rootvg

This shows that there are two volume groups on this system. Each of
these volume groups consists of one or more logical volumes. To get in-
formation about a particular volume group use the command:

$ lsvg rootvg

VOLUME GROUP: rootvg VG IDENTIFIER: 00000044e0£15b11

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 496 (1984 megabytes)
MAX LVs: 256 FREE PPs: 202 (808 megabytes)
LVs: 11 USED PPs: 294 (1176 megabytes)
OPEN LVs: 10 QUORUM: 2

TOTAL PVs: 2 VG DESCRIPTORS: 3

STALE PVs: 0 STALE PPs 0

ACTIVE PVs: 2 AUTO ON: yes

This tells you that the rootvg volume group is active, has physical par-
tition sizes of 4MB, is read/write, and consists of 496 4MB physical par-
titions, giving you a total capacity of 1.984GB worth of storage.

rootvg is a special filesystem (volume group) which exists on all AIX
machines and which has special tools for backup and recovery. It is
usually a good idea to create a different volume group to contain special
software systems such as databases and other applications. For exam-
ple, the other volume group shown above is dbasevg. This volume
group contains a database system which is separate from the rootvg
volume group. This has a variety of advantages, including separate
backup and recover, maintainability, and reliability. You can vary the
volume group and other volume specific activities on- and off-line.

The bottom line is that it is a good idea to create separate volume
groups for your software systems. Note that it is a maintenance head-
ache if you create too many volume groups, and you should attempt to
cluster as many software systems together as possible to decrease the
maintenance load on the system administrator.

This is certainly not an exhaustive discussion of the disk subsystems
on AIX. It does, however, provide you with enough information to dis-
cuss the disk allocation and usage issue with your system administra-
tor intelligently and come to some mutual agreements on an overall
storage strategy.

Chapter

Program Development
Under AIX

3.1 Introduction

AIX is a very sophisticated development environment that includes a
variety of features and functions not found in other development envi-
ronments, even other versions of UNIX. This chapter will outline some
of the basic capabilities and features of the AIX development environ-
ment. It is by no means an exhaustive presentation of the capabilities
of AIX but merely represents the most basic and fundamental AIX of-
ferings.

It is important to note that AIX 3.2x is the topic of the general sec-
tions in this chapter. AIX 4.1 information is covered in specific sections
that are noted as 4.1 sections. AIX 4.1 is compatible with AIX 3.2.x un-
less otherwise noted.

3.2 Linking and Loading

One of the advantages of the AIX operating system is its ability to link
and load dynamically. Unlike many other operating systems, AIX can
dynamically include pieces of the executable at run-time instead of at
compile- and link-time. This provides several advantages:

Smaller executable size

Less memory usage

Ease of program maintenance

More dynamic kernel and program capabilities

17

18

AIX: Getting Started

The logical counterpart to dynamic linking is static linking. Stati-
cally linked applications simply include all executable code from all ref-
erenced objects into a single executable file. This results in large
executables which are resource intensive and relatively inflexible.
With static linking you have lost the ability to dynamically change
large portions of your executable without so much as a recompile.
There are reasons to use static linking, however, and people who de-
velop real-time systems and other performance-intensive systems can
tell you what they are. However, it is a rare situation where a statically
linked system is a better choice than a dynamically linked one.

The basic capabilities of this dynamic development environment ex-
tend to the AIX kernel itself and provide significant advantages over
most other operating systems. AIX, due to its nature as a dynamically
built kernel, provides:

Dynamic kernel extensions
System call modification and extensions

Dynamic device driver configurations

These make AIX a very flexible and powerful development environ-
ment.

The ability to dynamically load and link an executable means that
you can created shared libraries which can be changed with little im-
pact to the production system. This means that you can create a library
which can be simultaneously shared by more than one running applica-
tion. This is key to aiding in software developer productivity and code
quality.

At this point it is appropriate and necessary to talk about the com-
piler technology on AIX, known as the XL compiler technology. (Note
that this has changed in AIX 4.1, see Section 3.2.1 for specific informa-
tion.) All of IBM’s compilers generate an exact intermediate language
from their compilers known as XIL. From this, the specific compiler
generates the appropriate codes for the individual platform on which it
was generated. The basic steps in the compilation process are:

1. Language analysis. This tokens (breaks apart) all parts of the lan-
guage syntax in order for the optimization and internalization to oc-
cur. This step creates the XIL intermediate codes that are similar
across different IBM platforms.

2. Optimization. The optimization phase manipulates the previously
created XIL codes to enhance performance.

3. Register allocation. This phase of the compilation creates an inter-
mediate format based on a limited number of registers on a given
machine and begins to form the executable to the specific machine.

Program Development Under AIX 19

4. Assembly to object format. This is the final step in the process
where the compiler generates machine-specific codes which are then
linked into an XCOFF format file.

These steps are common across all IBM XL compiler technologies.
Given this similarity across platforms, IBM can generate more flexible,
portable systems in any language. XIL and the common intermediate
executable architecture are why it is easy to link C, Fortran, Pascal,
and other languages together on an AIX machine.

Under AIX, creating a dynamically loaded application is very simple.
By using specific options on the compilation statement, you can create
both dynamic libraries as well as applications that use them. A simple
example including code segments is shown below:

/* This is prog.c */
#include <stdio.h>
int common;
main() {
printf("This is a shared library function example\n");
common () ;
printf ("This example is complete\n");
}

The above segment outlines a file called prog.c, which is the C source
file for the main program we are going to build. Next you need to create
a file known as an import file (let’s call this file common.imp). The fol-
lowing is an example of such a file:

(common . imp)
#! ./commonobj
common

The first line defines the name of the import file. The second line de-
fines the name of the object file in which the succeeding shared objects
will be found; in this case the object filename is commonobj. The third
and following lines define the shared objects contained in the file com-
monbj (in this case only common).

The basic structure of an import file is as follows:

1. Object path

2. Object filename
3. Object members
4. Shared symbols

The syntax looks like:

20

AIX: Getting Started

*This is a comment
*

#! path/file (member)
symboll
symbol2
é&ﬁboln
where *—comments always begin with an * and are ignored.
#! defines the first line containing the definition of the import
path.
path/file is a fully qualified or relative path and filename to the
shared object.
member specifies a shared object within a shared library (if one
exists).
symbol1 to symboln defines all shared symbols within the
shared object.

The basic syntax is the same for all import files and needs to be fol-
lowed explicitly to ensure the correct results.

To compile the prog.c application and link in the shared objects, use
the command:

$ cc -b import:common.imp -oprog prog.c

This will create an executable file named prog which has an external
object common() that will be located in a file named commonobj.

Next we need to build the file which contains the shared code known
as commonobj. The source code for a program known as common.c is
shown below:

#include <stdio.h>
/* This is common.c */
int common/() ;
{
printf ("We are inside the shared function known as common\n") ;

}

You compile this with the command:

$ cc -c common.C -O COMMON.O

You now need to generate a file similar to common.imp but one which
tells the linker which files are being exported from the file common.c.
This file is named common.exp, and it contains the following code:

#! ./commonobj
common

Program Development Under AIX 21

Again, the first line defines the name of the shared object file, while the
subsequent line defines the objects to be shared from the file com-
monobj. The structure of the export file is identical to that of the import
file as described above and all issues are the same regarding the strict
adherence to the syntax and structure of the file. Now you link the final
shared object file with the command:

$ 1d -H512 -T512 -bglink:/lib/glink.o -b export:common.exp -bM:SRE
-ocommonobj -lc common.o

The 1d command invokes the loader portion of the XL compiler system
on AIX. It servers only as a linker and not as a compiler. Note that this
step doesn’t require any code to be compiled but merely linked into a
form which other object files can be linked against. The important op-
tions in the command above are described as follows:

-H512 An option which defines text, data, and loader sections of
the output file. This number is the boundary number of the
output file.

-T512 512 marks the starting address of the text segment in the
resulting object file.

-bglink:/1lib/glink.o Nib/glink.o is a prototype file used by the linker to generate
code for all defined external references.

-b export :common.exp This references the export file as described above.

-bM: SRE This defines the object output type. There are other options
for this; see the manual page for more details.

-ocommonobj This outputs to a file named commonobj.

-1c This is used to link the library /lib/libc into the executable.

common. o This is the object file to load.

Once you have created the shared library as above, you can execute
your main program as created in the initial compile:

$./prog

This will invoke the executable prog that is dynamically linked to the
commonobj object. Thus, when prog calls common during execution,
the loader will dynamically load and execute the code from commonobj.
Note that the loader determines if commonobj has been loaded into
memory previously. If it has, it uses the current in-memory copy; if not,
it loads and executes the copy from disk.

You can place shared objects into a common respository known as a
library by simply using the UNIX archive facility. A simple example is:

$ ar g commonlib .a commonobj.o

22

AIX: Getting Started

The syntax to include a shared object from a library is very similar to
that used to include a shared object. The exp file as described earlier
might look like:

#! commonlib.a (commonobj.o)
common

and in the input file you might use might look something like:

(common. inp)
#! commonlib.a (commonobj.o)
common

Finally, to link and use an object from a shared library, you would use
a command like:

$ cc -oprog prog.c
$ 1d -b export:common.imp -o prog -lc prog.o

This will create an executeable named prog that is dynamically linked
to an object named common in the shared library commonlib.a.

This section has presented the basic commands necessary to create
and use the dynamic capabilities of the XL compiler subsystem on AIX.
There are many other capabilities and characteristics under AIX which
are more fully described in your system documentation.

3.2.1 AIX 4.1 specific linking and loading information

The first and most important thing to note about AIX 4.1 is that the XL
C compiler is no longer included with AIX. You now must buy a sepa-
rate product know as C for AIX. XL, C will not run under AIX 4.1. This
places a larger emphasis on using either gcc or some other equivalent
tool unless you have explicitly ordered C for AIX with your AIX 4.1 re-
lease. Be careful of this!

The major differences between XL C and C for AIX are as follows:

1. C for AIX implements much tighter ANSI conformance including:
a. You can no longer mix K&R and ANSI function prototypes.
b. You can no longer create null dimension multidimensional arrays
c. Tags introduced at the parameter scope are not exported to the
enclosing nonparameter scope.

2. Parameter evaluation order has changed; this is not portable across
various compilers.

3. Preprocessor differences including:
a. Output preserves coordinate of each token.

Program Development Under AIX 23

b. No redundant #LINE directives or multiple successive blank
lines in output.
¢. Erroneous or incomplete macro invocations are expanded.

4. C for AIX requires that #pragma options align=opt appear before
the structure definition, while XL C allowed it anywhere before the
closing brace of the structure definition.

5. C for AIX supports a long long type.
6. C for AIX does not define _ANSI_C_SOURCE by default.

7. References to array out of bounds information react differently. C for
AIX does not pad arrays like XL C did.

8. Uninitialized variables may be different between XL C and C for
AIX.

9. C for AIX behaves differently with pointer arithmetic. Differences
due to optimization may occur during pointer arithmetic, so be care-
ful.

Those are the major differences in terms of language support. There
are other differences in compiler modes, linking capabilities and other
issues as outlined in later sections.

3.3 Process-Related System Calls

AIX fully supports most accepted UNIX standards for system interface
calls and definitions. However, since the standards are still being de-
fined, IBM was forced to make some decisions regarding interface sup-
port and definitions. This section outlines some of the major differences
between AIX system calls and other UNIX system calls. It merely rep-
resents the major differences and certainly doesn’t present all relevant
system call information. Consult your system documentation for more
information regarding the hundreds of other system calls available to
you under AIX.

UNIX is based on the concept of the fork, the system call which cre-
ates a new process. By forking new processes, UNIX creates an envi-
ronment which isolates individual programs and processes to avoid
conflict. The basic system call is the fork() system call. This will create
an entirely new process with its own process context and content.

Along with the fork system call, UNIX uses the exec() system call.
This copies executable information from disk to memory. Unfortu-
nately, the exec() process writes any disk data into your current process
context, overwriting your current process-level information. This is ob-
viously unacceptible since it will erase everything you are doing in your
current process. That is why exec() is normally used with fork() to first

24 AIX: Getting Started

create an entirely new process, then load some executable information
into the newly created process, and execute from there. When that
process is finished, you are returned to your current process context for
continuing execution.

The process of exec() is extremely resource intensive and often
wasteful in its use of system capabilities. IBM realized this and has
created several system calls (see Table 3.1) which provide an alterna-
tive to this paradigm.

The load() system call loads an individual object file into a known
shared space in your current process context. This makes this object
available to your current process without requiring the overhead of
forking a new process and “exec-ing” an entirely new executable into
memory. There are many additional things which must be loaded into
memory for an entirely new process that are not required by a simple
executable “load” operation. This provides a significant advantage to
AIX over many other versions of UNIX and many other operating sys-
tems.

The unload() system call unloads an individual object from the
shared section of a process’ memory. This is useful for memory cleanup.
An object can only be unloaded when it is not in use or has another
object importing symbols from it.

The loadbind() system call is used if you have set the L_NOAUTO-

TABLE 3.1 AIX Specific System Calls

Call Definition Function

load #include <sys/ldr.h> Provides individual object file
int (*load(ObjectFile,LoadFlags,LibraryPath))() loading capabilities
char *ObjectFile;
unsigned int LoadFlags;
char *LibraryPath;

unload #include <sys/ldr.h> Unloads an individual object file
int unload (ObjectPointer) from memory
int (*ObjectPointer)();

loadbind #include <sys/ldr.h> Resolves all outstanding
int loadbind(BindFlag,ExportPointer,ImportPointer) references between loaded objects
int BindFlag;
void *ExportPointer;
void *ImportPointer;

loadquery #include <sys/ldr.h> Provides information regarding
int loadquery(QueryFlags,DataBuffer,BufferLen); errors on system calls as well as
int QueryFlags; objects in memory
void *DataBuffer;

void *Bufferlen;

Program Development Under AIX 25

DEFER in the load system call routines. If you choose the resolve refer-
ences upon object load, you may not need loadbind(). However, you will
need to use loadbind() to resolve any unresolved references if all calls to
load include the L NOAUTODEFER flag in their execution. This
means that the loadbind() system call will resolve any unresolved ref-
erences in the executable upon execution of the loadbind() system call
itself. See the manual pages for more on the capabilities of loadbind().

Finally, the loadquery() system call will provide information on cur-
rently loaded objects as well as errors from the other related system
calls such as load(), unload(), loadbind(), and exec().

3.4 Memory Management System Calls

AIX has a very unique memory management subsystem which has
caused significant debate among UNIX developers. Suffice it to say
that AIX has some very sophisticated memory management capabili-
ties which should be understood and exploited carefully, if at all. How-
ever, since most AIX developers will need to understand some of the
basic capabilties of AIX, the basic ones are mentioned in this section.
While the subsystem itself is unique, the memory management calls to
the operating system itself are not. The standard ones supported by
AIX are shown in Table 3.2 broken into several functional areas.

While dynamic memory allocation is recommended, there are other
AIX calls which can be used to manipulate memory and the process
context on which you are operating. Two such system calls are brk()
and sbrk(). These calls are used by the above calls to obtain additional
memory from the kernel allocator/deallocator. It is this process which is
responsible for the actual distribution and management of dynamic
memory space. It is strongly recommended that you use the system
calls in Table 3.2 instead of brk() and sbrk() to ensure the proper oper-
ating of your memory allocation process.

AIX has a particular memory management algorithm which seems
to give software developers unexpected results. When the AIX virtual
memory system crosses a threshold known as a highwater mark, the
kernel begins to send messages to processes with the highest memory
utilization current in memory. It first send a warning signal on which it
expects the program to act. If the memory situation worsens, the ker-
nel will send a KILL signal to a high-memory-usage process. This
means that this process is KILLed (SIG 9) without any recovery. This
can be disasterous to a large memory program. It is important to code
your programs to check for signals from the kernel regarding memory.
See the AIX system documentation for more information on how to do
this.

26

AIX: Getting Started

TABLE 3.2 AIX Specific System Calls

Call Definition Function

malloc #include <sys/types.h> Allocates a specific piece of memory
#include <malloc.h>
void *malloc(MemSize)
size_t MemSize;

alloca #include <sys/types.h> Allocates a specific piece of memory and frees
#include <malloc.h> it automatically when finished using it
void *alloca(MemSize)
int MemSize;

calloc #include <sys/types.h> Allocates space for the number of array
#include <malloc.h> elements specified by NoOfElements
void *calloc(NoOfElements,ElementSize)
size_t NoOfElements
size_t ElementSize

valloc #include <sys.types.h> BSD equivalent to malloc but doesn’t return a
#include <malloc.h> pointer to the first correctly aligned address
void *valloc(MemSize) but instead to the first data character (this
unsigned int MemSize; can cause problems; use malloc)

free #include <sys/types.h> Frees up memory reserved by on of the
#include <malloc.h> allocations calls listed above
void free (MemoryPointer)
void *MemoryPointer;

realloc #include <sys/types.h> Reallocates current memory segment to

#include <malloc.h>

void *realloc(MemPointer,NewSize)
void *MemPointer;

size_t NewSize;

NewSize from the current size

3.5 The XL C Compiler

One of the advantages of AIX3.2.x is the inclusion of the XL C compiler
with native AIX 3.2.x.

IBM is known for its best of breed compiler technology, not the least
of which is their XL series of compilers. The XL compiler system para-
digm was discussed earlier in this chapter and will not be discussed
again. However, it is fair to remind you that the XL compiler system
generates highly efficient code optimized for a particular piece of hard-
ware while still maintaining compatibility across a variety of hardware
platforms and third-generation languages.

The XL C compiler is include with AIX since most of AIX is written in
C. In fact, UNIX and C are ubiquitous in that most of UNIX is written

Program Development Under AIX 27

in C to ensure portability and performance. Because of this, the XL C
compiler is the most important native compiler technology available
with AIX. This section outlines its basic capabilities as well as charac-
teristics to give you a better understanding of the native AIX develop-
ment environment.

As with most other lpp, there are environment variables which must
be set properly to use the XL C compiler system. The first is the LANG
variable, which defines the language in which the compiler messages
are to be presented. LANG should be set to En_US in the United
States. Check your local documentation for details outside the United
States. The other variable to be set is NLSPATH. This should be set to
/usr/lpp/msg/%L/%N. These variables have probably been defined by
your system administrator. Check before setting them explicitly in
your .profile or .cshre files.

The XL C compiler system uses a default configuration file /etc/
xlc.cfg. The actual program executed when you invoke the XL C com-
piler is /usr/lpp/xlc/bin/xlcentry. When xlcentry is invoked, it references
the /ete/xlc.cfg file, which defines the default options for both the com-
piler and linkage editor based on things called stanzas.

There are three default symbolic links to the same executable for the
XL C compiler system: /bin/cc, /bin/xle, and /bin/c89. Each of these ref-
erences a stanza in the /etc/xle.cfg file. The default /etc/xlc.cfg looks
like:

* @(#) xlc.cfg 1.12 9/16/93 04:05:19
*
* COMPONENT_NAME: (CC) AIX XL C Compiler
*
* FUNCTIONS: C Configuration file
*
* ORIGINS: 27
*
* (c) COPYRIGHT IBM CORP. 1989,1993
* All Rights Reserved
* Licensed Materials - Property of IBM
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* ansi c compiler
xlc: use = DEFLT
crt = /lib/crt0.o
mcrt = /lib/mcrt0.0
gcrt = /lib/gcrt0.o
libraries = -lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -H512,-T512,-D_ANSI_C_SOURCE, -gansialias

* extended c¢ compiler aliased as cc

cc: use = DEFLT
crt = /lib/crt0.o
mcrt = /lib/mcrt0.o0

28 AIX: Getting Started

gcrt = /lib/gcrt0.o

libraries = -lc

proflibs = -L/lib/profiled, -L/usr/lib/profiled

options = -H512,-T512, -glanglvl=extended, -gqnoro,
-gnoroconst

* ansi ¢ compiler aliased as c89

c89: use = DEFLT
crt = /lib/crt0.0
mcrt = /lib/mcrt0.o

gcrt = /lib/gcrt0.o0

libraries = ~-lc

proflibs = -L/lib/profiled, -L/usr/lib/profiled
options = -H512,-T512,~-D_ANSI_C_SOURCE, -gansialias

* ansi ¢ compiler aliased as xlc_r

xlc_r: use = DEFLT
crt = /1lib/crtO_r.o
mcrt = /lib/mcrt0.0
gert = /lib/gcrt0.o
libraries = -L/usxr/lib/dce,-1lc_r, -1lpthreads
proflibs = -L/lib/profiled, -L/usr/lib/profiled
options = -H512,-T512,-D_ANSI_C_SOURCE, -gansialias,

-D_THREAD_SAFE, -D_CMA_NOWRAPPERS__

* extended c compiler aliased as cc_r

cC_xr: use = DEFLT
crt = /lib/crtO_r.o
mcrt = /lib/mcrt0.0
gcrt = /lib/gcrt0.o
libraries = -L/usr/lib/dce,-lc_r,-1lpthreads
proflibs = -L/lib/profiled, -L/usr/lib/profiled
options = -H512,-T512, -gqlanglvl=extended, -gnoro,

-D_THREAD_SAFE, -D_CMA_NOWRAPPERS_, -gnoroconst

* common definitions

DEFLT: xlc = /usr/lpp/xlc/bin/xlcentry
as = /bin/as
1d = /bin/1d
options = -D_IBMR2,-D_AIX,-D_AIX32,-bhalt:4
ldopt = "b:o:e:u:R:H:Y:Z:L:T:A:V:k:3j:"

Note that each section defines a different usage of the XL C compiler
system. The basic options for each are the same, however, and are out-
lined below:

as Defines the pathname for the assembler.

asopt A list of options on the command line directed to the assembler and not
the compiler.

crt The pathname of the C run-time object passed as the first parameter to
the linker (also known as the linkage editor).

csuffix The default suffix used for C source programs.

gert An alternative C run-time object used if -pg is on the command line.

1d Defines pathname for the linker.

ldopt Defines the options passed to the linker.

libraries Specifies the comma-separated flags passed from the XL C compiler to the

linker.

Program Development Under AIX 29

libraries2 Is similar to libraries, but each parameter specified must have a profiled
version in the stanza proflibs.

mert An alternative C run-time object used if the -p option is on the command
line.

options Command line options.

osuffix Default suffix for object files.

proflibs Comma-separated parameters which specify profiled versions of the li-
braries specified in the stanza libraries2.

ssuffix The default suffix for assembler files.

use Use option values are specified after the stanza name; any comma-sepa-

rated options are added to those in the specified stanza, and options with-
out commas apply only if no value for that stanza is specified locally in the
current stanza.

xlc The pathname to the XL C compiler.
xlcopt The options are specified to the XL C compiler only when seen on the com-
mand line.

Each of the above options can be specified for a particular invocation of
the XL C compiler. In other words, you can create your own symbolic
link to /usr/lpp/xle/bin/xlcentry and define a stanza in /etc/xlc.cfg to
control the compiler options, environment, and interface to the other
systems such as the assembler and linker.

Based on the invocation of the XL C compiler, you are requesting
varying levels of the C standard. You can also specify a particular lan-
guage level by using the -qlanglvl option on the command line. For ex-
ample:

$ cc -glanglvl=ansi prog.c

This specifies that you should compile prog.c using the ANSI standard
conventions and not some other level, such as SAA. There are four ba-
sic C language levels supported:

ansi ANSI standard

saa SAA current standard

saal2 SAA Level 2 standard

extended Older Kernighan and Ritchie (K&R) style

The basic syntax for the XL, C compiler system is as follows:

cc [option | file]...
xlc [option | file]...
c89 [option | file]...

The cc, xlc, and ¢89 commands compile XL C source files. These com-
mands are the same except for the default language level. For cc, the
default language level is extended. For xlc and ¢89, the default lan-
guage level is ansi. These commands also process assembler source

30

AIX: Getting Started

files and object files. Unless the -c option is specified, these commands
call the linkage editor to produce a single object file. Input files can be

any of the following:

1. Filename with .c suffix: C source file

2. Filename with .i suffix: preprocessed C source file

3. Filename with .o suffix: object file for 1d command

4. Filename with .s suffix: assembler source file

There can be one or more options. Flag options are:

-#

-B<prefix>

-C

-C

-D<name> [=<def>]

-E

-F<x>[:<stanza>]

-g
-I<dir>

-l<key>

-L<dir>
-M

—-o<name>

-0
-02
-03

Displays verbose information on the compiler’s progress without
invoking anything.

Constructs alternate compiler/assembler/linkage editor program
names. <prefix> is added to the beginning of the standard program
names.

Compiles only; does not call 1d.

Writes comments to output when doing preprocessing; used with
-E and -P.

Defines <name> as in #define directive. If <def> is not specified, 1
is assumed.

Preprocesses but does not compile; outputs to stdout.

Uses alternate configuration file <x> with optional <stanza>. If
<stanza> is not specified, xlc is assumed.

Produces debug information.

Searches in directory <dir> for include files that do not start with
an absolute path.

Searches the specified library file, where <key> selects the file
lib<key>.a.

Searches in directory <dir> for files specified by -l<key>.

Creates an output file suitable for inclusion in a description file for
the UNIX make command.

When used with -¢, names the .o filkname>; otherwise names the
executable file <name> instead of a.out.

Optimizes generated code.

Equivalent level of optimization as -O in the previous release.
Performs some memory- and compile-time-intensive optimizations
in addition to those executed with -O2. The -O3-specific optimiza-
tions have the potential to alter the semantics of a user’s program.
The compiler guards against these optimizations at -O2, and the
option -gstrict is provided at -O3 to turn off these aggressive op-
timizations.

Generates simple profiling support code.

Generates profiling support code. Provides more extensive profil-
ing than -p.
Preprocesses but do not compile; outputs to .i file.

In-lines all appropriate functions where x can be one of the follow-
ing:

Program Development Under AIX 31

I—Does not in-line any function

=<le>—In-lines if number of source statement in function is less
than the number specified in <lc>

-<nm>—Does not in-line function listed by names in <nm>

+<nm>—Attempts to in-line function listed by names in <nm>

-S Produces a .s file for any source file processed by the compiler.

-t<x> Applies prefix from the -B option to the specified program <x>,
where x can be one or more of the following: p = preprocessor, ¢ =
compiler, a = assembler, and 1 = linkage editor.

-U<name> Undefines name as in #undef directive.

-v Displays verbose information on the compiler’s progress.

-w Suppresses informational, language-level, and warning messages.
—y<x> Specifies compile-time rounding of constant floating-point expres-

sions, where <x> can be one of the following: n = round to nearest,
m = round toward minus infinity, p = round toward positive infin-
ity, and z = round toward zero.

Other options are specified as follows:

-g<option>

where <option> is an on/off switch such that, if x is the option, -gx turns
the option on, and -qnox turns the option off. For example, -qsource
tells the compiler to produce a source listing, and -qnosource tells the
compiler not to produce a source listing.

The following override the initial compiler settings:

ansialias Specifies type-based aliasing to be used during optimiza-
tion.

attr Produces attribute listing (only referenced names).

compact Reduces code size where possible, at the expense of execu-

tion speed. Code size is reduced by inhibiting optimizations
that replicate or expand code in-line.

cpluscmt Permits // to introduce a comment that lasts until the end of
the current source line, as in C++.

dbxextra Generates symbol table information for unreferenced vari-
ables. By default such information is not generated, thus re-
ducing the size of the executable compiled with the -g

option.
extchk Performs external name type-checking and function.
idirfirst Specifies the search order for files included with the #in-

clude file_name directive. Uses -qidirfist with the -Idirec-
tory option. If -qidirfirst option is specified, the directories
specified by the -Idirectory option are searched before the
directory in which the current file resides.

inlglue Generates fast external linkage by in-lining the code
(pointer glue code) necessary at calls via a function pointer
and calls to external procedures.

list Produces object listing.
listopt Prints settings of all options in listing.
mbcs String literal and comments can contain MBCS characters.

noprint Directs listing to /dev/null.

32 AIX: Getting Started

nostdinc

ro
phsinfo

proto

ro
roconst

source

srcmsg
statsym

strict

tocdata

xcall

xref

-g<option>=<suboption>

align=<algnopt>

arch=<option>

attr=full

chars=signed

Specifies which files are included with the #include
“file_name” and #include <file_name> directives. If -qnost-
dinc is specified, the /usr/include directory is not searched.

Does not put string literals in read-only area.
Displays phase information on the screen.

Asserts that procedure call points agree with their declara-
tions even if the procedure has not been prototyped. This
allows the caller to pass floating-point arguments in float-
ing-point registers instead of general-purpose registers.

Places string literals in read-only area. This option is the
default for xlec.

Places static external and global identifiers that are const
qualified in the read-only area.

Produces source listing.

Specifies that source lines are to be displayed with the mes-
sage, with pointers to the column position of the error.

Adds user-defined nonexternal names that have static stor-
age class to the name list (the symbol table of xcoff objects).

Valid only at -O3. This option turns off aggresive optim-
izations which have the potential to alter the semantics
of a user’s program. This option also sets -gfloat=nofltint:
norsqrt.

Places scalar external data of one word or less in the TOC
(table of contents). If this option is not on, the address of
scalar external data is placed in the TOC. This requires an
extra load of the address before accessing the data.

Generates code to static routines within a compilation unit
as if they were external routines.

Produces cross-reference listing (only referenced names).
For example:

where <option> is assigned a specific suboption value or list
of suboption values as follows:

Specifies one of the following three alignment rules: (1)
POWER architecture (align=power, default), (2) 2-byte
alignment (align=twobyte), or (3) 1-byte alignment (align=
packed) for aligning C structs and unions. <algnopt> can be
one of: power, twobyte, or packed.

Specifies the architecture on which the executable program
will be run. The available options are:
com—produces an object that contains instructions that
will run on all the POWER and PowerPC hardware
platforms.
pwr—produces an object that contains instructions that
will run on the POWER hardware platform.
pwr2—produces an object that contains instructions that
will run on the POWER2 hardware platform.
pwrx—same as pwr2.
ppc—produces an object that contains instructions that
will run on any of the 32-bit PowerPC hardware
platforms.
The default is -qarch=com. If the -qarch option is specified
without the -qtune=<option>, the compiler uses -qtune=pwr.

Produces attribute listing (all names, whether referenced or
not).

The data type char will be signed.

datalocal=<namel>:
<name2>:

dataimported=<namel>:
<name2>:

enum=<enumopt>

flag=<sevl>:<sev2>

float=<optl>:<opt2>:
. :<OptN>

flttrap=<optl>:<opt2>:

. :<OptN>

halt=<sev>

ignprag=<pragval>

initauto=<hh>

isolated_call=<namel>:

<name2>:

langlvl=<langlvl>

maxmem=<num>

pgmsize=<p>

Program Development Under AIX 33

Specifies which data items are local. If no names are speci-
fied, all data items are assumed to be local.

Specifies which data items are imported. If no names are
specified, all data items are assumed to be imported. This is
the default.

Specifies whether minimum-sized enumerated types will be
produced or not. <enumopt> can be either small or int.
small denotes that either 1, 2, or 4 bytes of storage will be
allocated for enum variables based on the range of the
enum constants. int is the default and causes enum vari-
ables to be treated as though they were of type (signed) int.

Specifies severity level of diagnostics to be reported in list-
ing, <sevl>, and on screen, <sev2>.

The available options are:

rndsngl—ensures strict adherence to IEEE standard. All
operations on single-precision values produce results
that remain in single precision.

hssngl—rounds single-precision expressions only when
the results are stored into REAL*4 memory locations.

nans—detects conversion of single-precision NaNS to
double-precision call checking.

hsflt—never rounds single-precision expressions, and
doesn’t perform range checking for floating-point to
integer conversions.

nomaf—suppresses generation of multiply-add
instructions.

nofold—suppresses compile-time evaluation of constant
floating-point expressions.

rrm—specifies run-time rounding mode. Compiles with
this option if the run-time rounding mode is rounded
toward minus infinity; rounds toward positive infinity or
not known.

rsqrt—specifies whether a division by the result of a
square root can be replaced with a multiply by the
reciprocal of the square root. Default at -O2:
-gfloat=norsqrt. Default at -O3: -gfloat=rsqrt.

fltint—specifies whether range checking of floating-point
to integer conversions is done. Default at -02:
-gfloat=nofltint. Default at -O3: -qfloat=fltint.

Generates instructions to detect and trap floating-point.
The available options are: overflow, underflow, zerodivide,
invalid, inexact, enable, and imprecise.

Stops compiler after first phase if severity of errors detected
equals or exceeds <sev>.

Specifies the aliasing pragmas to be ignored. Used with
#pragma disjoint and #pragma isolated_call. <pragval> can
be disjoint, isolated, or all.

Initialializes automatic storage to <hh>. <hh> is a hexa-
decimal value. This generates extra code and should only be
used for error determination.

Specifies that the calls to the functions listed have no side
effects. <namel> and <name2> are function names. The
user may specify as many function names as necessary.

Specifies language level to be used during compilation.
<langlvl> can be ansi, saal2, saa, or extended.

Limits the amount of memory used by space-intensive op-
timizations to <num>. <num> is specified in kilobytes.

Sets initial table size used by the compiler. <p> can be s for
small or 1 for large.

34 AIX: Getting Started

proclocal=<namel>: Specifies which functions are local. If no filenames are

<name2>: ... specified, all invoked functions are assumed to be defined
within the current file. The last explicit specification for a
function takes precedence.

procimported=<namel>: Specifies which functions are imported. If no filenames are

<name2>: ... specified, all invoked functions are assumed to be defined
outside the current file. The last explicit specification for a
function takes precedence.

procunknown=<namel>: Specifies which functions are unknown to be local or im-

<name2>: ... ported. If no filenames are specified, all functions called are
assumed to be unknown. This is the default when no user
options are specified. The last explicit specification for a
function takes precedence.

spill=<size> Specifies the size of the register allocation spill area.

tune=<option> Specifies the architecture system for which the executable
program is optimized. The available options are:

601—produces an object optimized for all the
PowerPC601 processors.

pwr—produces an object optimized for the POWER
hardware platform.

pwr2—produces an object optimized for the POWER2
hardware platform.

pwrx—same as pwr2.

xref=full Produces cross-reference listing (all names, whether refer-
enced or not).

As you can see, there are many options available with the standard
XL C compiler system which comes with AIX. They will provide sup-
port for most of the compilation tasks you will need. There is included
on the CD-ROM accompanying this book, however, an additional C
compiler known as the GNU C compiler, which is also a best-of-breed
compiler. It has certain advantages over the native XL C compiler, and
you may want to investigate this before making a final decision about
the C compiler to use.

3.5.1 Compiler modes including AIX 4.1 specific information

As mentioned in Sec. 3.5, there are a variety of modes in which the
compiler can generate code. This is true for both XL C as well as C for
AIX. A brief outline of the compiler mode issues is too important not to
be mentioned in this book.

As outlined in the options portion of the XL C compiler in Sec. 3.5,
the way to control the compiler output is through the use of the -qarch
option. To recap, the available options are as follows:

-garch=pwr This generates code for the POWER instruction set. This will run on
POWER, POWER2, and PowerPC-601 without the need for emulation.
Software emulation may be required on the PowerPC 603 and 604.

-garch=pwr2 This generates code for the POWER2 instruction set. This will run only on
POWER?2 if any of the unique POWER?2 instructions are generated.

-garch=ppc This generates code for the PowerPC instruction set. This will run only on
the PowerPC platform including 601, 603, and 604.

-garch=com In XL C this does not generate true common code, while on AIX 4.1 it does.

Program Development Under AIX 35

Each of these will support a particular compiler mode. While the first
three support a specific platform or platforms, the fourth (or common
mode) supports all hardware platforms. This is the recommended way
of compiling with both XL C and C for AIX.

Common mode generates instructions which are common to all ar-
chitectures. With XL C, it sometimes did not generate what is called
millicode calls. These calls are specific low-level memory calls which
allow for integer multiply, divide, and remainder operations. Because
XL C did not generate these calls, you might run into compatibility
problems and, therefore, not have true common mode. C for AIX gener-
ates millicode for all platforms and thus guarantees that code will be
common and execute properly across all platforms. This means that
you can generate a single binary image which will execute across all
AIX platforms, regardless of the hardware platform.

For common mode to operate properly on AIX 3.2.5 with XL C, you
need to ensure that you have installed the mandatory 8 PTF's that are
required to include all relevant files. These are U432415, U432416,
U432417, U432431, U432447, U432448, U432449, and U432450. See
your system administrator for details on these.

Several steps must be followed to generate a common mode binary.
They are:

1. Develop on AIX 3.2.5 (this is recommended to the support in the
above mandatory eight PTF's).

2. Use the flags -qarch=com -qxflag=useabs on the compile line.

3. To link the application, use a special static library compiled in
COMMON mode. This library is available from IBM as feature code
2504. You must then specify this library with the -I option on the
compile line before all other system libraries.

4. Use the flag -bI:lowsys.exp where lowsys.exp is provided by the
eight mandatory PTFs described earlier. This file contains symbols
for the millicode that reside at the low memory locations. This al-
lows for true common code to be generated.

Related to compiler modes are the tuning flags. You can tell the
compiler to optimize common mode code for one type of hardware or
another with the -qtune parameter. This will serve to increase per-
formance if the application is run on the particular platform for which
it was optimized. This will also cause the code to run significantly
slower if run on a platform other than the one for which it was opti-
mized. Keep this in mind if you are running across multiple architec-
tures.

Finally, you can run in what is known as hybrid mode. This means
that you can compile various routines within your application in more

36 AIX: Getting Started

than one mode and provide run-time testing to determine which one
should be used. See the C for AIX guide or XL C guide for more details.

3.6 The Linkage Editor

The tool used to actually link all object files generated by the compiler
is known as the linker, or linkage editor. This tool is responsible for
combining object files, libraries, and import lists to create a final ex-
ecutable during the final phase of the compilation process as described
earlier.

The basic format used by the linker is known as XCOFF (eXtended
Common Object File Format). This is fast becoming the standard for-
mat for representing executable information under UNIX. The prede-
cessor to XCOFF was COFF. XCOFF and COFF are very similar
formats, the primary difference being that XCOFF supports dynamic
linking.

You can invoke the linker directly with the 1d command. As you can
imagine, there are many options available to the 1d command, some of
which are shown below:

1d [-eLabel] [-Dnum] [-Hnum] [-KMm][-oname][-rs][-Snum] [-Tnum][-vz]
[-Zstring]
[-Ldir] [-ffile]l [-1lkey...][-b option...] file...

where -eLabel makes the contents of the Label variable the entry point
of the executable output file.

-Dnum makes the contents of the num variable the starting
address for the initialized data of the ouput file.

-Hnum makes the value of the num variable the boundary to
which the .text, .data, and .loader sections are aligned
within the output file.

-K pads the header, .text, .data, and .loader segments of the
output file to lie on page boundaries.

-M lists to the load map output file the names of all files and
archive members processed to create the output file.

-m is the same as -M.

-oname names the output filename instead of the default a.out.

-r creates the output file even with unresolved symbols.

- strips the symbol table, line number information, and
relocation information from the output.

-Snum makes the value of num the maximum size of the user
stack.

-Tnum makes the value of num the maximum size the user
stack is allowed to grow.

-v is verbose mode.

Program Development Under AIX 37

-z is the same as -K.

-Zstring—prefix the standard library directory with string.

-L dir adds dir to the list of directories to be searched for library
files.

-ffile takes the filenames to be processed from file.

-lkey processes the libKey.a file.

-b option is binder options.

file is the input file to be processed.

The only thing to watch out for relative to symbol definition and resolu-
tion is the use of reserved symbols. The XL, C system generates re-
served symbols which normally begin with _. Some of the more
common ones are:

_text Pointer to the first location of the program segment

_data Pointer to the first location of the data segment

_etext Pointer to the first location above the program segment

_edata Pointer to the first location above the data segment

_end Pointer to the first location above all data including dynamic and initial-
ized data

This means that you must not use these symbols in your programs;
otherwise you will have linker resolution problems.

Import and export files were discussed in the section relating to dy-
namic library and object creation; however, it is important to remember
that the import and export files are used by the linker to dynamically
“bind” objects from a shared environment into your executable. The
binder is the software that actually does this. See the man page on 1d
for more information. See the earlier discussion for more details on
their exact construction and syntax.

There was a simple example of usage of the linker command given in
Sec. 3.2; this section provides several more examples in order to pre-
sent a more thorough discussion of the linker. A simple example is as
follows:

$ 1d -T512 -estart -lc /lib/crt0.o -omain main.o subl.o sub2.o

This will create an executable named main from three object files and a
library named libc.a. The /lib/crt0.0 is the run-time support object used
by all C object code and needs to be included.

To review the creation of linking to a shared object, first create an
export file as outlined above (let’s call it common.exp) and use a com-
mand like:

$ 1d -T512 -H512 -DbM:SRE -lc -bE:common.exp -o common.o subl.o
sub2.0 sub3.o

38 AIX: Getting Started

This will create a shared object named common.o that can then be
linked to other objects as shown next. You must first create an import
file (let’s call it common.imp) that follows the syntax outlined earlier.
Once you have done this, you can issue a command like:

$ 1d -T512 -H512 -1lc -o main -bI:common.imp main.o -L ":"

Note that the “.” instructs the linker to include the current path in the
search. This command generates an executable named main which can
be invoked by typing:

$./main

There are many other ways to use the linker; it is often used as the
last step in the compilation process and, therefore, is invoked automat-
ically by the XL C compiler system.

3.6.1 C for AIX and AIX 4.1 changes to the linker/binder

and loader

The binder has the following new features:

1. Increased performance. Compile times may be 2 to 5 times faster.

2. Smaller object files due to the inclusion of global scalars in the TOC
entry.

3. Removed the TOC overflow problem by removing the TOC size limit
of 64KB.

4. You can now use LIBPATH variable to override any previously de-
fined -L options.

There are also a variety of new options as well as some obsoleted ones
with C for AIX. See the man pages on the respective machines for more
details.

There are also a variety of enhancements to AIX 4.1 and C for AIX
relative to symmetric multiprocessing (SMP). These are beyond the
scope of this book; however, it is safe to assume that all applications
written for uniprocessor machines will run correctly on a multiproces-
sor machine. This is not always the case in the other direction. New
technologies such as threads are making SMP a commercial reality.
There is more on threads in Chap. 4.

Finally, the core file has changed in AIX 4.1 to support POSIX
threads. This means that it won’t be possible to analyze core dumps
between AIX 3.2.x and AIX 4.1 operating systems. Keep this in mind if

3.7 Conclusion

Program Development Under AIX 39

you have any core dumps. You must analyze them on the same archi-
tecture on which they were generated.

This chapter has shown you some of the capabilities of the compilation
system included with AIX 3.2.5 and available as a separate product
with AIX 4.1. It is an extremely powerful and complex environment;
however, once you understand its intricacies, you will find it extremely
flexible and usable. IBM has led the industry in compiler technology
for many years, and the XL C compiler subsystem along with C for AIX
are the results.

While the GNU C compiler system is an alternative, consider the al-
ternatives carefully before moving away from the native C compiler
subsystem that is available for AIX.

4.1 Introduction

4.2 dbx

Chapter

Native AIX Software
Development Tools

The previous chapter outlined the basic software development environ-
ment in AIX. This chapter presents several of the more important tools
available to you in AIX that are related to software development and
the free tools included with this book.

Much of the functionality discussed relating to the tools in this chap-
ter is replicated by the tools discussed in Part 2 of this book. See these
later chapters for more information about the tools included on the CD.

dbx is the interactive command line debugger that comes with most
UNIX implementations. It is a symbolic debugger which allows you to:

Examine object and core files

Control the execution of an application

Set breakpoints and trace program execution and variables

Use symbolic variables and display them in their correct formats

Manipulate variables in virtual memory

Use several languages in the same executable and debug session
Languages most often supported are C, Fortran, Pascal, and COBOL.
dbx is the Berkeley equivalent to sdb from AT&T. Most UNIX systems

today use dbx as their standard debugger; sdb is not available on most
machines today.

41

42 AIX: Getting Started

4.2.1 Using dbx
To invoke dbx use:

dbx [-a pid] [-c commandfile] [-d nesting] [-I dir] [-k] [-ul [-f]
[-r] [objectfile [corefile]]

where -a pid attaches the debug process to the process with process id

of pid.

-c commandfile—dbx commands executed before beginning
debug session.

-d nesting sets limit for nesting of program blocks; default is 25.

-1 dir is directory to look in for associated source files; default is
the current directory and directory where the executable
is located.

-k maps memory addresses; useful for kernel debugging.

-u causes dbx to prepend symbols with an @ to avoid possible
conflicting symbol names.

-f starts dbx reading only a minimum number of symbols to
minimize start-up time and memory requirements
(useful for large programs).

-r runs object file immediately; if program terminates
successfully, dbx is exited.

objectfile specifies object file to debug.

corefile specifies core file to debug.

To use dbx, the programs must have been compiled with the -g option
to generate symbol information which dbx uses.

When dbx starts, it checks for the existence of an initialization file
.dbxinit in the current directory and the user’s HOME directory. Any
commands in the .dbxinit file are executed before the debugging ses-
sion begins.

When you invoke dbx, you are placed in an interactive session from
which you can issue commands and examine variables inside the pro-
gram. For example, the following simple C program will be compiled
and debugged:

$ cat test.c

main ()

{

printf("this is a test of the debugger\n");
}

$ cc -g test.c

$ dbx a.out

Reading symbolic information...
Read 31 symbols

(dbx)

Native AIX Software Development Tools 43

You are now at the dbx interactive prompt. From this point you can
issue dbx commands and examine variables, change values, and run
the program line by line. Note that a.out is the default object name
from most UNIX compilers.

4.2.2 The dbx language

dbx commands are C-like in syntax and function. dbx works with ex-
pressions which consist of constants, operators, procedure calls, and
variables. Some of the most important of these are:

Constants, which consist of constants declared within the program:

Character constants must be enclosed in single quotes
Octal format must be preceded with a 0.
Hex format must be preceded with a Ox.

Operators. The standard operators in most languages are:

+ Add

- Subtract

* Multiply

/ Divide

div Remainder

<< Bitwise shift left

>> Bitwise shift right

& Bitwise AND

| Bitwise OR

~ Bitwise complement

& Address and content of operator
< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
== Equal to

I= Not equal to

&& Logical AND

Il Logical OR
sizeof(cast) Size of variable or case
. field Reference

44 AIX: Getting Started

4.2.3 Scope

Scope is a concept which defines the availability of constants and vari-
ables within procedures. The scope of variables is defaulted to within
the current file and function. Values of variables are updated as func-
tions are entered and exited. You can apply a specific scope with the file
and func commands within dbx. Source files are expected to have the
same name as the function with the proper language extension (.f, .c,
etc.) to make it available to the compiler.

4.2.4 Running dbx

The basic dbx commands are:

/ [regular expression]

? [regular expression]

alias [name ["command"]]

assign var=expression

call proc [params]

case [default | mixed |
lower | upper]

catch [signum | signame]

clear [line]

cont [signum | signame]

Searches forward in current source code for regular ex-
pression. Most often used to match strings (e.g., /string).

Searches backward in current source code. Opposite of /.

Creates aliases for dbx commands for shorthand nota-
tion for commonly used commands. Note that the
.dbxinit file is ideal for these commands. alias alone
prints out all aliases.

Assigns the value expression to the variable var; expres-
sion can be a string, logical type, or constant. See the
examples for more information.

Call executes the procedure specified by proc and passes
parameters. Note that this procedure can be any stand-
ard procedure supported by the language (e.g., printf in
the C language).

Changes how dbx interprets symbols. Default is lan-
guage dependent.

Sets a catch for the signal signum or signame before it
reaches the program. If no parameters are used, all sig-
nals are trapped except SIGHUP, SIGCLD, SIGALARM,
and SIGKILL.

Clears all breakpoints or only one on line if chosen. See
set for more details; line can be either a line number (in-
teger) or a filename followed by a colon.

Continues program from the current stopping point. If
either signum or signame is included, the program con-
tinues as if it had been sent the appropriate signal con-
tained in signum or signame.

delete { number ... | all }Removes traces and stops from the current session. All

detach [signum | signame]

display [expr]

down [num]

traces and stops have an associated number which can
be viewed with the status command and established
with the trace and stop commands.

Continues execution but exits dbx. Useful if you have
seen all you need in the debugger and simply want to
finish the program.

Prints on the screen the value of expression, where ex-
pression is a regular expression.

Moves the current functions down one level or num level
in the call stack. This is relevant for scope and name
resolution.

dump [proc] [>file]

edit [proc | filel

file [file]
func [proc]

help [cmd]

ignore [signum | signame]

list [proc | line,line]

multproc [on | off]

next [num]

print [expr]

quit

rerun [args]

return [proc]

run [args]

set var=expression

sh [command]

skip [num]

source [filename]
status [>file]

step [num]

Native AIX Software Development Tools 45

Prints all variables local to the current procedure or
named procedure. You can redirect your output to a
specified file.

Invokes an editor on the specific procedure or file. You
can set the variable EDITOR to choose an editor other
than vi.

Changes the current source file to another. Simply type
file to display the current source file.

Changes the current procedure to another. Simply type
func to see your current context.

Prints listing of dbx commands or more detailed descrip-
tion of command cmd.

Ignores signals signum or signame sent to the current
program.

Lists source lines either in the current procedure if no
parameters are used, from proc if a procedure name is
specified, or from linel to line2 if a line expression is
used. The default is 10 lines starting at the current line
in the current procedure. The $ represents the current
line, and you can use regular expressions to designate
lines.

Enables multiprocess debugging (not available on all
dbx implementations).

Executes one line or num lines jumping over function
calls. Note that this means that a function call will be
executed in its entireity and treated as a single line. See
step for an alternative.

Prints the value of an expression. The expression can be
any expression supported by the language used in the
program.

Exit dbx. Program execution is terminated.

Begins execution again passing args as command line
input parameters.

Continues execution until the procedure proc is reen-
tered. If you don’t specify a proc, you will execute until
you leave the current procedure. This is not available on
all implementations of dbx.

Begins execution of the program, optionally passing
args as command line arguments. The arguments
should be entered exactly as they would on the com-
mand line.

Same as assign.

Executes a shell specified by the SHELL environmental
variable. You can specify a command to execute within
this shell with the optional command parameter. If you
use command, when the command is finished, you are
placed back in dbx.

Resumes execution skipping 1 or num breakpoints be-
fore honoring a breakpoint. This is not supported on all
versions of dbx.

Executes dbx commands from the filename file.

Prints trace and breakpoint information which can be
optionally placed in a file.

Steps through one line of execution info calls. This
means that if the next line of execution is a function call,

46 AIX: Getting Started

425 Example

stop {var | [var] { at
line | in proc}} [if
condition]

trace [line | expression
at line | proc | [var] |
[at line | in procll [if
condition]

unalias name
unset var

up [num]

use [dirl dir2 ...]

where [>file]

which [name]
whereis [name]
whatis [name]

you will stop at the first executable line in the function
as a result of a step command. This is opposite of the
next command.

Sets breakpoints where program execution is halted.
Execution is halted when:

var—the variable var changes.

at line—the source line is reached.

in proc—the procedure is called.

if condition—the condition is reached.
dbx associates a number with each breakpoint. Use
status to see these associations. You can use the delete
function to remove them.

Prints tracing information specified on the dbx com-
mand line:
at line—specifies a source line which contains the
expression to be traced.
if condition—specifies a condition for the trace to
begin.
in proc—specifies the procedure which contains the
procedure or variable to be traced.
See the examples sections for details.

Removes the alias for name.
Removes the value of var.

Moves the current function up the program stack. The
default is 1.

Specifies which directories to use for source files sepa-
rated by spaces; used by itself, it displays which directo-
ries are currently being searched.

Displays a list of active procedures. Output can be redi-
rected to a file.

Displays the fully qualified identifier name.
Displays the fully qualified symbol name.

Displays the declaration of name; name can be a func-
tion, procedure, variable, or constant.

Most dbx commands will print out the current status of associated

variables or parameters if executed without any parameters (e.g., alias,
case). There are also machine-level instructions which allow for low-
level debugging at the machine instruction level. See your machine’s
specific dbx documentation since this is machine and debugger specific
in many cases.

The above list is not all inclusive for all implementations of dbx, but
it does include the majority of commands in dbx. If you use these com-
mands fully, you will realize most of the power of dbx.

The example below documents many of the dbx commands described
above. The program test consists of three separate files: test.c, testl.c,
and test2.c. All three files reside in the same directory, /tmp/book. The
content of test.c is as follows:

Native AIX Software Development Tools 47

main() {

int a=5;

printf("This is test and a is %d\n",a);
testl();

test2(a);

}

testl.c contains: |

testl() { !
printf ("This is testl\n");
}

And test2.c contains: \

test2(a) { ‘
printf("This is test2 and a is %d\n",a);
}

The example is: ‘

** Now compile the files to create a single executable a.out. **

% cc -g test.c testl.c test2.c
test.c:
testl.c:
test2.c:
Linking:

% dbx a.out # now invoke the debugging session

Reading symbolic information...

Read 80 symbols

(dbx) help /* printout help for SunOS dbx */
Command Summary

Execution and Tracing
catch clear cont delete ignore next rerun
run status step stop trace when

Displaying and Naming Data
assign call display down dump print set
set81 undisplay up whatis where whereis which |

Accessing Source Files
cd edit file func list modules pwd
use / ?

Miscellaneous
alias dbxenv debug detach help kill make |
quit setenv sh source

Machine Level
nexti stepi stopi tracei

The command "help <cmdname>' provides additional help for each
command |

48

AIX: Getting Started

** Now help on a specific command. **

(dbx) help print

print <exp>, ... - Print the value of the expression(s) <exp>, ...
(dbx) print a

bad data address

** List status of all breakpoints, traces, etc. Note there are none
set yet. **

(dbx) status

(dbx) list /* list source code of current procedure */

2 int a=5;

3 printf("This is test and a is %d\n",a);

4 testl();

5 test2(a);

6 1}

(dbx) step /* execute the first executable command but can’t because
I have invoked dbx yet */ can’t continue execution

** Note that you must issue the run command before you can invoke
any dbx execution commands since the run commands begins the execu-
tion of the program. What you typically do it set a breakpoint at
the first executable statement with the stop command and then type
run. **

(dbx) stop at 3

(dbx) run

Running: a.out

stop at 3

stopped in main at line 3 in file "test.c"

(dbx) list

3 printf("This is test and a is %d\n",a);

4 testl();

5 test2(a);

6 }

(dbx) status

(2) stop at "/tmp/book/test.c":3

(dbx) step

This is test and a is 5

stopped in main at line 4 in file "test.c"

4 testl();

(dbx) stop in testl

** Now set a breakpoint to stop at first executable line inside
testl **

(4) stop in testl

(dbx) step /* step into testl; note next would have stepped over
testl */

stopped in testl at line 2 in file "testl.c"

(dbx) list /* lists source code inside current procedure */

2 printf("This is testl\n");

3}

(dbx) trace test2

(5) trace test2 /* notify me whenever we enter test2 */

(dbx) status

(2) stop at "/tmp/book/test.c":3

(4) stop in testl

(5) trace test2

(dbx) delete stop in test2

(6) stop in test2 /* set a breakpoint at the beginning of test2 */
(dbx) status

(2) stop at "/tmp/book/test.c":3

Native AIX Software Development Tools 49 |

(4) stop in testl

(5) trace test2

(6) stop in test2

(dbx) delete 6 /* remove the stop in test2 */

(dbx) status

(2) stop at "/tmp/book/test.c":3

(4) stop in testl

(5) trace test2

(dbx) continue /* whoops */

unrecognized command/syntax "continue"

(Type ‘help’ for help)

(dbx) cont /* continue on until next breakpoint or end of execution
*/ |
This is testl

calling test2(a = 5) from function main |
This is test2 and a is 5 ‘
returning 5 from test2

execution completed, exit code is 1

program exited with 1 ‘
(dbx) rerun /* reexecute program maintaining all breakpoints, etc.
* / }
Running: a.out |
stopped in main at line 3 in file "test.c"

3 printf("This is test and a is %d\n",a); [
(dbx) status !
(2) stop at "/tmp/book/test.c":3
(4) stop in testl !
(5) trace test2 ‘
(dbx) use /* which directory is everything in */

/tmp/book/

(dbx) file /* what source code file am I in now */

test.c I
(dbx) func /* what is my current function name */

main

(dbx) list

4 testl();

5 test2(a); |
6} :

This is test and a is 5

stopped in main at line 4 in file "test.c"
4 testl();

(dbx) next

This is testl |
stopped in main at line 5 in file "test.c"

5 test2(a); ‘
(dbx) step |
calling test2(a = 5) from function main
stopped in test2 at line 2 in file "test2.c"

(dbx) next /* step over testl function call, see where we end up */ i

(dbx) list |
2 printf("This is test2 and a is %d\n",a); '
3}

(dbx) sh /* fork a shell, to get back to dbx type exit */

% 1ls |
a.out test.c testl.c test2.c

book.script test.o testl.o test2.o

% exit

(dbx) where /* where is my current line position */
test2(a = 5), line 2 in "test2.c"

main(), line 5 in "test.c"

(dbx) quit /* quit dbx without finishing execution of my program */

50

AlX: Getting Started

The above example is all inclusive and demonstrates much of the
power and functionality of the dbx debugger. While there are subtleties
in this example which you may not understand, you can refer to it
again as you learn more about AIX.

Another powerful use of dbx is to analyze where run-time errors are
occurring in your programs. For example, let’s assume you compile a
program named test as follows:

$ cc -o test -g test.c
S ./test
Bus Error - core dumped

When you attempt to run the application, you get a core dump. This
means that you have had a run-time failure in your application. The
system creates a file in the current directory named core which con-
tains information relating to the most recent core dump. While you can
go into dbx and step through the program line by line, you can get a
quick notification of where the run-time error occurred by simply in-
voking dbx in the same directory with the command:

$ dbx test

dbx version 3.1

reading symbolic information...
[using memory image in core]

20 array([il=0;

(dbx) quit

Note that this tells you that your run-time error occured on line 20
when you attempted to initialize an array variable. From here you can
use dbx to step through your system to understand exactly what is
causing the problem.

Finally, you can use dbx to attach to a running process and step
through the system just as you could if you started the process with
dbx. A simple example is:

$./test &

$ ps -u userid /* where userid is your userid*/
PID TTY TIME COMMAND

666 hft/3 10:01 test

$ dbx -a 666

Waiting to attach to process 666 ...
Determining program name ...

Successfully attached to /home/kevin/test
dbx version 3.1

Type ‘help’ for help.

reading symbolic information ...

6 printf (arrayl[i]);

(dbx)

Native AIX Software Development Tools 51

This example demonstrates that you have initiated either a back-
ground process or a process in a different login session named test
which has a process id (PID) of 666. You can attach to this process and
manipulate it just as you would a process that you invoked from within
dbx. This is a very powerful feature of dbx, and it allows you to manipu-
late daemons and other detached processes from a command line. Keep
this feature in mind as you begin to develop in AIX.

4.2.6 dbx enhancements for AIX 4.1

4.2.7 Conclusion

While there were no dramatic changes to dbx with AIX 4.1, there were
several enhancements worth mentioning. Some of the more important
are:

1. Support for reduced size executables with the -g option was added.

2. dbx now supports full path information from the compiler. This
makes it much easier to access the relevant source files.

3. Support for C type casting is now included in dbx.

4. Thread support is now included to support threads implementations
in AIX 4.1.

5. dbx now supports long double types.

6. Enhanced support for multiprocessing.

One other note is that the xde graphical debugging program is gone in
AIX 4.1.

This section has demonstrated a significant amount of the functional-
ity of dbx. There are, however, more commands which can perform
tasks which you may be interested in. See your man pages for your
particular machine for more details. There is also a GNU version of dbx
which provides enhanced functionality and commonality across plat-
forms. The dbx session shown in this section was run from within a
terminal window. There are tools which provide a more sophisticated
interface to dbx; however, these are all changing in the near future as
UNIX vendors change their interface, so they will not be documented
here; however, see your local system documentation for more informa-
tion on GUI-based dbx tools and use them just as you would use dbx as
show above.

dbx is a powerful tool for software developers and maintainers. dbx
in combination with other more sophisticated tools will help you to
write and deliver better software.

52 AIX: Getting Started

4.3 lint
4.3.1 Introduction

The lint tool has been used for years to analyze C source code for syn-
tax and possible run-time errors. lint can also check for nonportable
and inefficient code. Some of the basic things you can do with it are:

Perform type-checking rules more strictly than with most compilers

Identify variable and function problems

Identify flow control problems

Identify inefficiencies in constructs

Identify unused and unreferenced code
Identify nonportable code
Identify code and library incompatibilities

4.3.2 Usage
The basic syntax is:
lint [-a] [-b] [-Cl[-c] [-h] [-lkey] [-n] [-olibrary] [-p] [-gDBCS]
[-u] [-v] [wclass [class ...]] [-x] [-MA] [-Ndnumber] [-Nlnumber]
[-Nnnumber] [-Ntnumber] [-Idir] [-Dname [=Def]] [-Uname] file ...

where

-a suppresses messages concerning assignments of long
variables to variables that are not defined as long.

-b suppresses messages about unreachable break statements.

-C specifies the use of C++ libraries.

-¢ produces a .In file for every C file which can be used later by
lint for more thorough analysis.

-h suppresses bug, style, and inefficiency checking.

-IKey includes a lint library for further cross checking. Key can
be any of:
Key—includes the llib-1Key.In lint library
m—includes the llib-lmath.In lint library
dos—includes the llib-ldos.In lint library

-n suppresses check for compatibility with standard and
portable lint libraries.

-olibrary creates the llib-llibrary.ln library.

-p performs portability checks.

-gDBCS selects multibyte character set specified by locale.

-u suppresses messages about unused variables and functions.

-v suppresses unused function messages.

-wclass [class] specifies warning classes which determine what
is reported. Some of the classes are:

4.3.3 Examples

Native AIX Software Development Tools 53

a—non-ANSI features
c—comparison with unsigned values
d—declaration consistency
h—heuristic complaints
k—use for Kernighan and Ritchie (K&R) style C code
l—assignments of long variables to nonlong variables
n—null effect code
o—unknown order of evaluation
p—portability concerns
r—return statement consistency
u—proper usage of variables and functions
A—disables all warnings
C—constants occurring in conditional statements
D—external declarations never used
O—obselete features
P—function prototypes
R—unreachable code
S—storage capacity checks
-X suppresses messages about variables that have external
declarations but were never used.
-MA enforces ANSI standards constructs in C code.
-Ndnumber changes table dimension to number.
-Nlnumber changes number of type nodes.
-Nnnumber changes symbol table size to number.
-Ntnumber changes tree node numbers to number.
-Idir adds dir to directories to search for #include files.
-Dname=Def is a macro definition similar to that used by cpp.
-Uname removes definition of name where name is a symbol
used by the program.
file is any number of files to scan with lint.

lint has been in use for a long time and has a history of support for
the K&R style of C code. It has only recently has begun to support
ANSI standard C. Keep this heritage in mind when you are using lint
to analyze code.

There are a number of strings you can place within your source code
to control lint’s behavior. They are beyond the scope of this chapter. See
other lint documentation for more information on these commands.

To check a simple program for syntax errors, issue the command:

$ lint kevin.c

54

4.3.4 Conclusion

AIX: Getting Started

To check a series of files, you should first run each file through with
the -c option, which produces a .In file. After performing this operation
on each file, run lint on the result with the appropriate -1 options to
generate lint statements that reference the appropriate file. If you
don’t use this method, you will get lint messages from unknown file
locations.

$ lint -c filel.c
$ lint -c file2.c
$ lint -1filel -1file2 filel

Each lint -c command generates a file with a .In extension which is a
lint library. This is then cross-referenced in the last command and will
produce error messages which reference the appropriate file. This is
particularly useful for makefiles since you can lint only those files that
have changed and can issue the appropriate lint command with the
correct -1 options to regenerate the executable.

The lint executable checks your C source file against a variety of data
files it uses to store standard syntax and rules. The basic files under
AIX are listed in Table 4.1.

lint is a very powerful analysis tool for C code. Use this before compila-
tion to check for inconsistencies and for syntax and run-time errors.
You can also search for unused and inefficient code before you waste

TABLE 4.1 AIX lint Standard Libraries

lint Library Name

Contents

/usr/ccs/lib/1lib-lansi

/usr/ces/lib/llib-lansi.ln

/usr/ces/lib/1lib-1c
/usr/ces/lib/llib-lc.ln
fusr/ccs/lib/llib-lerses

/usr/ces/lib/llib-lerses.In

/usr/ces/lib/1lib-lm
/usr/ces/lib/llib-lm
/usr/ccs/1lib-port
/usr/ccs/1lib-port.In
/usr/ces/x1C/lib

/var/tmp/*lint*

Declarations of standard ANSI functions (source)
Declarations of standard ANSI functions (binary)
Declarations for standard functions (source)
Declarations for standard functions (binary)
Declarations for curses functions (source)
Declarations for curses functions (binary)
Declarations for standard math functions (source)
Declarations for standard math functions (binary)
Declarations of portable functions (source)
Declarations of portable functions (binary)
Directory containing C++ libraries

Temporary files

Native AIX Software Development Tools 55

time with more sophisticated performance analysis tools. lint is one of
the most powerful tools available on the AIX platform for code analysis
and design.

4.4 prof and gprof

4.4.1 Introduction

4.4.2 Usage

Profiling consists of code analysis to understand where you are spend-
ing most of your resources, including CPU time, I/O, and memory. With
profiling tools you can study how your program behaves and where it is
using the most resources. Once you have found the “hot spots” in your
code where it spends most of its time, you can focus on fine tuning
these areas to increase the performance of your overall system.

The general profiling and application-tuning utilities available with
AIX are prof and gprof. While these tools do not offer the functionality
of many performance and profiling tools that you can purchase, they do
offer basic capabilities which will assist you in monitoring and analyz-
ing the hot spots and other problems with your code.

To take full advantage of the profiling, you must compile your code
with the -p option for use with the prof command and with -pg for use
with the gprof command. See the sections below for more details.

Profiling your code will provide information on the percentage of
time spent in each function, the number of times a particular function
was called, and the number of milliseconds spent within each function.
While the granularity of the statistics made available is not high, it
will provide you with enough information to structure your code differ-
ently if necessary.

prof usage. The basic syntax for the prof command is:

prof [-t | -¢ | -a | -n] [-o | -x] [-g] [-z] [-h] [-s] [-S] [-v]
[-L path] [prog] [-m file...]

where -t sorts by decreasing percentage of total time (default).
-¢ sorts by decreasing number of calls.
-a sorts by increasing symbol address.
-n sorts by symbol name.
-o displays addresses in octal.
-x displays addresses in hex.
-g includes nonglobal symbols.
-z includes all symbols, even those not referenced or executed.
-h suppresses default heading.
-s produces a summary file in mon.sum.

56

AIX: Getting Started

-S displays statistics on standard error.

-v displays output graphically on standard output.

-L path uses alternate path for shared libraries.

prog is the program to execute.

-m file takes profiling data from file instead of from mon.out.

To use prof effectively, you should first compile your codes with the -p
option and execute normally. This produces a file named mon.out by
default which contains information on that particular iteration of the
code. Once that has been run, you would issue a command like:

$ prof -t

Name $Time Seconds Cumsecs #Calls msec/call
.printf 52.0 0.02 0.02 6 2.

.main 42.0 0.02 0.04 2 1.

subl 8.0 0.01 0.05 1 1.

As you can see, it produces a decreasing listing of times spent within a
particular function call. The columns are self-explanatory and consist
of percentage of time spent in each routine, total section in each rou-
tine, accumulated time for the overall program, the number of calls
from each routine, and the milliseconds per call for each subroutine or
function. This will give you a good estimate of how much time your sys-
tem is spending in each routine as a percentage of total execution time.
You can issue the command:

$ prof -L/usr/share/lib kevin.out -Mkevin.mon

It will generate information using shared library files contained in
/usr/share/lib and will use the executable kevin.out and the monitor
data from the file kevin.mon instead of from the default mon.out.

gprof usage. The basic syntax for the gprof command is:

/usr/ucb/gprof [-b] [-e name] [-E name] [-f name] [-F name]
[-L path] [-s] [-z] [a.out [gmon.out ...]]

where -b suppresses field descriptions.

-e name suppresses graph profile entry for name and all of its
descendants.

-E name suppresses graph profile entry, time spent, and
percentage time information for name.

-f name displays graph profile entry for name and its
descendants.

-F name displays graph profile entry and time and percentage
entries for name and its descendants.

Native AIX Software Development Tools 57

-L path uses path for locating shared libraries instead of
default.

-s produces gmon.sum, which sums statistics for multiple gprof
executions.

-z displays functions that have zero execution times.

a.out is default executable name.

gmon.out is default gprof statistics file.

The basic operation of gprof is the same as prof. After compilation of
the source code with the -pg option, you invoke the resulting executable
as you normally would. This results in a file named gmon.out, which
contains information which is used by gprof. Once you have collected
the information by running your program, use a command like:

$ gprof

gprof

@(#)64 1.4 com/cmd/stat/gprof/gprof.callg, bos, bos320 7/31/91
18:48:5

COMPONENT_NAME: (CMDSTAT) gprof

FUNCTIONS: N/A

ORIGINS: 27

(C) COPYRIGHT International Business Machines Corp. 1989
All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

4 3 I 3 S FE I I I I

call graph profile:
The sum of self and descendents is the major sort for this listing.

function entries:

index the index of the function in the call graph listing, as an aid
to locating it (see below).

etc...

0.00 0.00 13/13 ._doprnt [5]

[1] 0.0 0.00 0.00 13 .fwrite [1]
0.00 0.00 13/13 .memchr [2]

0.00 0.00 3/7 ._xflsbuf [3]

0.00 0.00 1/2 ._wrtchk [20]

0.00 0.00 13/13 .fwrite [1]

[2] 0.0 0.00 0.00 13 .memchr [2]
0.00 0.00 1/7 .fflush [22]

0.00 0.00 3/7 ._flsbuf [7]

0.00 0.00 3/7 .fwrite [1]

[3] 0.0 0.00 0.00 7 ._xflsbuf [3]
0.00 0.00 7/7 .write [4]

58

AIX: Getting Started

4.4.3 Conclusion

45 ar

4.5.1

i

Introduction

etc.

@(#)65 1.4 com/cmd/stat/gprof/gprof.flat, bos, bos320 7/31/91
18:49:52

+*

COMPONENT_NAME: (CMDSTAT) gprof

FUNCTIONS: N/A

(C) COPYRIGHT International Business Machines Corp. 1989
All Rights Reserved

#

#

#

#

ORIGINS: 27
#

#

#

etc.

% cumulative self self total

time seconds seconds calls ms/call ms/call name
0.0 0.00 0.00 13 0.00 0.00 .fwrite [1]

0.0 0.00 0.00 13 0.00 0.00 .memchr [2]

This will produce several outputs. The first is very similar to that pro-
duced by prof, including function times as a percentage of total execu-
tion time, number of times the functions are called, and the total
execution times of each. Times are then propagated to a call graph as
illustrated above. The second piece of output includes call graph execu-
tion times including time distribution to the descendants. Finally, cy-
cles are shown, including an entry for the cycle as a whole and a listing
of the members of the cycle and their individual cycle and call count
times. The above is a very limited presentation of the actual output of
the gprof command. Run some examples on your local machine for
more information.

prof and gprof provide basic profiling capabilities which allow for a cer-
tain level analysis of code to occur, including performance and analysis
information. By using these tools, you can better understand the execu-
tion characteristics of your code and thereby perform the appropriate
actions on it to enhance performance and any other desired charac-
teristics.

There are other commercial tools available which do far more than
prof and gprof, but these tools do provide the basics that you need to
tune your code effectively and efficiently.

The ar command is used to create and manipulate archive files. These
are libraries of files which are typically used for the link process. Files

45.2 Usage

Native AIX Software Development Tools 59

are created by a compiler into a format known as the object format and
can then be stored as members in an archive file. These members are
then used by the link editor to generate a final executable.

ar [c][1][o]l[s]Iv]l{m [a]|b|] position | r [a|b|i|u] position |
{d|h|g|t|w|x}} archivename [membername ...]

where c suppresses normal creation messages.

1 places temporary files in current directory instead of in
default /tmp.

o sequentially orders and compresses archive file.

s regenerates symbol table.

v is verbose mode.

m moves members within an archive:
a position—move to position following position
b position—move to position preceding position
i position—same as b position

r replaces members within an archive; a position, b position,
and i position are the same as the m option.

d deletes member from archive.

h changes modification times of members to current date and
time.

q displays contents of named members or entire archive if no
member is specified.

t displays table of contents.

w displays symbol table.

x extracts members to current directory.

archivename is the name of archive library.

membername ... is the name or names of members to be
manipulated.

The archive library consists of members generated by a compiler and
a symbol table which is used by the link editor to create an executable.
Most operations which affect members cause a regeneraton of the sym-
bol table; however, this is not always the case. See the examples below
for more information.

The basic options for the ar command must be used as described
above. You must select one of closv and one of dhqtwx. The rest are
optional and depend on the other options chosen. Keep in mind that the
options must be placed seqentially on the command line with no inter-
vening spaces.

60 AIX: Getting Started

4.5.3 Linking

454 Examples

The linking process generates a single executable file from a series of
object files generated by a compiler. Most linkage editors are contained
within the command used to invoke the compiler. For example, the cc
command by default invokes both the compiler and the linkage editor.
The same holds true for the 77 command.

When the linkage editor examines the link statement, it performs a
single pass through all referenced files and archives to generate an ex-
ecutable file. The first discovered reference is used to build the ex-
ecutable. This means that if you have multiple references to the same
member or object filename, the linkage editor will use the first. This
implies that the order of members within the archive library is impor-
tant to determine the final executable contents. Keep this in mind
when generating the archive library and using the position commands
such as m and r to move members within an archive. See the examples
below for more information. Also see Sec. 3.6 on the 1d command which
describes the linkage editor in more detail.

Suffice it to say that most developers use archive libraries as func-
tion or as subprogram libraries, especially when the software systems
get large. This provides an easy way to track and maintain groups of
functions or subprograms.

These examples will assume the existence of four object files (mem-
berl.o, member2.0, member3.o0, and member4.0) in a single directory.
To generate an archive library from these files, use the command:

$ ar vg members.a memberl.o member2.o member3.o memberd.o

This will create an archive file named members.a which contains four
members named memberl.o through member4.o.

If the archive file members.a already exists, it will add these four
members to the end of the archive without checking for previous mem-
bers of the same member name. This is important since the linkage
editor will use the first occurrence of the member name to generate the
executable. Keep this in mind as you create more archive libraries. It is
generally not a good idea to create equivalent member names within an
archive library; however, if you know what you are doing, this can be a
powerful technique.

To view the results of your archive creation, issue the command:

Sar vt members.a
rw-r--r-- 0/0 4997 May 01 10:14 1993 memberl.o
rw-r--r-- 0/0 5121 May 01 10:14 1993 member2.o

Native AIX Software Development Tools 61

rw-r--r-- 0/0 4030 May 01 10:14 1993 member3.o
rw-r--r-- 0/0 10939 May 01 10:14 1993 member4d.o

This generates a table of contents which is similar to 1s -1.
To replace a member, use the command:

$ ar vr members.a memberl.o

You can use the positioning command to affect the order of members in
the archive. To add the contents of a modified members1.o file, you can
use the command:

$ ar vqg members.a memberl.o

Note that this command creates a duplicate member. The results of the
table of contents command show the following:

Sar vt members.a

rw-r--r-- 0/0 4997 May 01 10:14 1993 memberl.o
rw-r--r-- 0/0 5121 May 01 10:14 1993 member2.o
rw-r--r-- 0/0 4030 May 01 10:14 1593 member3.o
rw-r--r-- 0/0 10939 May 01 10:14 1993 member4.o
rw-r--r-- 0/0 4128 May 02 10:24 1993 memberl.o

This is dangerous; however, it does provide certain functionality that
you may need. You can position files within the archive with a com-
mand like:

$ ar vma member3.o members.a member2.o

This moves the member member2.o to follow member3.o:

Sar vt members.a

rw-r--r-- 0/0 4997 May 01 10:14 1993 memberl.o
rw-r--r-- 0/0 4030 May 01 10:14 1993 member3.o
rw-r--r-- 0/0 5121 May 01 10:14 1993 member2.o
rw-r--r-- 0/0 10939 May 01 10:14 1993 memberd.o
rw-r--r-- 0/0 4128 May 02 10:24 1993 memberl.o

This command moves the member member2.0 to follow the member
member3.o. You may want to do this to place a global symbol contained
in member3.o before the same global symbol contained in member2.o.
This is related again to linkage editor resolution requirements.

To extract a member, use the command:

$ ar vx members.a member2.o

This will place the contents of member2.0 in a file named member2.0 in
the current working directory. Because of ar’s use of standard I/O, you

62 AIX: Getting Started

4.5.6 Conclusion

can use redirection and piping as you would with most other AIX com-
mands.

For example, to rename the results of the above extraction to a file
named something other than member2.0, use:

Sar vx members.a member2.0 > cmember2.o

This will create a file named cember2.o that contains the contents of
the member member2.o0.
You can delete a member in an archive with the command:

$ ar vd members.o memberd.o

As you have made changes to the archive, its structure and order
have changed. Because of the structure of the archive, it may have un-
used space and inefficiencies within itself. To reorder and compress the
archive, use the command:

$ ar vo members.a

This sequentially orders and compresses the members.a archive. This
is particularly useful after a number of delete operations since these
often don’t compress the archive file as efficiently as possible.

Finally, you can use the strip command (see information on the strip
command) to remove symbol and other information, and this is related
to the ar command. You may want to strip the archive library to remove
many deleted symbols from deleted members. After you strip the ar-
chive library, rebuild the symbol tables with the command:

$ ar vs members.a

This will generate a clean up-to-date copy of the global symbols con-
tained in the members within the archive. To view the new symbol ta-
ble, use the command:

$ ar vw members.a

There are other commands related to archives such as strip and 1d. See
Secs. 4.7 and 3.6 for more details about strip and 1d and more examples
of how to use archive libraries.

The ar command is a powerful command that creates and manipulates
archive libraries. These libraries can help you organize your develop-

Native AIX Software Development Tools 63

ment effort and control the generation of executables. There are special
provisions in make and in the linkage editor which take advantage of
archive libraries. UNIX power developers take full advantage of the ar
facility.

4.6 nm

4.6.1 Introduction

The nm facility generates a listing of the symbols in an object file. The
file can be a simple object file, an executable file, or an archive file.
Each symbol is preceded by a value which defines the characteristics of
the symbol itself.

There are two versions of the nm command: Berkeley and AT&T.
They use different syntax but perform the same basic tasks. Keep this
in mind and examine the manual pages for AIX.

AIX is largely a System V-based UNIX operating system and, there-
fore, the nm command follows the System V option conventions. The
syntax for nm is:

nm [-C] [-0] [-T] [-e] [-f] [-h] [-x] [-u] [-n | -v] [-o0 | -d@ | -x]
[file ...]

where -C suppresses the mangling of C++ names.

-O displays file or archive name with each symbol rather than
once.

-T truncates symbol names as necessary.

-e displays static and external symbols.

-f displays all symbols.

-h does not display header information.

-r displays in reverse order.

-u displays undefined symbols.

-n displays external symbols ordered by name; use with the -e
option.

-v displays external symbols ordered by value; use with the -e
option.

-o displays values in octal.

-d displays values in decimal.

-x displays values in hex.

file ... is one or more files to operate on.

An example of a simple nm command is:

% nm bin/kermit | more
000227a4 4 _ATT7300
000225c4 d _CERMETEK

64

AIX: Getting Started

0002277c d _CONCORD
000222f0 D _DELCMD
000225ec d _DFO03
00022614 4 _DF100
0002263c d _DF200
000222fc D _DIRCMD
00022d4c d _EXP_ALRM
000228ac d _F_reason
00022664 4 _GDC
0002268c d _HAYES
000226b4 d _PENRIL
000222f4 D _PWDCMD
000226dc d _RACAL

00022304 D _SPACM2
00022300 D _SPACMD
000222f8 D _TYPCMD
00022704 d _UNKNOWN

0002272c d _USROBOT
00022754 d _VENTEL
00022308 D _WHOCMD

The characters preceding the symbol name designate the following:

A—absolute variable
B—BSS segment symbol
D—data segment variable
T—text segment symbol
U—undefined symbol
f—file name symbol
-—debugger symbol

Symbol information is sorted alphabetically by symbol.

The AIX variant of this output is slightly different but represents es-
sentially the same type of information. With the AIX variation, the
variable types and contents are generally described in a little more de-
tail. Example output might look like:

$ nm transform
$ nm transform | more
Symbols from transform:

Name Value Class Type Size Line Section

.__start | 512|extern| | | |.text
__start | 648|extern| | | |.data
_adata | 216|unamex| | | |.data
TOC | 656|unamex| | | |.data
_adata | 692|unamex| | | |.data

errno | 696|unamex| | | |.data

Native AIX Software Development Tools 65

The nm command is a very useful tool to understand, and it deter-
mines the scope and function of all variables in an object or executable
file. For example, when you have an executable and you would like to
understand which symbols are defined where, you can use the nm com-
mand to determine this. nm is also useful to better understand the
structure of code that exists without source code. nm provides access to
some information on the structure and content of object and executable
files. This is one of the first things you may want to do when taking a
look at someone else’s code.

To display symbol sizes and values in octal and sort by value, use:

$ nm -eov kevin.out

To display external symbols, use:

$ nm -e kevin.out

4.6.2 Berkeley usage

AIX contains the Berkeley version of the nm command in the /usr/ucb
directory. To invoke it, type:

$ /usr/ucb/nm

See the man page for more information on the syntax of this command.

4.6.3 Conclusion

The nm command is frequently used by power users to provide infor-
mation on the structure and content of object and executable files. Both
versions of the command (Berkeley and AT&T) provide similar func-
tionality and can be used by anyone to learn more about binary files.

4.7 strip
4.7.1 Introduction

The strip command removes symbols and relocation information from
object files. Symbols and relocation information are placed in the ex-
ecutable for linking and debugging purposes. Many of the tools you use
to debug your code as well as to link and compile your code rely on this
information in the executable file. Once you have finished debugging,
however, you may want to remove this for a variety of reasons.
Removing this information is useful when you want to decrease the
size of your executable and remove all unnecessary information from
the binary file before using it in production mode. By doing this, you

66 AIX: Getting Started

4.7.2 Usage

4.7.3 Conclusion

shrink all resources required to run it, including memory, disk, and
CPU. This is often used by more advanced AIX developers, particularly
in real-time system development and embedded control systems where
resources are tight. It is generally used to make object files and sub-
sequent executables smaller without sacrificing performance. This is
generally used after a program has been completely debugged and is
ready for distribution and use.

The basic syntax for strip is:
strip [-V][-r][-1]1|-x [-11|[-t | -HIfile ...

where -V displays strip version number.

-r removes all symbol table information except external and
static symbols. Does not remove relocation information.

-1 removes line number information.

-x removes symbol table information except external and static
symbols. Does remove relocation information.

-t removes symbol information except function symbols or line
number information.

file ... is one or more object code files.

Once you have compiled a file and debugged the application, you can
issue the strip command on the resultant executable to remove all sym-
bol table information and relocation bits. These are only used by the
debugger and linker and are not relevant to the execution process. This
allows you to minimize the size of your executable while not effecting
the execution of your program.

A simple example is:

$ strip file.o filel.o file2.o

Once you have stripped the object files, you can link as you normally
would with a 1d or some other precompiler command such as f77 or cc.

The strip command is useful when you want to minimize the size of
your executable and, therefore, minimize disk space and memory re-
quirements. You can invoke the strip functionality either with the strip
command or with the -s option on the link (Id) command. See the 1d
command (Sec. 3.6) for more information.

Native AIX Software Development Tools 67

strip provides the flexibility to minimize executable size while not
affecting the execution process of your program.

4.8 The r Commands

4.8.1 Introduction

4.8.2 Usage

The r commands consist of several commands which begin with an r.
The r designates remote. These commands allow you to emulate local
commands on a remote machine. Basic examples of the r commands
are:

rsh
rep

rlogin

These commands were traditionally shipped with the Berkeley deriva-
tive of the UNIX operating system. Because of this, most versions of
UNIX, other than standard System V, came with the r commands.
These commands allow you to execute the cp, sh, and login commands
remotely without requiring a password. Because of this they are often
seen as inferior to the standard FTP and telnet sorts of operations.
However, since these commands are so widely used, they are still in-
cluded with almost every UNIX operating system shipping today.

Security and the r commands. The r commands use three files to per-
form user authentication on the remote machine. The first is the global
r security file called /etc/hosts.equiv. This file contains a global map-
ping of hostnames and usernames supported for remote access. If the
remote machines contains a /etc/hosts.equiv file which equates to the
local and remote hosts and usernames, you will be allowed access if the
remote machine is in the /etc/hosts file and you have an account in both
/etc/passwd files.
The basic syntax of the /etc/hosts.equiv file is:

hostname username

hostname username username

where hostname is the hostname of a particular machine on the net-
work and username is the name of a user who you want to allow access
on the local machine. For example, if you place the line:

devtech kevin

68

AIX: Getting Started

in the /etc/hosts.equiv file on a machine named ibmgod and issue a rlo-
gin, rsh, or rcp command from devtech to ibmgod and you are the ac-
count kevin, you will permitted access. Note that the username
specifies that you can share usernames between machines. You can al-
low all users with entries in the /etc/passwd machine on both machines
access with the line:

devtech +

in the /etc/hosts.equiv. This says that all users with matching id’s on
ibmgod and devtech will be allowed access to their exact account on the
ibmgod machine from devtech. If you placed this line in the
/etc/hosts.equiv file on ibmgod and executed the command:

$ rsh ibmgod 1s

from the devtech machine, you would be logged on to ibmgod, and the
command 1s would be executed on your HOME directory just as if you
had logged on and issued the lIs command. Note that you must have the
same account on both machines (but not the same password), and there
must be a mapping in the /etc/hosts.equiv file for this to work correctly.

You can also allow only specific other accounts access to your account
with the r commands by placing their account names and machine spe-
cifically in the .rhosts file. An example file might be:

ibmgod root kevin
devtech kevin glen
pegasus gch psm glen

This says that the root and kevin accounts can issue the r command in
the current account from ibmgod, kevin and glen can execute com-
mands from devtech, and gch, psm and glen can execute commands
from pegasus. This allows you to pick and choose who you give “pass-
wordless” access to your account to. This is key to successfully control-
ling access to your account.

Given all of this discussion about the /etc/hosts.equiv file, it is impor-
tant to note that it is generally not a good idea to use it. The better
solution is to create a file named .rhosts in your HOME directory that
contains the mapping information exactly as described in the
/etc/hosts.equiv file but applies only to your account. This file is con-
sulted after the /etc/hosts.equiv file to see if access is allowed. The syn-
tax of the .rhosts file is exactly the same as that of /etc/hosts.equiv. For
example, if you wanted to allow access to your kevin account on
devtech from your kevin account on ibmgod, you would create the fol-
lowing $HOME/.rhosts file on devtech:

Native AIX Software Development Tools 69
ibmgod kevin

This would specifically allow the kevin account on ibmgod to access the
kevin account on devtech without requiring a password for the r com-
mands.

You can also allow others to access your account from this file by cre-
ating a .rhosts file like:

ibmgod

This will allow all users on ibmgod to access the kevin account on
devtech without requiring a password. This is obviously a bit of a secu-
rity issue and should be avoided if possible.

It is generally not a good idea to allow root to access other machines
without a password. If you place the line:

ibmgod

in the /etc/hosts.equiv or /.rhosts file on devtech, root from ibmgod now
has access to root on devtech without a password. Even if you maintain
both systems, it is generally not a good idea to do this and should be
avoided.

While there are a variety of security holes and problems associated
with this methodology, it is generally used and is exceedingly powerful
when it comes to saving time moving files and information around in a
network.

The r commands and login scripts. People often experience strange
problems with the r commands which cause rep to fail and rsh to work
intermittently. Often this is caused by something in their login
scripts issuing output to standard output. If your login scripts (.login,
.profile,.cshre, etc.) issue output to standard output, they may confuse
the r commands and cause either intermittent or complete failure of
the r command itself. Check your login scripts and ensure that you do
not issue any reads or writes from within them, or code them such that
they check your terminal type to ensure that they are local when exe-
cuting them. If you are not local, you should not execute any I/O since
you may have problems wth your r command execution.

The rlogin command. The rlogin command allows you to log on to a re-
mote machine without typing a password. The basic syntax is:

rlogin hostname [-e character] [-1 username] [-8]

70

AIX: Getting Started

where hostname is the remote machine hostname.
-e character changes the escape character.
-1 username specifies a username which can be other than your
current username.
-8 establishes an 8-bit data path instead of the usual 7.

rlogin provides a virtual terminal session into a remote computer.
From this you can execute applications and run just as if you were
logged on to the remote machine directly. You can use the -1 option to
specify an account other than the matching account for your current
login id on the remote machine.

The standard escape character, unless modified with the -e flag, is
tilde (\~). This means that you can escape back to the local machine by
entering the \~. sequence. The period (.) designates that you want to
end the remote session.

The rsh command. The rsh command allows you to execute remote

commands on machines without issuing a password. Using the

/etc/hosts.equiv and .rhosts file as described above, you can transpar-

ently access and run remote commands and display the output locally.
The basic syntax of the rsh command is:

rsh hostname [-1 username] [-n] [command]

where hostname is the remote hostname you wish to connect to.
-1 username allows you to specify a username other than your
current one.
-n sends input to the null device (/dev/null).
command is the command to execute on the remote machine.

rsh is used to execute remote commands from the local command
line. A simple example is:

$ rsh ibmgod ls

This, as described earlier, will log you on to ibmgod with your current
userid and issue the Is command in your home directory. You can exe-
cute any command from this rsh command. Standard I/O is mapped
and appears local as you expect it to if you were executing the com-
mand locally.

A more interesting example is:

rsh -1 kevin devtech ls;echo $PATH;cat .profile

If you execute this as root (denoted by the #) from the ibmgod machine,
it will execute all three commands on the devtech machine as userid

Native AIX Software Development Tools 71

kevin. This assumes that you have specifically allowed access to root
from ibmgod access to the kevin account as described above. If you
have not allowed specific access, you will get an access denied error
message.

Note also that sometimes the -1 username option is after the host-
name. See your local system for documentation on the exact syntax for
your machine.

Another interesting example of using the r commands to make mov-
ing data between machines more interesting is the following:

$ rsh ibmgoc cat filel ">>" file2

This will append the contents of the remote file filel to the remote file
file2. Note that you must include any shell metacharacters (in this case
the >>) to prevent the shell from interpreting them.

The rcp command. The rcp command allows you to do a remote copy of
a file without requiring a password. The basic syntax is:

rcpl-pl [-r] filel file2

where -r recursively copies any directories underneath the current one.
-p preserves the modification times and modes of the original
files.
filel is the file to copy from.
file2 is the file to copy to.

The syntax of the file is:
[username@]hostname: filename

where username is the name of the remote user (default is your
current userid).
hostname is the name of the remote host.
filename is the filename either fully qualified or given a relative
path from the HOME directory of the user.

Note that the username is not required and will default to your current
userid on the local machine. The colon (:) is what tells rcp that you are
manipulating a remote file. This provides you with the ability to trans-
fer a file without requiring a password like FTP does. This is very com-
monly used by users of several machines in a network and is definitely
a time-saving feature of UNIX.

A simple rcp command might look like:

$ rcp devtech:/tmp/file /tmp/file

72

AIX: Getting Started

If executed on ibmgod, this command will look for a file named /tmp/file
on the remote machine devtech and attempt to copy it to the ibmgod
machine and place it in /tmp/file. You can use a command like:

$ rcp devtech:.rhosts .rhosts

which will copy the remote machine’s (devtech) .rhosts file in your
HOME directory to your curent directory on your local machine.

The filename can be a directory if you wish to place the file in a direc-
tory. This is particularly useful if you are copying a group of files. A
simple example might be:

$ rcp filel file2 file3 ibmgod:

This will copy three files and name them filel, file2, and file3 in your
HOME directory on ibmgod. You can use wildcards to match filenames
as your normally would with UNIX. A simple example is:

$ rcp devtech:"*.txt" textfiles

Note that textfiles must be a directory. In fact, anytime you copy multi-
ple files, you must use a directory; otherwise what is the filename of
the three files? Note also that if the wildcards are to be expanded on
the remote systems, you must enclose them in quotes to prevent the
local shell from interpreting them before passing them to the r com-
mand.

A recursive copy looks like:

$ rcp -r devtech:prog prog

This will copy all files, recursively, from devtech and the subdirectory
prog to the current directory prog. Note also that symbolic links are not
supported in this environment and actual copies of the files will be
made. Therefore, if you have symbolic links in some directories which
you are copying, you will need more disk space. If you are interested in
preserving the exact structure of the data, you need to issue a com-
mand like:

$ tar cvf - test | rsh devtech tar xBf -

This will copy the current directory structure test to a remote machine
named devtech and place it in a test subdirectory in your account on
devtech. Note that this is a very powerful way of moving files around in
your network.

The final example of using r commands is used to access and control

4.8.3 Conclusion

4.9 install

4.9.1 Introduction

49.2 Usage

Native AIX Software Development Tools 73

remote devices. To retrieve a tar file from a remote tape device on
devtech from ibmgod, you might use a command like:

$ rsh devtech dd if=/dev/rmt0 obs=16b | tar xviBb - 16

This will dump (dd) the files from the tape drive (/dev/rmt0) with a
blocking size of 16 to standard output. The tar command will take in-
put from standard input (-) and place in on the local disk in the tar
format in which it is received.

To copy a file to a remote tape device, you might use a command like:

$ rsh tar cvfb - 16 filel file2 groupl | rsh devtech dd of=/dev/rmt0
ibs=16b

This will take filel and file2 files as well as the contents of the groupl
directory and place them in a tar file on the remote tape device
/dev/rmt0 on the remote machine devtech.

These kinds of tools represent the kind of tricks you can perform
with UNIX and illustrate some of the kinds of things you can do with-
out writing a single line of code.

The r commands are often used by people who want to increase their
effectiveness with AIX. Because of the security implications of using
the r commands, however, it is important that you understand exactly
what you are doing and ensure that you are not opening up security
holes in your network. Keep this in mind as you begin to look at these
tools more carefully.

The install command is used by many software packages to install into
a particular directory or set of directories. It is often used by free soft-
ware tools in the build process to place files in particular directories.
Because of this, it is included in this section so that you will under-
stand what it does later on in this book.

There are two styles of syntax for the install command:

install [-c¢ dir] [-f dir] [-imosS] [-M mode] [-O owner] [-G group]
[-n dir] file [dir...]

74

AIX: Getting Started

where -c dir installs file in dira only if it does not previously exist in

dir.

-f dir forces installation of file even if it already exists in dir.

-1 ignores default directory list and uses only command line
directories.

-m moves the file instead of copying it.

-M mode specifies mode of destination file.

-o saves copy of file as OLDfile in the same directory.

-O owner specifies a different final owner than your id.

-G group specifies a different group for the installed file.

-n dir installs file in dir if it is not in any of the searched
directories.

-s displays error messages only.

-S strips binary after installation (see strip for more
information).

file is file to be moved.

dir is directory in which to move the file.

install searches the default directories /usr/bin, /etc/ and /usr/lib in that
order for files to move unless a directory is specified in the command
line. This is the System V syntax of the install command and is what
the RS/6000 uses by default.

AIX also provides the Berkeley install command, which has the syntax:

/usr/ucb/install [-c] [-m mode] [-o0 owner] [-g groupl [-s] file dir

where -c copies the file to dir. ‘
-m mode specifies the mode of the file (default 755).
-0 owner specifies an owner other than your id.
-g group specifies a group other than your gid.
-s strips the file after installation.
file is file to move (or copy).
dir is destination directory.

Note that the syntax of the two commands is different. You may en-
counter problems with your installation scripts with some of the free
software. The error messages will say something about being unable to
move file dir, etc. This error message may be coming from the install
command. Check the syntax of the makefile (or Makefile) as well as the
syntax supported on your machine before you proceed.

Some very simple examples are:

$ install -c kevin /usr/bin (BSD style)

This will copy the file kevin into the /usr/bin directory. From then on
you can execute kevin just as if it were a system-level command.

4.9.3 Conclusion

410 cb

Native AIX Software Development Tools 75

The command:

$ install -c /usr/bin kevin (SYSV style)

will accomplish the same as the previous Berkeley command. Note the
difference in syntax and the problems that this may cause and beware.
The command:

$ install -i kevin /usr/local/bin, /usr/bin, /usr/kevin

will install a copy of kevin in /usr/local/bin, /usr/bin, and /usr/kevin if
the file kevin exists. Remember that install only replaces existing files
unless you use the -f dir option on the command. To force kevin into all
three directories above, you might use:

$ install -f /usr/bin -o kevin
$ install -f /usr/bin -o kevin
$ install -f /usr/bin -o kevin

Note that you must execute this command three times to place it in
three directories. Note also that the -o preserves any other kevin com-
mand in these directories and renames it OLDkevin.

There are a variety of ways you can use the install command. See
your local documentation for more details.

install is a tool which allows you to place or replace files in directories
from the command line. It provides a capability used by many make-
files to move files in and out of directories relatively transparently.
Keep this in mind as you read through this book.

4.10.1 Introduction

4.10.2 Usage

cb stands for C source beautifier and is a tool which formats C source
files into more readable formats. It is a very powerful tool which assists
the C developer in reading source code, particularly that written by
other developers.

The basic syntax for cb is:

cb [-s][-1 length | -j] [file ...]

76 AIX: Getting Started

4.10.3 Conclusion

411 cflow

where -s formats the output source code according to the K&R style.
-1 length splits lines longer than length characters.
-j joins split lines.
file ... is one or more input files.

cb reads from standard input or specified files and directs to stand-
ard output, so you can use the standard shell manipulation characters.
A simple example is:

$ cb test.c > newtest.c

This will generate the file newtest.c from the old file test.c.

cb is a tool which significantly enhances the readability of certain C
source files. Through the use of indentation and formatting techniques,
cb makes source files significantly more readable and understandable.
It is particularly useful for reading other developers’ source files.

4.11.1 Introduction

4.11.2 Usage

cflow is a tool which generates a flow graph of external references
within a program or set of programs. You can use it to document all
external references and calls between C source programs. This is par-
ticularly useful when beginning to examine other developers’ code.

The sytax for cflow is:

cflow [-dnumber] [-Idir] [-i_] [-ip] [-ix] [-gDBCS] [-r] [-MA]
[-Uname] [-Ndnumber] [-Nlnumber] [-Nnnumber] [-Ntnumber]
[-Dname [=definition]] file ...

where -dnumber sets the depth of functions to the number to which

the graph system goes.

-Idir adds dir to directory in which to search for #include files.

-i_ includes names that begin with an underline.

-ip disables ANSI function prototypes.

-ix includes static and external data symbols.

-qDBCS sets multibyte mode matching current locale.

-r produces an inverted listing.

-MA specifies that the first pass of the lint command is operated
in ANSI mode. The default is extended mode.

Native AIX Software Development Tools 77

-Uname removes the definition of the name parameter.

-Ndnumber changes the dimension table size to number. The
default is 2000.

-Nlnumber changes the number of type nodes to number. The
default is 8000.

-Nnnumber changes the symbol table size to number. The
default is 1500.

-Ntnumber changes the number of tree nodes to number. The
default is 1000.

-Dname=definition defines the name parameter; is similar to
the #define statement.

file... specifies one or more files to analyze.

cflow works on C source, yacc, lex, assembler, and object files and
writes the results of its analysis to standard output. It actually passes
non-C source files such as yacc and lex through the compilation proc-
ess, then analyzes the resulting C source code before generating its re-
sult. It also takes the symbols from the assembler files and produces its
output.

A simple cflow example is:

$ cflow testl.c test2.c > test.output

This will produce a file test.output which contains the flow graphs of
the testl.c and test2.c files. Another simple example is:

$ cflow scan.l

This will generate a flow graph of the lex intput file scan.l on the stand-
ard output. Remember that the file scan.l is run through lex before the
cflow program analyzes the output.

4.11.3 Conclusion

The cflow command is very useful for understanding the relationship
between C and other source files in a software system. Through the
generation of flow graphs, you can quickly understand where depend-
encies and calls are created.

4.12 cxref
4.12.1 Introduction

cxref is a command which analyzes C source code files and produces a
cross-reference table containing all symbols, including those in the #de-

78 AIX: Getting Started

4.12.2 Usage

fine statements. It is a very useful tool for analyzing and debugging
unfamiliar C source code.

The syntax for cxref is:

cxref [-c] [-ofile] [-gDBCS] [-s] [-t] [-w [number]] [-Dname
[=definition]] [-Idir] [-Uname] [-Ndnumber] [-Nlnumber] [-Nnnumber]
[-Ntnumber] file...

where -c displays the combined listing of cross-references of all input

files.

-ofile specifies file as the output file.

-gDBCS specifies the multibyte character set.

-s does not display the input file names.

-t generates 80-column-wide listing.

-wnumber generates a listing number columns wide; number
must be greater than 51.

-Dname=definition defines name as in a #define statement.

-Idir adds additional directories to search for #include files.

-Uname removes any definition of name.

-Ndnumber changes the dimension of table size to number.
Default is 2000.

-Nlnumber changes the number of type nodes to number.
Default is 8000.

-Nnnumber changes the symbol table size to number. The
default is 1500.

-Ntnumber changes the number of tree nodes to number. The
default is 1000.

file ... specifies one or more input filenames.

The only issue to watch out for is the function prototye issue. Func-
tion prototypes are handled in a special way. Old-style function decla-
ration statments are displayed simply as the function prototype name
without the optional prototype identifiers, whereas the newer ANSI-
style function prototypes are fully listed, including optional prototype
identifiers.

A simple example is:

$ cxref -c -t testl.c test2.c test3.c > test.cxref

This will generate an 80-column-wide combined cross-reference listing
in test.cxref from the input files testl.c, test2.c and test3.c.

4.12.3 Conclusion

4.13 tn3270

Native AIX Software Development Tools 79

cxrefis a very useful command for generating a functional listing of the
separate source files making up a single software system. Use it in the
initial stages of analyzing a software system to ensure that you have a
complete understanding of how the program is functioning and where
the dependencies are before proceeding to the change phase of the
project.

4.13.1 Introduction

4.13.2 Usage

tn3270 is an application which provides 3270 terminal emulation from
a UNIX workstation. It requires no special hardware and can run with
either the tn3270 protocol over a LAN or WAN. All that is required is
that a transport such as TCP/IP be present on the connection. It is a
tool which constantly amazes people, and after using it, they wonder
why they have been buying expensive solutions that provide similar or
less functionality.

There are several freeware versions of tn3270 available from the In-
ternet; however, a reasonably good version of tn3270 comes with AIX
and, therefore, this is the one discussed in this section.

The tn3270 protocol. The tn3270 protocol is a public domain protocol
which runs above the transport layer of your network. It is approxi-
mately a layer 5 protocol in the seven-layer ISO model. It is a specifica-
tion which describes full-screen 3270 data stream emulation on a
non-3270 data stream device.

With the tn3270 protocol, you can distribute the 3270 data stream
onto LANs and WANs that are running a TCP/IP transport. tn3270
uses the standard ports for telnet to provide this service and merely
relies on the tn3270 emulation software package to be on the client end
to interpret the contents of the delivered packets, break them apart,
and transform them from 3270 to curses packets which UNIX uses to
manipulate the screen.

Most implementation of TCP/IP for mainframe support the tn3270
protocol. Certainly IBM’s TCP/IP for VM and MVS provide a tn3270
data stream with no additional configuration on the mainframe re-
quired. An example of the use of this architecture is shown in Fig. 4.1.
Note that the tn3270 product does not provide any cluster controller
emulation capabilites but instead looks like a 3278 dumb terminal de-
vice. There are other products which provide these sorts of capabilities,

80 AIX: Getting Started

' ‘ aixterm
. VIRTUAL MACHINE/ENTERPRISE SYSTEMS ARCHITECTURE

L Fill in your USERID and PASSWORD and press ENTER
L (Your password will not appear when you type it)

| USERID ===>
b PASSWORD ===>

. COMMAND ===>

Figure 41 The tn3270 window.

and they are beyond the scope of this book. Suffice it to say that you can
use various vendor products to provide local 317x and 327x cluster con-
troller emulation capabilites, and you can use tn3270 to provide a
dumb terminal emulation in these products.

To invoke tn3270, type the command:

$ tn3270 [-d] [-n filename] [-e termtypel] [hostname [port]]

where -d turns on socket-level tracing.
-n filename is the file to receive tracing information; default is
stderror.
-e termtype specifies a terminal type to emulate.
hostname is the hostname of the remote system.
port is used to specify a port other than the standard port.

When you invoke tn3270, a negotiation takes place between your ter-
minal and the mainframe which establishes your terminal charac-
teristics. The tn3270 application looks at your TERM variable and
establishes things such as rows, columns, and keyboard mappings. In
all cases the terminal looks like a 3278 to the mainframe, and the nego-
tiation determines which model within the 3278 family is emulated.

tn3270 uses curses to map keyboard ASCII sequences to the signals

Native AIX Software Development Tools 81

the mainframe is expecting. There is a default file which describes the
mapping of all keys on the keyboard to keys and actions expected on
the mainframe. /etc/map3270 contains example codes and mappings
for the tn3270 product. This describes the default characteristics of the
terminal emulation if you make no changes. You can also create your
own mapping file named $HOME/.3270keys which contains informa-
tion in a similar format to /etc/map3270 but allows you to define your
own key mappings. In addition, tn3270 looks for an environmental
variable MAP3270 to define the mapping file. Use this to point to your
own defined key mapping files.

Modes of operation. There are two modes of operation with tn3270.
One is command mode, which gives you a prompt tn3270> (the other is
full-screen mode). From here you can issue tn3270 commands which
control most aspects of your tn3270 session. A key command is the

help. Type:

tn3270> help

Commands may be abbreviated. Commands are:

close Closes current connection

display Displays operating parameters

emulate Emulates a vt100 or 3270 terminal

mode Tries to enter line-by-line or character-at-a-time mode
open Connects to a site

quit Exits telnet

send Transmits special characters (‘send ?’ for more)
set Sets operating parameters (‘set ?’ for more)
status Prints status information

toggle Toggles operating parameters (‘toggle ?’ for more)
z Suspends telnet

? Prints help information

This is a listing of the commands available within the tn3270 command
mode. Note that these are very similar to the standard telnet com-
mands.

If you don’t include a hostname on the tn3270 line, you will be placed
in command mode. To open a connection to a remote machine using the
3270 data stream issue the command:

tn3270>o0pen hostname

This will connect you to the remote host, negotiate a session and termi-
nal characteristics, and put you at the login screen just as if you were

82

AIX: Getting Started

sitting on a 3270 data stream full-screen terminal. You are now in full-
screen emulation mode. From this mode you can execute all commands
you normally would from a full-screen 3278-style terminal. A mapping
has occurred, as is discussed in the following section.

You can move from full-screen emulation mode to command mode by
typing CTRL-C. This will take you to a tn3270> prompt where you can
issue command mode commands as you normally would. To return to
full-screen mode, type <return> on a blank line. While you are in com-
mand mode, the full-screen session is merely suspended. When you
reenter the full-screen session, you should return to your previous full-
screen state.

There are many commands within the command mode for tn3270. In
fact, the full set for telnet is supported. You can use quit and open to
quit and open new connections to other machines as well as use a vari-
ety of other commands from with tn3270 to control your environment.
Use the interactive help for more information on which commands may
be useful to you.

Terminal emulation issues. The best way to use the tn3270 tool is
through X11. Simply move into a terminal shell window on your local
machines and invoke the tn3270 exactly as described above. The emu-
lation will be taken care of by your machine.

It gets more interesting, however, when you are accessing a tn3270
server remotely. In other words, the tn3270 application runs on a node
other than your local one. There are two ways to use the tn3270 prod-
uct effectively on a remote station. The first is to use the X11 capability
and the xterm terminal emulator to provide remote support:

$ TERM=vtl1l00;export TERM /* export the TERM variable as a standard
vt100 */

$ telnet remotehost /* go to the remote machine which is running
tn3270 */

login

$ /usr/lpp/X1ll/bin/xterm -display localhost:0

/*this pops up an xterm window on your local display...select this
window to make it active*/

$ tn3270

/*now you have invoked the tn3270 and used the X11 server to provide
terminal emulation*/

The second way is to set both the local TERM and remote TERM to
vt100 and use the existing window:

$ TERM=vt1l00;export TERM
$ telnet remotehost
login

$ TERM=vt1l00;export TERM
$ tn3270

Native AIX Software Development Tools 83

Note that both solutions work, but the first is more elegant in terms of
full-screen terminal emulation and support for windowing functions.
You could, and probably should, set up a rsh-type command to invoke
the shell from a remote machine. For example:

$ rsh remotehost -1 usename /usr/lpp/X1l/bin/xterm
$ tn3270 /* from within the newly created window */

Keyboard mapping issues. As discussed earlier, when tn3270 is in-
voked, it looks first for a file $HOME/.3270keys and then for a file
/etc/map3270. These files contain the default keyboard mappings for
tn3270. There is a manual page on map3270 that gives more informa-
tion on the exact structure of the keyboard mapping files. See this and
below for more information.

To avoid having to scan the /etc/map3270 file every time tn3270 is
invoked, you can set the environmental variable MAP3270, which is
read before tn3270 scans the /etc/map3270 file. MAP3270 conains
either a fully qualified path (beginning with a /) which points to a file
which contains the keyboard mappings for your particular terminal or
contains actual keyboard charactersitics and key mappings. The
tn3270 tool scans the string contained in MAP3270. If it begins with a
/, it looks for a file with a name matching the string which contains the
mappings. If the MAP3270 variable does not begin with a /, the tn3270
uses the mappings contained within the MAP3270 variable itself to es-
tablish mappings for your session.

The /etc/map3270 file is a database file which contains a listing of
terminal types and corresponding keyboard mappings. The final step
in building tn3270 is to move a copy of this file to the /etc directory.
Now let’s take a look at the structure of the map3270 file. There are
many terminal types represented in the map3270 database. The vt100
section looks as follows:

vt100 | vtlOOnam | ptl00 | vtl1l25 | vt102 | direct831 | tek4125 |

pcplot | microvax{ enter = ‘"m’; clear = ‘"z’ | ‘\EOM’;

nl = *~?’; tab = ‘*i’; btab = ‘*b’; left = ‘*h’ | ‘\EOD’; right

= '~1’ | “\EOC'; up = ‘*k’ | “\EOA’; down = ‘*j’ | ‘\EOB’; home =
*\EOn’ ;

delete = ‘~d’; eeof = ‘“e’; einp = ‘*w’; insrt = *~ * | "\E

pf keys pfkl = ‘\EOg’ | ‘\El’; pfk2 = ‘\EOr’ | ‘\E2’; pfk3

= “\EOs’ | “\E3’; pfk4 = ‘\EOt’ | ‘\E4’; pfk5 = ‘\EOu’ | ‘\E5'; pfké
= ‘\EOv’ | ‘\E6’; pfk7 = ‘\EOw’ | ‘\E7’; pfk8 = ‘\EOx’ | ‘\E8’; pfk9
= “\EOy’ | ‘\E9’; pfkl0 = ‘\EOP\EOp’ | ‘\E0’; pfkll = ‘\EOP\EOqQ’ |
‘\E-’; pfkl2 = ‘\EOP\EOr’ | ‘\E=’; pfkl3 = ‘\EOP\EOs' | ‘~f13';
pfkl4 = ‘\EOP\EOt’ | ‘~f14’; pfkl5 = ‘\EOP\EOu’ | ‘~f15’; pfklé

= ‘“\EOP\EOv’ | ‘~f16’; pfkl7 = ‘\EOP\EOw’ | ‘~f17'; pfkls

= ‘\EOP\EOx' | ‘~£18’; pfkl9 = ‘\EOP\EOy’' | ‘~f19’; pfk20

‘\EOQ\EOp’ | ‘~f£20’; pfk2l ‘\EOQ\EOq'’ | ‘~f21';

84

AIX: Getting Started

program attention keys pal = ‘\E\EOP’ | ‘“pl’; pa2 = ‘\E\EOQ’ |
VAD2 7

local control keys

escape = ‘“c’;# escape to telnet command mode master_reset = ‘~g’;

centsign = ‘"\’;

local editing keys settab = ‘\E;’; deltab

= “\E\’’; clrtab = ‘\E:’; setmrg = ‘\E,’; sethom = ‘\E.’; coltab

= “\E\E[B’; colbak = ‘\E\E[A’; indent = ‘\E\E[C’; undent = ‘\E\E[D’;
} # end of vtl100,

etc. sun {

The first line describes all terminal types supported by the following
definitions. The next fields describe characteristics of the ENTER key,
CLEAR SCREEN key, newline (nl), TAB, and cursor movement keys.
The sections entitled pf keys describes how the traditional PF keys are
mapped. The vertical bar denotes options that perform the same task.
The following characters are also special:

V/E’ ESC

‘/n’ Newline

v/t TAB

‘/xr’ Carriage Return
~ CRTL

So, if you want to understand how to execute a PF1 as you would from
a normal 3278-style terminal to access a help function, you would type:

ESCAPE 1

In general, the PF keys are mapped with an ESC and the associated
numberic key across the top of the keyboard. Note that you should
avoid using the keypad since this may be mapped to something else. To
generate an interrupt (PA2), you would type:

Control-P 2

Again CRTL-C takes you back to command mode. You can create your
own terminal definitions and map the keys appropriately and simply
include it in this file. The map3270 manual page contains a very nice
description of all functions supported and mapped by the map2370 da-
tabase. See this for more information.The most commonly used keys
are (remember » is CRTL):

~z CLEAR
~p2 ATTN
~m ENTER

“t RESET

Native AIX Software Development Tools 85

PF1 ESC1
PF2 ESC 2
...etc...

PF13 ESC!
PF14 ESCe@
...etc...

~u ERASE

If you have problems with the terminal emulation and keyboard
mappings, take a look at the termcap database for a listing of sup-
ported ASCII terminals. This should not be necessary since most ASCII
terminals support the vt100 emulation, and this should provide rea-
sonable emulation for you. However, if you have a keyboard which has
special keys that you would like to use, consult the termcap and ter-
minfo databases for more information.

4.13.3 Conclusion

This kind of tool will allow you to dial in from home with a dumb termi-
nal or PC running ASCII full-screen emulation (vt100 or something
similar) and log on to a full-screen 3270 environment. This same tool
will allow you to access a full-screen 3270 environment from any work-
station on any LAN that is connected to the 3270 environment.

5.1

5.2
5.2.1

Introduction

awk

Introduction

Chapter

Native AIX Software Development
Scripting Tools

While Chap. 4 focused on native UNIX tools which provided functional-
ity based on command sets and syntax, this chapter focuses on native
tools which provide scripting and development capabilities well beyond
those described in Chap. 4. The tools described in this chapter are very
flexible and powerful ones to use to develop applications and tools on
your own.

awk is an interactive programming language which provides signi-
ficant function similar to a fourth-generation language in common
business nomenclature. awk provides pattern recognition and manipu-
lation capabilities. It is typically used to manipulate large pieces of text
without actually having to modify or even edit the file. It is a very pow-
erful tool and one that is certainly underutilized on most AIX comput-
ers. The name awk says much about AIX and the way in which it was
developed. awk stands for the last names of each of the authors: Alfred
Aho, Peter Weinberger, and Brian Kernighan. Modesty has never been
a characteristic of most UNIX developers.

awk is really a programming language all by itself. It is one of the
most powerful pattern recognition and manipulations languages avail-
able on AIX. It is a language which is C-like in syntax but is optimized
to search files for strings and perform subsequent operations on these

87

88 AIX: Getting Started

5.2.2 Usage

input lines. It uses ed commands to search for regular expressions in
strings within files and performs a specified action on them. While this
chapter cannot begin to describe all the features and functions of awk,
it does present the main areas of functionality and provides enough in-
formation to allow you to decide whether you should look into awk in
more detail.

awk is invoked as follows:
awk [-Fx] -f program [filel file2 ...]

where -Fx allows you to specify a separator x other than whitespace.
-f program specifies a file which contains the awk commands.
[filel file2 ...] contains a list of input files separated by blanks.

awk contains many of the features you would find in third-generation
languages such as conditional branching, looping, string and arithme-
tic variables, and output format statements. It also contains things
that you don’t see in most languages such as transparent typing of
variables and very flexible syntax. This allows you to code very power-
ful awk programs without being concerned with variable typing, defini-
tion, and manipulation.

The awk program represented by the -f program in the awk com-
mand syntax contains the following general syntax:

pattern command {action}

where pattern command is an ed command which provides for string
searching and manipulation, and the action part consists of C-like com-
mands which perform actions on the output of the pattern command.
awk performs all actions on all lines selected by the pattern part of the
awk program. The best way to understand this is to take the example
input file called datal:

lcoll 1col2
2coll 2col2
3coll 3col2
4coll 4col2

This corresponds to the file part of the awk command. In other words,
this will be the file that awk performs its program against. Let’s also
assume that we have a program called awk1 which looks like:

/3coll/ {print $1, $2}

Native AIX Software Development Scripting Tools 89

To invoke this program against the above file, you would type:

$ awk -f awkl datal
3coll 3col2

The output of that command is 3coll 3col2. awk first looked at the file
awkl for a pattern or ed command to use when examining the file
datal. The /3coll/ command is the ed command to search for the string
3coll. awk performed the search and action pair on each line in the
input file. In other words, it scanned line 1 and didn’t find a match. It
scanned line 2 and didn’t find a match. It scanned line 3 and did find a
match. It then applied the action print $1, $2 (more about this later) to
this line and produced the output shown below the awk command. Fi-
nally, it scanned line 4 and didn’t find a match. Once it reached the end
of the datal file, awk exited. This basic model holds true for all awk
invocations; however, the awk program (awk1) can get much more pow-
erful.

You can also execute the awk command functions from the command
line by surrounding them with single quotes to prevent shell interpre-
tation. For example, to execute the above awk commands without us-
ing the awk1 file, type:

$ awk ‘/3coll/ {print $1,$2}"
3coll 3col

If you place several files separated by blanks on the awk command line,
awk will process one line at a time and step sequentially through each
file on the command line. If you choose to use standard input, use a -.
For example:

$ awk -f awkl -
lcoll 1col2
2coll 2col2
3coll 3col2
3coll 3col2
4coll 4col2

Note that as you type each line in, awk processes it and presents the
results to standard out. In this case the awkl program searched for
3coll and thus matched the third line.

The awk language. The awk language is a very powerful one which con-
sists of most functions you would expect within a procedural language.
Patterns can be ed commands that match patterns within the data files
and regular expressions as well. The regular expressions consist of ob-
jects and operators. awk statements can combine both string and arith-

90

AIX: Getting Started

metic operations in the same statement. Statements are terminated by
NEWLINE or a semicolon. Also, just as in C, awk treats all statements
within curly braces as a single statement. This allows you to nest state-
ments under conditional branches just as you would with most other
procedural languages.

Looping and conditional statements. The if conditional statement looks
like:

if (condition) [{ statement }]

If you have a single statement, the curly braces are unnecessary. How-
ever, if you have more than a single statement, you must enclose them
in curly braces to ensure that all are executed under the condition. For
example:

{if (i<10) {
print i
++1i }

}

Note that the outside curly braces are necessary to denote that this is

the action part of the awk statement while the inner braces are neces-

sary to group the two statements together under the conditional state-

ment. If you do not include a statement, the default action {print} is

performed. This merely performs a print of the entire matched line.
There is also a while loop which looks like:

while(condition) [{] condition [}]

where the condition is similar to the if conditional, and the curly braces
must be used to contain more than one statement if you want them
treated as one statement group under the while command.

There is a do loop in nawk (see the nawk section below for more in-
formation on nawk). It looks like:

do [{] action [}] while (condition)

Finally, there is a for statement which looks like:
for (initcounter;test;increment) action

where initcounter sets the initial value for a loop counter.
test is the condition that is tested.
increment is the number to increment initcounter each time.

An example is in the examples section.

Native AIX Software Development Scripting Tools 91

There are two other commands that affect command execution and
flow:

break Breaks completely out of a loop and begins at first line outside of loop
continue Begins at top of loop in next iteration of loop itself

Besides string manipulation, numeric operations are fully suported by
awk. The standard arithmetic statements supported are:

= Assignment

< Less than

> Greater than

++ Increment by one

-- Decrement by one

/ Divide

* Multiply

+ Add

- Subtract

+= Add expression following operator to variable preceding it

-= Subtracts expression following operator to variable preceding it

All numbers are converted to floating point before being manipulated,
which eases a lot of problems you normally experience when program-
ming. There are also relational operators supported by awk which al-
low for comparisons within the condition section of the statement. The
primary relational operators supported by awk are:

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
== Equal to

1= Not equal to

~ Matches

~1 Does not match

You can also separate multiple patterns with boolean operators such
as:

&& AND
|l OR
, Range

See the examples for more discussion of the boolean operators.
Variables do not need to be initialized. This allows you to set the
value of a variable without declaring it. For example:

92 AIX: Getting Started

assigns the value of 3 to the variable s. It is not necessary to declare s
anywhere else in the awk program. There are several special variables
which are predefined:

$0 Current record

$1-%n Fields in the current record

FILENAME Name of current data file

FS Input field separator (default space)

NF Number of fields in current record

NR Number of current record

OFS Output field separator (default space)

ORS Output record separator (default NEWLINE)
RS Input record separator (default space)

Several of these can be changed either by invocation switches (-F) or
within the awk program.
There are are also standard string functions which are supported by

awk:

index (stringl, string2) Returns index of string?2 in stringl

lengthl[(string)] Returns the length of string; without an argument re-
turns line length

split(string,arr,del) Places elements of string, delimited by del in array arr[]

sprintf (fmt, args) Defines formatted output args in format defined by fmt

substr (string, pos, length) Retulrns string that begins at pos and is length charac-
ters long

All string functions act like their C language equivalents. See help on
sprintf or other functions for more details about exact syntax and us-
age. See also some examples of function usage.

Finally, there are arithmetic operators in awk:

cos(x)

sin(x)

int(x)

log(x)

sqrt(x)

It is rare that you will need functions like these, but it is nice to know
they are there.

BEGIN and END functions. You can structure special clauses, before
and after the actual awk program, which are executed before and after
the awk program reads the data input file. For example:

Native AIX Software Development Scripting Tools 93

BEGIN {
print "this is the beginning..."
}
{
awk program commands.. .
}
END {
print "all done now..."

}

The BEGIN and END clauses can do computations based on numbers
generated in the main body of the awk program. A classic example of
using the END function is to calculate the sum and mean of a set of
numbers in a column.

{
m += $1
n++
}
END {
print "mean is",m/n, "number of items is",n

}

Remember that the END is processed after all lines are read. This
makes end perfect to perform numerical calculations on an entire set of
numbers. You can use this much as you would a spreadsheet to perform
calculations on columns of numbers.

Errors. awk is notorious for ignoring errors and simply producing gar-
bage output. You have to be extremely careful when structuring and
coding your awk program. This is why it is almost always recom-
mended to create an awk command file instead of using the command
line since this will allow you to change and iterate your program sever-
als times to eliminate all possible errors. When you place the awk com-
mands on the command line, you run the risk of the shell command
interpreter doing something to them before routing them to the awk
command. While there is nothing wrong with using the command line,
experience dictates that the awk command file is a better way to go. In
the interests of space, this book uses most examples on the command
line; however, this is not an endorsement of this technique.

Passing parameters into a script. You can pass variables into awk pro-
grams by placing assignment statements between the script and data
file name. For example:

$ awk -f awkl varl=1l var2=2 datal

Note that the varl and var2 statements must not contain spaces. Once
you have invoked the awkl script, the variables varl and var2 are ac-

94

AIX: Getting Started

cessible to the script itself. For example, if you invoked awk1 as above
and awk1 looked like:

{print varl, var2}

Your output would be:

PR R e
DN NN

Remember that each line is processed and the command executed.

Note that command line parameters are not available to the BEGIN
section of the awk program. With nawk, there is a -v option that allows
for command line parameters to be available to the BEGIN procedure
through the ARGC and ARGV parameters (similar to arge and argv in
O).

Arrays. In awk, all arrays are associative. This means that the array
index can be a string or number. Arrays look like:

array[index] = value

where index represents a position within the array.
value assigns the value to array[index].

The structure to access and loop through this array structure is:
for (elem in array) action

where elem is the variable that takes on value of each array element.
array is the array name.
action is the action taken for each element in array.

Some examples. There are almost an infinite number of possible ex-
amples for awk. Below are some examples which illustrate some of its
uses. Let’s use the same data file as before (datal):

lcoll 1lcol2
2coll 2col2
3coll 3col2
4coll 4col2

Example 1

$ awk ‘/1/’ datal
lcoll 1col2

Native AIX Software Development Scripting Tools 95

This uses the default action of printing the entire line.

Example 2

$ awk ‘'Sl ~/1/’ datal
lcoll 1col2
2coll 2col2
3coll 3col2
4coll 4col2

Example 3. Example 2 matches all 1s in the first column (~) and per-
forms the default action (print). If you want to check for all matching
strings which begin with a 1, use:

awk ‘$1 ~/71/’ datal
lcoll 1col2

Example 4

$ awk ‘'$1 == 2coll’ datal
2coll 2col2

This example uses a boolean operator to compare the first column ($!)
with the string 2coll. Remember that you can use any regular expres-
sion.

Example 5. You can combine any number of functions and regular ex-
pressions to accomplish what you want:

$ awk ‘length > 11 {print NR}’ datal

This will scan the datal file for lines longer than 11 characters. Note
that the length function returns the length of the entire line including
separators:

$ awk ‘{print length}’ datal
11
11
11
11

Example 6. To print out the middle two lines, you could use:

$ awk ‘NR == 2, NR == 3 {print}’ datal
2coll 2col2
3coll 3col2

Note that the print command is redundant since this is the default ac-
tion.

96

AIX: Getting Started

Example 7. You can also redefine variables and fields on the fly before
output. For example, create an awk file called rename as shown below:

BEGIN {
print "Changing stuff...here we go..."
}
{
if ($2 ~/2co0l2/) $2 = "2column2"
}
END {
print "Hope you’'re satisfied now..."
}

Still operating on datal, you would see:

$ awk -f rename datal
2coll 2column2

Example 8. To see some examples of looping commands with flow con-
trol commands, use:

for (i=1;i<2;++1i)
if ($1 == "2col2") {
print i, $i
break
}

This example will loop through an input file looking at the first two
fields until it finds a column match for 2col2; it then prints out the
value of i and the column at i and breaks out of the loop.

Example 9. This example scans the passwd file for accounts without
passwords and users with duplicate user id’s. It demonstrates many of
the features available in awk. (This example is taken from A Practical
Guide to the UNIX System, by Mark G. Sobell, Benjamin/Cummings,

1989.)
awk < /etc/passwd ' BEGIN{
uid[void] = " " #tell awk that uid is an array
}
{ # no pattern indicates process all records
dup = 0
split($0,field,":") #split fields delimited by :
if (field[2] == "") #check for null password field
{
if (field[5] == "") #check for null info field

{
print field[1l] "has no password"
}
else
{
print field[1l] " (" field[5]") has no password"
}

Native AIX Software Development Scripting Tools 97

}
for (name in uid) == field[3] #loop through uid array
{
if (uid[name] == field[3]) #check for 2nd use of id
{
print field[1l] "has the same UID as "\
name " : UID = " uid[name]
dup = 1 #set duplicate flag
}
}
if (!dup) #same as if (dup==0)
{
uid[field(1]1] = field[3]
}
)

There are many things to note about the above file including com-
ments, standard input redirection, and arrays. See awk help and books
such as the O’Reilly and Associates Nutshell books for more informa-
ton. Generate a sample file in the structure of a standard password file
and try the above program out for yourself. Note that you invoke it by
simply typing its name. This is a complete awk invocation in itself. For
example, if the file is named checkpasswd, simply type:

$ checkpasswd
to run this awk program.

nawk. nawk stands for new awk and was released with SVR3. Many
UNIX machines treat awk as nawk and don’t tell you. nawk contains a
richer set of commands and functions. Some of the newer functions are:

Multidimensional arrays

ARGV and ARGC system variables

Arithmetic functions such as atan2, rand, srand

String substitution commands such as sub and gsub

Writing your own functions

System access via the system() call

Again, it should be said that many of these functions have been inte-
grated into awk as awk has been replaced by nawk. However, you will
still find awk out there, and you should be careful how you code your
awk scripts if portability is an issue. Perhaps GNU’s awk (gawk) may
be of interest if you are concerned about portability.

gawk. This is GNU’s version of awk. It contains functions not in awk
or nawk and runs on almost all platforms running today. See Sec. 7.11

98

AIX: Getting Started

in this book as well as the software included on the accompanying CD
for more information about gawk.

awkcc. awkcc is a utility which converts awk programs to C programs
which can then be compiled and executed. Because awk is an inter-
preted language, it is slow and relatively clumsy when it comes to exe-
cution and performance. The awkcc program is available from the
AT&T System Toolchest. Call AT&T for more information.

5.2.3 awk changes in AIX 4.1

5.2.4 Conclusion

5.3 sed

5.3.1

Introduction

There are some minor changes to awk in AIX 4.1 which need to be men-
tioned here. They are:

1. First, the usage message will be issued and a nonzero value will be
returned when invalid flags are specified.

2. awk now counts comment lines once instead of twice.

3. Variable assignments to the BEGIN procedure are no longer avail-
able from the command line. In AIX 4.1, they must be made using
the -v variable=value option before the -f file commands option is
specified on the command line. This is in conformance to XPG4 and
POSIX specifications.

awk is a very powerful language for file and string manipulation. Its
strengths occur when data is formatted in such a way that it can be
manipulated by column. You can treat data as type independent and
awk will behave as you would expect most of the time. Spend some
time with awk and you will begin to see some of its power. If you are
interested in the GNU version of awk, see Sec. 7.11. This has the ad-
vantage of being the same awk on all platforms in your environment,
while awk can vary from UNIX to UNIX implementation.

sed is an acronym for stream editor. It interprets scripts written in sed
format. It supports the basic functions of ed while having an interac-
tive capability of grep. ed reads in one line at a time and performs a sed
command against it, it then reads in the next line, and so on. If there is
a match in the current line, the substitution is made and the resulting

5.3.2 Usage

Native AIX Software Development Scripting Tools 99

line printed out. If there is no match, the current line is printed out
unchanged.

sed is most often used to perform substitutions in medium- and
large-size files. Because of the ability to act on one line at a time, you
can alter very large files without invoking an editor or worrying about
memory or disk space requirements. Many editors, including vi and ed,
read a file from the disk into virtual memory and create a temporary or
working file. This essentially doubles the disk space required and may
cause problems when working with large files. sed helps you avoid this,
and many AIX developers use sed for just this reason.

The syntax for the sed command is:

sed [-n] [-e sedcommand[-e sedcommand...]] [-f scriptfile] [filelist]

or:
sed "sed command(s)" [filelist]

where -n means no print; sed does not copy files to stdout except as

specified by the p command.

-e sedcommand allows you to enter multiple sed commands on
the command line without having to create a file.

-f scriptfile specifies a sed command script.

filelist is a list of files separated by blanks to be processed; if
filelist is not specified, standard input (stdin) is used,
which means the keyboard.

Simple, short sed commands are usually entered on the command line,
while more complex and lengthy sed scripts are typically invoked from
a file containing multiple sed commands.

The sed command uses standard ed commands and performs substi-
tutions that you would normally expect to enter within an editor. For
example, examine the file named file.text below:

john is great

pete is good

gerard is cranky

sam is bad

joe is good

frank is frank, what can you say

If you wanted to change a simple string within the above file, you could
issue the command:

100

AIX: Getting Started
$ sed "s/john/kevin/" file.txt

The resultant output would be:

kevin is great

pete is good

gerard is cranky

sam is bad

joe is good

frank is frank, what can you say

The above command substitutes the first occurrence of jim in every line
with kevin. To substitute for good, you would use:

$ sed "s/good/okay/" file.txt

The resulting output is:

kevin is great

pete is okay

gerard is cranky

sam is bad

joe is okay

frank is frank, what can you say

You can issue all of the commands in the ed editor such as deletes,
copies, moves, and include lines numbers for ranges. For example:

$ sed "1,3s/is/is not/" file.txt

kevin is not great

pete is not okay

gerard is not cranky

sam is bad

joe is okay

frank is frank, what can you say

Finally, if you want to replace multiple instances on the same line, you
would use the /g switch as follows:

sed "s/frank/kevin/g" file.txt

john is great

pete is good

gerard is cranky

sam is bad

joe is good

kevin is kevin, what can you say

If you had not included the /g option (for global), it would have only
substituted kevin for the first occurrence of frank, and the subsequent
line would have been:

Native AIX Software Development Scripting Tools 101
kevin is frank, what can you say

Note that the sed command is included in double quotes to prevent the
shell from interpreting the contents before passing it to the sed ex-
ecutable. This is a common requirement in UNIX since the shells like
the C shell and Bourne shell parse and process all command line infor-
mation before passing it to any commands or utilities. To ensure no
shell preprocessing, simply include any information in double quotes.

sed scripts. sed command files typically consist of lines of the follow-
ing format:

[address[,address]] instruction [arguments]

where address consists of line numbers (and special characters such as
$ and ») separated by commands to denote a range.
instruction is an editing instruction that modifies the text.
arguments are commands dependent on the instruction; see ed
syntax for more information.

You can include all sed commands in a file and invoke the file from
the command line to provide the sed commands. For example, the sed
input file (named sed.input) might look like:

s/oldstring/newstring/
/newstring/d

The example data file called file.data looks like:

this contains oldstring
this doesn’t contain oldstring
this contains oldstring
this doesn’t contain oldstring

To invoke the sed script file on the above data file, you would type:

$ sed -f sed.input file.data
this doesn’t contain oldstring
this doesn’t contain oldstring

To understand what sed did in this context, you must understand how
sed processes sed scripts and input data files. sed first reads in the first
line of data.file and processes the entire sed script file against this line
before moving to the second line of file.data. This means that sed reads
in the first line:

this contains oldstring

102

AIX: Getting Started

and performs a string substitution resulting in the string:

this contains newstring

It then performs the next command in the sed script file, which deletes
the line which contains the string newstring, which this line does. It
deletes the line. sed has reached the end of the sed script file and reads
the next line in the input file file.data. It then replicates the above pro-
cedure; however, because there is no string substitution, the line is not
deleted. The line is printed out and sed moves to the next line in the
intput file. This occurs for all lines in the input data file.

The above discussion may concern you; if it doesn’t it should. It is
often very difficult to predict exactly what is going to happen when you
apply multiple edits to a file with sed. Because of this, sed has the ad-
ditional safeguard of writing the resultant lines to standard output and
not to the original input file. If you want to write the resultant output
to a file, you simply redirect standard output as you would with any
other command:

$ sed "s/oldstring/newstring/" file.txt > newfile.txt

This will generate a file called newfile.txt with the resultant output. It
is a good idea, however, to first save a copy of the file you are modifying
before performing a sed on it since this will ensure you get the results
you are expecting. If you have a backup copy, you can always recover
from a mistake, but if you don’t. . . .

Basic sed commands. Some of the basic sed commands are:

a Appends one or more lines to the current line. Append has a special for-
mat:
[address] a\
text\
text\
text

where the address must consist of a single number or defaults to the en-
tire file, and the insertion text must be continued with backslashes (see
examples).

This is a comment line and must occur on the the first line only; the com-
ment can be continued onto the next line with a backslash.
c Changes selected lines and replaces them with new text.

Deletes the current line. Note that this causes sed to read the next line in
the input data file when it is done processing the line even if there are
other sed commands in the sed script file.

i Insert is exactly the same as append except that it places the insertion
text on a line before the current line instead of appending onto the current
line.

1 Lists nonprintable characters as their ASCII code equivalents.

Native AIX Software Development Scripting Tools 103

n Next reads the next input line from the input data file. It also writes out
the current line.

P Prints current line as is with no future changes caused by sed script com-
mands.

Quits processing in sed.
Reads the contents of a specified file and appends to the current line.
Substitute works exactly as in ed and vi; see examples above and below.

o n K oQ

Transforms a character in a given position to another (see transform sec-
tion).

w Writes output to a specified file.

Blank lines and spaces. A useful example is the following:

$ sed "/7$/d" file.txt

This will remove all blank lines in the file named file.txt. The » repre-
sents the beginning of the line, and the $ represents the end. The lack
of address means that this command will act on all lines, and the d
means delete any lines that match the pattern of a blank line.

Note that, just as in ed, blank spaces within substitute strings are
honored. For example, to remove a leading blank on each line, you
could use the command:

S sed "s/ //" file.txt
This would remove the first blank on each line in the file file.txt.

More about addresses. It is important to note that, just as in ed, sed
can use strings matches as addresses. For example, if you have the fol-
lowing input file named input.dat:

this is stuff before the .include macro

blah blah blah

.include

this is an include part of the file because

it is in the include macro section contained by a .include directive
and a ..

this is other stuff not related to the include macro section
blah blah blah...

you can print out the include macro section with the command:

$ sed -n "/"\.include/,/”\.\./p" input.dat

.include

this is an include part of the file because

it is in the include macro section contained by a .include directive
and a ..

104

AIX: Getting Started

Note that the first address is derived by the resultant match of the .in-
clude macro and the last address to close the range is derived by the
match of... Note also that the .s must be backslashed (\), which escapes
them from the sed interpreter and ensures that they are interpreted
literally.

Append, change, and insert. The append, change, and insert commands
all have a similar syntax:

append [linela\
text\
text

change [line,linelc\
text\
text

insert [line]i\
text\
text

where the text to be appended, changed, or inserted ends in a line with-
out a backslash. Note also that the line cannot be a range of lines but
must be a single line for both append and insert, while the change com-
mand can accept a range of lines.

Insert inserts any text before the line is matched. Append appends
text to the end of the line matched in the line statement. Finally,
change outputs the text once and deletes all lines in the range specified
in the command.

An example data file called file.data might look something like:

root:S9KIMi9QQ4£f8U:0:1:0perator:/:/bin/csh
nobody:*:65534:65534::/:

daemon:*:1:1::/:

sys:*:2:2::/:/bin/csh

bin:*:3:3::/bin:
uucp:*:4:8::/var/spool/uucppublic:
news:*:6:6::/var/spool/news:/bin/csh

You can use the insert command to insert information before the lines
to be processed. An example sed script (sample.sed) might look like:

1i\
This is the Password File for this Machine

You would get:

$ sed -f sample.sed data.input

This is the Password File for this Machine
root:S9KIMi9QQ4f8U:0:1:0perator:/:/bin/csh

Native AIX Software Development Scripting Tools 105

nobody:*:65534:65534::/:
daemon:*:1:1::/:
sys:*:2:2::/:/bin/csh
bin:*:3:3::/bin:

uucp: *:4:8::/var/spool/uucppublic:
news:*:6:6::/var/spool/news:/bin/csh

T