

Overview:

Smalltalk-80™ for the Macintosh™ 0.4
Release Note

June 9, 1987

The main purpose for the 0.4 release is to provide a Smalltalk: that runs well on the Macintosh SE
and Macintosh II (as well as the Macintosh Plus and other Macintosh models with at least one
Megabyte of RAM). Since Smalltalk is implemented using some non-standard techniques, a few
changes had to be made to Smalltalk 0.3 to make it work on the new machines. While we were
making these changes we fixed a few other bugs and added several features. The Smalltalk 0.3
documentation still applies except as noted in this release note.

Warning: Images and the interpreter from this release are not compatible with those from version
0.3 or earlier versions. Any work you want to move between 0.3 or earlier Smalltalk versions and
this 0.4 Smalltalk release must be moved via file-ins.

Note: You must run with version 4.1 or greater of the System file. System 4.1 is provided with
the release. This does not apply to the Macintosh XL; however, on the Macintosh XL you should
be able to run with System 3.2 (which you were probably using already).

Installing the release:
In general, follow the directions in the Smalltalk 0.3 manual except as noted below.

If you do not have an up-to-date system (System file 4.1 or greater) on your hard disk, boot from
Smalltalk Disk 1 and move the System file and Finder from Smalltalk Disk 1 into your System
Folder. If you wish to preserve the fonts and desk accessories in your old System file you should
use the Installer to install System 4.1.

If you already have the 0.3 Smalltalk:-80.sources you don't need new ones (they have not changed
for 0.4). If you don't already have the sources, use Div Join to join the Smalltalk: sources on
Smalltalk: Disk 3 and Smalltalk Disk 4. The Smalltalk sources must be placed either in your root
directory or in the directory where you will run Smalltalk. If you plan on running Smalltalk from
more than one directory, place the sources in the root.

To install this release on a Macintosh XL, you will have to move the files to single-sided disks
before the Macintosh XL can read them. To do this, you will have to join the larger files using a
Macintosh with 800K drives then divide them again onto single sided disks.

Differences for Installation on a hard disk: (refer to pages 3-4 of the 0.3 manual)
1. Smalltalk-80.sources is now a two part file on Disks 3 & 4. It used to be a four part file. You will still

have to join th~ file.
2. You no longer have to join Smalltalk.image. It is now a complete file on Disk 2.

Differences for Installation without a hard disk: (refer to pages 4-6 of the 0.3 manual)
I. Most of the process described in the 0.3 release notes tells you how to create two double sided disks named

System and Work. The configuration in which Smalltalk 0.4 is shipped on double sided disks makes Disk
1 already set up as the System disk and Disk 2 already set up as the Work disk. All you need to do to run
the 0.4 release without a hard disk is make a copy of Disk 1 and call it System then make a copy of Disk 2
and call it Work. You can now follow step 7 (on page 6 of the 0.3 manual) to boot Smalltalk 0.4 from the
System and Work disks. If you want to make more room for your Smalltalk.changes file on your
System disk, you can remove Divjoin 1.0d9 and the New Goodies folder. You can also remove the
LaserWriter and Image Writer files from your System Folder. If you really want more space, you can then
remove some of the fonts and desk accessories from the system file using the Font/DA Mover. Make sure
you do all this removing on a backup copy in case you later need something you had removed.

Smalltalk-80 for the Macintosh 0.4 Release Notes Page 1

Packing List:
This 0.4 release includes four SOOK release disks. They contain the following files:

Smalltalk Disk 1 (1 of 4)
System Folder
Smalltalk.changes
DivJoin l.Od9
New Goodies (folder)

Smalltalk Disk 2 (2 of 4)
Smalltalk.interp
Smalltalk.image

Smalltalk Disk 3 (3 of 4)
1.Smalltalk-80.sources

Smalltalk Disk 4 (4 of 4)
2.Smalltalk-80.sources
Goodies-Demos (folder)
Goodies-Utilities (folder)

Summary of Improvements:

Bugs Fixed:
1. The implementation of the Smalltalk class DisplayScreen and its support within the image have been totally

redesigned and reimplemented. Now Smalltalk can again use the top scanline on the screen and still run on a
Macintosh II.

2. The way Smalltalk handles calls to the VIA has been totally redesigned and reimplemented.
3. The system will no longer get confused when you open more than one transcript in a project. There is no

reason to have more than one transcript per project, so you are no longer allowed to do that.
4. The bundle bit is now set in the interpreter file, so when you double click on an image, the interpreter will

be started.
5. Bugs were fixed in the MacPaint.st, Macintosh-Quickdraw.st and rs232.st goodies.
6. A confusing cancel message that came up when users tried to throw away a window with unaccepted

changes in it has been reworded to make more sense.
7. Some file system bugs were fixed.

New Features:
1. Files created from Smalltalk will still be type "TEXT', but their application signature is now "MPS " like

files created by MPW (previous releases of Smalltalk used MacWrite's signature). This way, if you double­
click on one of these files you will enter the MPW shell (instead of Mac Write). If you don't have MPW
you can edit these files by opening them from within any word processor or text editor using the File
menu. The application signature for the file Smalltalk-SO.sources was not changed for this release since the
file itself has not changed since the 0.3 release.

2. The implementation of pop-up menus has been changed to make them faster.
3. From a file list, you can now set the MacDefault directory by using the set default item in the top menu.

From the second menu in a file list, you can now open a changes browser by selecting the browse
changes item. This is very useful when you are trying to integrate several people's changes, since the
changes browser contains an option to select conflicts. This will show you the methods you are about to
file in that are already included in your changes list. These are the ones that have already been changed by a
file-in contributed by someone else.

4. If you hold the Shift key down when you select a context in the debugger, it will decompile the method
rather than reading the source. This is handy if you're having file system problems.

Smalltalk-SO for the Macintosh 0.4 Release Notes Page2

5. There are three new goodies. They are in the "New Goodies" folder on Disk L
a. The QDViews.st goodie provides users with a simple and relatively robust way of performing

QuickDraw operations within Smalltalk Views. See the MacWrite document named QDViews within
the same folder for a full explanation.

b. The new MidiChannel.st goodie exercises the new MIDI driver that is built into the 0.4 interpreter.
MIDI is a stanllard interface protocol used by sound instruments. Users who understand MIDI should be
able to learn how to use the MIDI driver by looking at the MidiChannel.st goodie.

c. The File& VolumeChgs.st goodie contains fixes to non-critical bugs in the file system. If you have
problems with startup or shutdown of files or volumes or if files left open are not in the same state after
a snapshot, you should file in this goodie. These fixes are included as a goodie, instead of an integrated
part of the system, since we did not have time to fully test them before sending out the release.

Known Bugs in the 0.4 release:

1. If you change the state of the mouse or keyboard during a snapshot or other long disk activity, Smalltalk
events may get out of sync. WorkAround: Don't play with the mouse or keyboard during a snapshot or
other long disk activity.

2. Text strings longer than 16384 bytes have some bugs associated with them. This is why the browser
currently has a 16000 character limit. Array larger than this size may have problems in general. This also
affects dictionary inspectors and changes browsers whose total character length of all the dictionary's keys or
method names is greater than 16384. When you scroll down to the bottom of the list, you will get a
notifier window.

3. Not all the Toolbox calls work properly with the image as shipped. WorkAround: You can encode
Toolbox calls yourself using primitive 160 as described in the 0.3 manual.

4. When you start a process that opens a file and then goes into the debugger, if you close the debug window,
the file may not get closed. If you then restart this process, you may get an error stating that the file is
already open once for read/write access. WorkAround: Whenever you have a problem with a previous
instance of a file, you can do HFSMacFileStream alllnstances inspect then inspect the instance that
is causing the problem and close it yourself by executing self close in the bottom pane of it's inspector
window.

Comments:
The 0.1 through 0.4 versions of Smalltalk released by Apple are not standard Macintosh
applications. Unlike most Macintosh applications, they do not have a main event loop that calls
GetNextEvent. This main event loop is necessary to make certain utilities work properly. This
is why current versions of Smalltalk do not support desk accessories or work with standard
Macintosh utilities such as Switcher™.

Smalltalk saves the bits representing underlying windows so they can instantly refresh when they
again become the top window. This makes it much faster to switch from one window to another.
It also uses up a fair amount of space, especially if you have only one Megabyte or RAM. If you
get the Space Is Low warning too often from Smalltalk, you may want to turn off this caching bit
feature. This should give you 40K or more bytes of extra memory. The amount it saves depends
on the number of windows you have open. To tum off bit caching, execute a dolt on the statement
StardardSystem View dontCacheBits.

Institutional License Agreement:
The Institutional License Agreement form near the back of the 0.3 manual states that the license is
for Smalltalk 0.2 and/or 0.3. The same Agreement now also applies to version 0.4. However, it is
unlikely that it will apply to any future versions.

Smalltalk-80 for the Macintosh 0.4 Release Notes Page3

Sending in Bug Report Forms:
Please use the bug report form at the back of the 0.3 manual to send reports of bugs you find (other
than those listed on the previous page) to the Smalltalk Group. Please don't use the address on that
form; instead, please send it to the following address:

The Smalltalk Group
Apple Computer, Inc.
MS27-E
20525 Mariani Ave.
Cupertino, CA 95014

AppleLink: HA YNESl
UNIX: •.. !apple!smalltalk

Macintosh and Switcher are trademarks of Apple Computer, Inc. Smalltalk-SO is a trademark of Xerox Corporation.

Smalltalk-SO for the Macintosh 0.4 Release Notes Page4

ti MacintoshTM Smalltalk-80™ for the
Macintosh
Version 0.3

ti APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under
the copyright laws, this manual
or the software may not be
copied, in whole or part,
without written consent of
Apple, except in the normal use
of the software or to make a
backup copy of the software.
The same proprietary and
copyright notices must be
affixed to any permitted copies
as were affixed to the original.
111is exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased (with all
backup copies) may be sold,
given, or loaned to another
person. Under the law, copying
includes translating into
another language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

© Apple Computer, Inc., 1986
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo,
LaserWriter, and ImageWriter
are registered trademarks of
Apple Computer, Inc.

Macintosh, MacWrite and
MacPaint are trademarks of
Apple Computer, Inc.

Smalltalk-80 is a trademark of the
Xerox Corporation.

Published in the United States.

Contents

Preface vii

About this release viii
New features of this release vm
Relation to Xerox Smalltalk-80 x

Support x
How to use this manual xi

Chapter 1 Installation 1

Disk contents 2
Installing Smalltalk with a hard disk 3
Installing Smalltalk without a hard disk 4
Remote access to system sources 6
Using Div]oin 6

Running DivJoin 7
Dividing a file 7
Joining a divided file 8
Limitations of DivJoin l.Od9 8

Chapter 2 User Interface 11

Scroll bars 12
Pop-up menus 13

The Xerox mouse buttons 13
The system menu 14
The window menu 14
Other menus 15
Menu differences from Xerox Smalltalk~80 15

File lists 16
New features 17

Fast windows 17
Browser enhancements 18

Contents iii

iv Contsnts

Ctiapter 3 Text Editing 21

The editing menu 22
Improved undo command 23
Extended again command 24

New keyboard commands 25
Same (Command-S) 25
Shift Left (Command-L) and Shift Right (Command-R) 26
Duplicate (Command-D) 26
Exchange (Command-E) 26
Query (Command-Q) 27
Advance (Command-A) 28
Other keyboard conventions 29

Spelling correction 29
Miscellaneous 30

<;;~apter 4 Saving Your Work 31

Images and snapshots 32
Changes and crash recovery 33
File-out and file-in 34
The change set and projects 35
Change-list browsers 36

Chc:Jpter ~ Th9 Hierarchical File System 39.

Volumes and folders 40
Files 42

Ctu:apter ~ Accessing the Macintosh T()olbox 43 . ·,

Pascal data structures 44
Defining record types 46
Subrecords 47 ·
Heap inspectors 49

Calling the Toolbo~ 49
Primitive 160 50
Primitive 162 53

Things to ~tch out for 54

Appendix A System Workspace Summary 57

Changes and Files 57
Inquiry 58
Housecleaning 59
Globals 60
System Files 61
Measurements 61
Crash recovery 62

Appendix B Smalltalk Goodies 63

Demos 63
Fractal 63
Toothpaste 64
Web 64
Music 64

Utilities 64
Printing 64
FFT 65
Macintosh-QuickDraw 65
MacPaint 65
RS232 65
RetrieveSources 65
DropChanges 66
StdPools 66
VersonIIMenus 66

Appendix C Memory Management Techniques 67

Leaving more space for the Toolbox 69

Appendix D Known Bugs and Limitations 71

Appendix E Bibliography of Smalltalk Literature 75

Introductory 75
Advanced 76
General interest 76

Contents v

Preface

Smalltalk-80 for the Macintosh is Apple's enhanced version of the
Smalltalk-SO™ programming language and environment for the
Macintosh™ computer, based on Xerox Smalltalk-80 Version I. It is
intended primarily as a tool for learning and experimentation, but
can also serve as a useful development environment in which to
build prototypes of small to medium-sized applications and
systems. The turnaround time for program changes is extremely
rapid; allowing much faster development than with standard
compiled languages.

This manual covers only those details specific to the Macintosh
implementation; it does not attempt to discuss the Smalltalk-80
language and user interface. If you are not already familiar with
Smalltalk-80, you can learn more about it by reading the existing
literature on Smalltalk and object-oriented languages in general. A
basic bibliography is included in Appendix E.

About this release
This Macintosh Plus release (version 0.3) of the Smalltalk-80
programming system is the latest of several unsupported versions of
Smalltalk-SO released by Apple Computer, Inc., in the hope of
allowing interested parties to get "hands-on" experience with
Smalltalk. This release is intended to improve the earlier version
0.2 release of Srnalltalk-80 for the Macintosh (August 1985). It
generally conforms to the Xerox user interface for Smalltalk-80 but
deviates in many ways from the standard Macintosh user interface.

vii

viii Preface

Version 0.3 is intended to run on a Macintosh Plus with a minimum
of one megabyte of memory and at least one 3.5-inch disk drive. It
can also run on a Macintosh XL with one megabyte or more of
memory, or on other Macintosh computers with third-party
memory upgrades of one megabyte or more. (Third-party imple­
mentations must be contiguous and follow Toolbox memory
organization.) If you have less than one megabyte of memory, you
should get version 0.2 of Smalltalk-BO for the Macintosh, which
contains a stripped-down image that will run on 512K machines.

A hard disk makes the system more usable, but it can be run from
one or more double-sided 3.5-inch disks. When you are using a
hard disk, the complete sources to Smalltalk-BO for the Macintosh
are available on-line. Without a hard disk you can only see
decompiled sources without comments.

New features of this release
New features for this Macintosh Plus version include

o faster painting and repainting of windows and text

o Hierarchical File System (HFS) support

o more complete Macintosh Toolbox access, including Pascal
record compatibility

o greater compatibility with Xerox Smalltalk-SO, Version II

o new and better text-editing facilities

o friendlier browser interface

o easier finding of hidden windows

o better support for change management

o many bug fixes

Some features of Smalltalk-SO for the Macintosh carry over from the
version 0.2 release. For example:

o Volume management supports many file servers.

o Automatic spelling correction is provided for variable and
message names.

o Multiple images can reside on the same disk.

o One interpreter works on.all machines and uses all available
memory.

o Up to 32,000 objects are supported.

Here are some additional details of new features. This list will be
especially meaningful if you have used version 0.2 of Smalltalk-80
for the Macintosh.

o Window update is much faster, since bitmaps of underlying
windows are saved. This makes the whole system faster and more
usable, but it also uses more space. If the system is about to run
out of space, it will tum off the fast window feature, then notify
you that space is running low. To tum on the fast window feature
again, choose fast windows from the system menu.

o The window menu, which is accessed by pressing the mouse
button in a window title tab, is now also available by using the
Command key with the mouse, rather than the Enter key as in
version 0.2.

o You can now run Smalltalk from inside a folder under the
Hierarchical File System (HFS). The image and changes files
should be in the same folder. The Smalltalk-SO. sources file
may be either in that folder or in the root directory of the same
volume. Once Smalltalk is running, you can access any folder on
any disk, using the choose volume command in a file-list
window (described in Chapter 2).

o If you look at the menus in a browser, you will notice some new
entries. The most useful of these is versions. The versions
command allows you to open a window on the current version of
a method as well as previous versions still available in the
changes file. If you change a method, then want to put it back the
way it was before, use versions. You will also notice that you
can now rename message categories, classes, and class
categories from a menu. Rearranging or removing class and
message categories is also easier.

o Version 0.3 contains many new text-editing features, described
in Chapter 3.

o When you file out a class or class category, you can now also
optionally file out any shared pools used by that part of the
system.

o Many other improvements and bug fixes make the system faster
and easier to use, such as the reorganize command. Most of
these will be obvious as you use the system.

About this release ix

x Preface

Relation to Xerox Smalltalk-80
Smalltalk-80 for the Macintosh is based on Xerox Smalltalk-SO
Version I, and was licensed from Xerox Corporation as part of an
early collaboration on Smalltalk development. Apple has made
many improvements to it since that time. Xerox has also made
changes and additions to its version, which it now offers for general
licensing as Version II. While there are many differences between
Smalltalk-80 for the Macintosh and Xerox Smalltalk-80 Version II,
the Smalltalk language is still compatible and most of the kernel
programming tools operate similarly.

Support
This manual should provide you with enough information to get
started. To work most effectively with Smalltalk-80 for the
Macintosh, you will need further documentation not provided by
Apple; see Appendix E, "Bibliography of Smalltalk Literature."

Courses and training materials relating to Smalltalk-80 are available
from PPI, an organization that offers general training in object­
oriented programming as well as specific courses on Smalltalk-80.
For further information, contact

Productivity Products International
27 Glen Road
Sandy Hook, Connecticut 06482
(203) 426-1875

Apple Computer, Inc., does not provide support for this prc­
product release. If you should discover bugs in the documentation
or in the system itself, your only recourse is to work around them
yourself. (Even though this is an unsupported product, however, we
do appreciate feedback and bug reports. Use the bug report form at
the end of this manual.) If Apple later releases another version of
Smalltalk-80 for the Macintosh, there is no promise of either an
upgrade price or a guaranteed code migration path.

How to use this manual
Chapter 1 introduces you to Smalltalk-SO for the Macintosh and
describes the installation procedures to get you started. Chapter 2
describes the user interface, with particular attention to the ways in
which it varies from Xerox Version II. Chapter 3 focuses on the new
text-editing facilities, and Chapter 4 on backup and change
management. Chapter 5 covers enhancements relating to the
Macintosh Plus Hierarchical File System (HFS). Chapter 6 discusses
Macintosh-specific issues for programmers who want to use the
Macintosh User Interface Toolbox from within Smalltalk.

The Appendixes provide detailed technical information for the
serious programmer. Appendix A summarizes useful expressions
included in the System Workspace window. Appendix B describes
the Smalltalk "goodies," utility and demonstration programs
distributed with the system. Appendix C discusses various useful
techniques for memory management and economy. Appendix D
summarizes known bugs and limitations of this release. Finally,
Appendix E gives a bibliography of available literature on Smalltalk
and object-oriented programming in general.

How to use this manual xi

Chapter 1

Installation

You need a hard disk to run the full configuration of Smalltalk-BO for the Macintosh.
This allows you to keep all the relevant files immediately available on-line. If you
don't have a hard disk, you can run a more limited configuration from one or two
3.5-inch disk drives, provided that at least one of them is double-sided. This chapter
gives instructions for setting up Smalltalk in either configuration, depending on the
hardware you have available.

Disk contents
Smalltalk-SO for the Macintosh uses four files:

o Smalltalk-SO. interp contains the low-level Smalltalk-BO interpreter, the
Smalltalk loader, and method tables for calling the Macintosh Toolbox.

o Smalltalk-SO. sources contains the original source text of the Smalltalk
system as shipped.

o Smalltalk-SO. image contains the compiled object code for all methods in the
system, including both those supplied with the release and those that you add or
modify yourself.

o Smalltalk-SO. changes is a text file containing a record of all your actions as
you work with the system.

The interpreter, image, and changes files must always be present for Smalltalk to run.
The sources file is optional, and you can run the system without it-for instance, if
you don't have a hard disk to keep it on. If you're connected to a network, it's also
possible to access the sources file from a remote file server; see "Remote Access to
System Sources," below. As you interact with Smalltalk, both the image and changes
files are constantly updated. For instance, when you compile a new method with the
accept command, its object code is written to the image file, and its source text is
written to the changes file. The contents of the sources file are never changed.

When you browse a met.hod, the system looks for the source code first in the changes
file; if it isn't found there, it's taken from the sources file instead. If no sources file is
present, the method's object code is automatically decompiled from the image file.
This produces readable source code, but with all comments stripped out and with
artificial variable names (tl, t2, and so on) for all parameters and temporary
variables. If you want to see the original source code for a particular met.hod, you can
use the goodie RetrieveSources (described in Appendix D) to read the code
directly from the 3.5-inch release disks.

2 Installation

The current release of the system is shipped on seven 3.5-inch Macintosh disks. For
compatibility with all existing Macintosh hardware, all disks are single-sided. The
image and sources files are broken up into pieces small enough to fit on the single­
sided disks; a utility program, DivJoin, is included for reconstituting the complete
files on a double-sided or hard disk. The contents of the release disks are as follows:

Disk Name

Smalltalk Disk 1

Smalltalk Disk 2

Smalltalk Disk 3

Smalltalk Disk 4

Smalltalk Disk 5

Smalltalk Disk 6

Smalltalk Disk 7

Filenames

Smalltalk.changes
System Folder
DivJoin l.Od9

2.Smalltalk.image
Smalltalk.interp
Goodies-Demos folder

1.Smalltalk.image

1.Smalltalk-80.sources

2.Smalltalk-80.sources

3.Smalltalk-80.sources

4.Smalltalk-80.sources
Goodies-Utilities folder

Installing Smalltalk with a hard disk
To run the full configuration of Smalltalk-80 for the Macintosh, your hard disk must
be capable of holding the following files, plus about 1450K of working space (roughly
3650K total).

Fiie size (in K)

1442

669.5

0.5

54.5

15

Filename

Smalltalk-BO.sources

Smalltalk.image

Smalltalk.changes

Smalltalk.interp

DivJoin 1. Od9 (not needed on the hard disk after initial installation)

The assorted goodies included on the release disks are optional, and total about 97K.
If you have extra space on your hard disk, you might want to keep backup copies of the
image and changes files, to avoid having to repeat the full installation procedure the
next time you want to start from a clean copy of Smalltalk.

Installing Smalltalk with a hard disk 3

Herc is the installation procedure:

1. Make sure the System file on your hard disk. is version 3.2 or later and the Finder
is version 5.3 or later. (These are the versions shipped with this release,)

2. Create a folder on your hard disk for your Smalltalk files. Copy the application
Di vJoin 1. Od9 Con Smalltalk Dtsk 1) into this Smalltalk folder.

3. Use DivJoin to join the files 1. Smalltalk-SO. sources through
4. Smalltalk-SO. sources (on Smalltalk Disk 4 through Smalltalk Disk 7),
calling the joined file Smalltalk-SO. sources. (See "Using DivJoin," below.)
Place the joined file in your Smalltalk folder.

4. Copy the files Smalltalk. changes (on Smalltalk Disk 1) and
Small talk. interp (on Smalltalk Disk 2) to your Smalltalk folder.

5. Use DivJoin to join the files l.Smalltalk.image (on SmalltalkDtsk3) and
2. Smalltalk. image (on Smalltalk Dtsk 2), calling the joined file
Smalltalk. image. Place the joined file in your Smalltalk folder.

6. If you wish, you can now remove Di vJoin 1 . Od9 from your Smalltalk folder.

7. Move any goodies you wish to use into your Smalltalk folder. (The goodies are
described in Appendix D.)

8. To start Smalltalk from the Finder, open the Smalltalk. image file either by
double-clicking its icon or by choosing Open from the File menu. It takes about
half a minute to load the image into memory and initialize the system, after which
Smalltalk's startup screen is displayed. Of you have more than one version of the
Smalltalk interpreter on your disk, you must indicate which one to start up. Select
both Smalltalk. image and the.interpreter you want by using the Shift key or by
dragging a selection rectangle around both icons, then choose Open from the
File menu or type Command-o. Notice that the interpreter and image mes must
be in the same folder on the disk.)

Installing Smalltalk without a hard disk
The following installation procedure assumes that you have a Macintosh Plus with
one internal double-sided disk drive and no external drive. (An external drive can
save you some disk swapping, but the procedure is essentially the same.) You will be
creating two double-sided disks from the single-sided disks distributed in the release.
Without a hard disk, you won't be able to keep the source code of the system on-line;
instead of reading source text from the disk, Smalltalk will automatically decompile
each method as you browse it

To install Smalltalk on double-sided 3.5-inch disks, follow these steps:

1. Start up the system from release disk Smalltalk Dtsk 1.

2. Initialize two new double-sided disks and name them Smalltalk System and
Smalltalk Work.

4 Installation

3. Copy the entire contents of Smalltalk Disk 1 to Smalltalk System. Put away
Smalltalk Disk 1 as a backup, in case you ever need to repeat this installation
procedure.

4. Restart the system from the Smalltalk System disk.

5. Copy the file Smalltalk.interp from SmalltalkDtsk2onto Smalltalk Wom:

a. Eject Smalltalk System.

b. Insert Smalltalk Work.

c. Eject Smalltalk Work.

d. Insert Smalltalk Disk 2.

e. Copy file Smalltalk. interp onto Smalltalk Work.

f. Eject Smalltalk Work.

g. Insert Smalltalk System.

6. Install the file Smalltalk. image on the Smalltalk Wom disk:

a. Run DivJoin 1. Od9 from the Smalltalk System disk.

b. Click the Join button.

c. Eject Smalltalk System.

d. Insert Smalltalk /Jisk 3.

e. Select 1. Smalltalk; image as the file to join and click Open. Smalltalk Disk
3 will be ejected and you will be prompted to insert Smalltalk System.
Continue to swap these two disks as prompted.

f. When prompted for the name of the output file, eject Smalltalk System.

g. Insert Smalltalk Work and click Save. Continue to insert disks as prompted.

h. When prompted for 2. Smalltalk. image, insert Smalltalk Disk 2. (You may
need to use Command-Shift-1 to eject the Smalltalk System disk at this point.)

i. Click Done when you are prompted for 3. Smalltalk. image. ('There are only
two parts to be joined.) Insert the Smalltalk Work disk when prompted. There
will be a delay while DivJoin writes the joined file to the disk.

j. The Smalltalk Work disk will be ejected and you will be asked to insert
Smalltalk System.

k. A message will appear indicating that th~ join is complete. Click OK to
continue.

I. Exit Div]oin by clicking Quit.

Installing Smalltalk without a hard disk 5

7. You are now ready to run Smalltalk:

a. Start up the system from the Smalltalk System disk.

b. Eject Smalltalk System.

c. Insert Smalltalk Work.

d. Double-dick on the file Smalltalk. image. Although you'll have to do
several disk swaps to launch Smalltalk, you generally won't have to swap disks
once you're running.

Remote access to system sources
Smalltalk always expects the file containing the system source code to be named
Smalltalk-8 0. sources. If there is no available file by that name, it will use
decompilation to display the source code for system methods. If your Macintosh is
connected to a network, the system sources file can be accessed from a remote file
server, provided that

o there is a file server on the network

o the server is mounted as a volume on your Macintosh

o there is a copy of the file named Smalltalk-SO. sources in the root directory
on the server

Remote access allows many Macintoshes without hard disks to share the same copy of
the system source code over the network.

Using DivJoin
Included on Smalltalk Disk 1 in this release is a new version of the DivJoin program
that is easier and more flexible than earlier versions you may have used. DivJoin
allows you to transport large files via 3.5-inch disks. It divides big files into pieces
small enough to be stored on 3.5-inch disks, and later rejoins the pieces into a single
file. DivJoin works only on files with a data fork and no resource fork, such as the
Smalltalk. image file.

The new version of DivJoin, version 1.0d9, supersedes all earlier versions. (If in
doubt, use the Get Info command to look for the version number in the file's
Finder comment.) Unlike earlier versions, the new DivJoin allows you to go directly
to and from multiple disks. To supplement the installation procedures given above,
here are complete instructions on using the new DivJoin program for dividing and
reconstituting large Macintosh files.

6 Installation

~unning DivJoin
DivJoin begins with a dialog box with buttons labeled Join, Divide, and Quit. The
dialog box also includes radio buttons for specifying the size of divided files. (These
ruttons don't apply when you're joining files.)

Whether you click Divide or Join, you're presented with a Standard File dialog box
for selecting the file to be divided or the first piece of the divided file to be joined.
The file lists presented by Standard File are often empty, because files that are
inappropriate to the selected operation are filtered out. Only files large enough to
need dividing, or named appropriately for joining (pieces starting with 1.), appear.

Ollce you've selected a file, DivJoin prompts you to insert disks as needed, and
displays a progress/status dialog as it runs. The progress dialog tells whether you're
dividing or joining, the name of the composite file, the buffer size (all of available
memory is used), and what DivJoin is doing at the moment. It also displays a Cancel
button that you can use to cancel the divide or join operation at any time. A Cancel
button is also included in each of the dialogs that prompt you to insert disks.

DivJoin doesn't eject the disks in both drives when a divide or join operation starts.
As a result, the disk you want may already be inserted when you're prompted for it.
When that happens, use Command-Shift-1 (for the internal drive) or Command­
Shift-2 (for the external drive) to eject the disk, then reinsert it.

Dividing a file

Here is the procedure for dividing a large file into pieces:

1. Use the radio buttons to specify whether the file is to be divided onto single- or
double-sided disks.

2. Click the Divide button.

3. Use the Standard File dialog to select the file to be divided. Only files large enough
to need dividing are listed (those larger than a single- or double-sided disk,
depending on which radio button you clicked).

4. Insert disks as prompted for succeeding pieces of the file.

5. When the operation is finished, you'll get an alert saying whether it was
successfully completed or stopped prematurely (either because of an error or
because you canceled).

Div Join tries to be considerate about the disks you insert and how it formats them. If
you insert a readable Macintosh disk that already has files on it, or a non-Macintosh
c:isk, or a damaged one, you'll get an alert and have a chance to reconsider. If the
disk is already formatted with the appropriate number of sides, Div Join skips

Using DivJoln 7

reformatting it to save time. The only mistake it cannot detect is inserting a double­
sided disk in a single-sided drive.

Joining a divided file

To join the pieces of a divided file, follow these steps:

1. Click the Join button in the initial dialog box. The radio buttons labeled Size
of divided files don't apply.

2. Use the Standard File dialog to select the first piece of the file to be joined. Only
files with the prefix 1 . are listed, since that's how DivJoin names the first piece of
divided files.

3. Use the next Standard File dialog to name the output file andto specify the
destination disk, then click Save. DivJoin can't tell in advance whether the entire
file will fit on the destination disk you select, though it does check that at least the
first piece of the file will fit.

4. Once the first piece of the file has been read, Div Join ejects the disk it's on and
prompts you to insert succeeding ones. Click Done after reading the last piece of
the file.

5. If the first piece of the file is on a hard disk, DivJoin looks for succeeding pieces in
the same folder on the hard disk; it assumes it's finished when there are no more.

Limitations of DivJoin 1.0d9

DivJoin 1.0d9 suffers from the following known limitations. If you encounter any
others, please report them as bugs.

o A file's resource fork, if any, is not included when you divide the file.

o No information about divided files is written with them; data corruption errors, or
your omission of the last file(s), cannot be detected.

o I/0 errors are displayed numerically. (See the result codes in Inside Macintosh,
Volume III, pp. 205-209).

o If a divide or join operation fails, the incomplete files are not deleted.

o Divided pieces of a file retain the type and creator of the composite file, so they
can still be opened by double-clicking from the Finder. The file piece probably
won't make much sense to the application that created it.

8 Installation

o Unlike the original DivJoin, version l.Od9 always divides to 3.5-inch disks. If you
want the divided pieces of a file on the same hard disk, you must copy them there
from the 3.5-inch disks after leaving Div]oin.

o The list of files for a divide operation sometimes omits files large enough to need
dividing. For instance, a 781K file will not appear in the dialog box, even though
it's too large to fit on a double-sided disk (which has 779K free after initialization).
The only workaround at present is to divide to single-sided instead of double­
sided disks.

Using DivJoin 9

. _;

Chapter 2

User -Interface

11

This chapter describes the user interface of Smalltalk-BO for the Macintosh, and in
particular the ways in which it varies from Xerox Version II. For a fun discussion of
the Xerox Smalltalk-SO user interface, see Smalltalk 80: 1he Interactive
Programming Environment, by Adele Goldberg Oisted in Appendix E,
"Bibliography of Smalltalk Literature").

Scroll bars
Just as in standard Macintosh applications, the full contents of a window or pane are
usually not visible at any given time. Scroll bars are provided to select what portion
will be displayed. These are similar in spirit to the standard Macintosh scroll bars,
but there are some differences in operation.

To operate a scroll bar, move the cursor into the window or pane you wish to scroll.
After a short pause, the scroll bar will appear at the left side of the window. The gray
marker inside the scroll bar indicates the position of the currently visible portion
relative to the overall contents of the window. Unlike the standard Macintosh scroll
box, however, the height of the marker within the whole scroll bar corresponds to the
proportion of the window's contents that are currently visible.

To scroll, move the cursor to the left or right of the marker. It will change its shape to
an arrow showing the direction in which the contents of the window will scroll when
you click the mouse: up when the cursor is to the right of the marker, down when it's
to the left. The vertical position of the cursor within the scroll bar controls the
distance the window will scroll. Scrolling up moves the line of text directly opposite
the cursor to the top of the window; scrolling down moves the current top line down
to where the cursor is. If you press and hold down the mouse button, the window will
scroll continuously until you release the button or until it reaches the top or bottom
ofthe window's contents.

If you move the cursor into the gray marker itself, it changes into a small black dot.
. By pressing and holding down the mouse button at this point, you can drag the
marker directly to the desired position, just as in a standard Macintosh scroll bar. As
you drag the marker, a dotted outline shows its original position, so that if you
change your mind and want to cancel the scroll you can move it back to where it
started before releasing the button. Directly above or below the marker, the cursor
changes to a right-pointing arrow. Clicking at this point will jump the marker directly
to the indicated position and scroll the contents of the window accordingly.

12 User Interface

Pop-up menus
Instead of the familiar Macintosh pull-down menus that run across a menu bar at the
top of the screen, Smalltalk uses pop-up menus that appear right at the current cursor
position when you press the mouse button. The particular menu you get depends on
the area of the screen in which you press the button; you can also control the choice
of a menu by holding down certain keys on the keyboard in combination with the
mouse button.

The Xerox mouse buttons
The original Xerox implementation of Smalltalk-SO was designed for a three-button
mouse. The buttons, designated red, yellow, and blue, have the following functions:

Button Function

red Selects information within a window

yellow Displays a menu for operating on the contents of a window

blue Displays a menu for operating on the window itself

The Xerox three-button user interface is fully described in the Goldberg book,
Smalltalk-SO: The Interactive Programmtng Envtronment. In Smalltalk-SO for the
Macintosh, other conventions are used to adapt this interface to the one-button
Macintosh mouse.

In general, the Macintosh mouse button corresponds to the red button on the Xerox
mouse. You use this button to select text or list items within a window, to position
windows when moving or resizing them, and so forth. Holding down the Option key
while pressing the mouse button makes it behave like the Xerox yellow button; the
Command key transforms it into the Xerox blue button. In addition, moving the
cursor into certain areas of the screen makes it behave like the yellow or blue button
instead of the red one:

o Near the right edge of any scroll bar, the mouse button works like the Xerox yellow
button, displaying the pop-up menu specific to that window or pane. To signal this
behavior, the cursor changes to look like a little menu.

o In a window's title tab, the mouse button works like the Xerox blue button,
displaying a wtndow menu foe manipulating the window itself (moving, resizing,
closing, and so forth) rather than its contents.

o In the gray background area outside of any window, the mouse button works like the
Xerox yellow button, displaying a system menu of global commands applying to
the system as a whole.

Pop-up menus 13

Notice that these conventions eliminate the need for the Option and Command keys
in conjunction with the mouse: by moving into the proper areas.of the screen, you
can invoke all the functions of the Xerox red, yellow, and blue buttons via the single
Macintosh mouse button.

The system menu
The system menu consists of global commands that apply to the system as a whole.
To display it, press the mouse button anywhere in the gray background area of the
screen, outside of all windows. The system menu contains the followihg commands:

Command

restore display

find window

fast windows

open project

open browser

open workspace

open file list

open transcript

eject disk

exit project

snapshot

quit

Action

Restores correct screen appearance; repaints all windows

Brings a designated window to front of screen

Enables fast redrawing of windows (see "New Features," below)

Opens a new project window

Opens a new system browser

Opens a new workspace window

Opens a new file-list window

Opens a new transcript window

Ejects a disk

Exits to "parent" of current project

Saves current state of system to disk

Exits from Smalltalk

The window menu
The window menu contains commands for manipulating a window itself, rather
than its contents. To display this menu, either press the mouse button in the
window's title tab, or press it anywhere within the window while holding down the
Command key. The window menu contains the following commands:

14 User Interface

Command

label

move

frame

collapse

close

Action

Edits title in window's title tab

Changes window's position but not its size

Changes both window's position and size, or restores
a collapsed window to its original position and size

Shrinks window to just a title tab

Destroys window permanently

Other menus

In addition to the system and window menus, each type of window or pane has its own
specialized menu for manipulating or operating on its contents. To display this
menu, either press the mouse button near the right edge of the scroll bar (when the
cursor appears as a picture of a little menu), or press it anywhere within the window or
pane while holding down the Option key. The contents of these specialized menus
vary, depending on what's appropriate for a particular window or pane. For
instance, a workspace window presents the standard text-editing menu described in
Chapter 3.

Menu differences from Xerox Smalltalk-80
The menus in this version of Smalltalk-80 for the Macintosh differ from those in
Xerox Version II Smalltalk in the following ways:

Menu

System

Browser, class categories

Xerox command

project
browser
workspace
file list
transcript
save
(not supported)
(not supported)
(not supported)

spawn
add category
edit all

Macintosh command

open project
open browser
open workspace
open file list
open transcript
snapshot
find window
fast windows
eject

browse
add item
reorganize

Pop-up menus 15

Menu (continued)

Browser, class names

Browser, message categories

Browser, message selectors

Dictionary inspector

Xerox command

spawn
protocols
spawn hierarchy

spawn
add protocol

spawn
move
(not supported)

add field

Macintosh command

browse
reorganize (moved to message categories)
(not supported)

browse
add item

browse
(not supported)
versions

add key

The goodie Version II Menus (described in Appendix B) will make the menus
more compatible with those in Xerox Version II. There are also significant
differences in the pop-up menu for spelling correction; see Chapter 3 for further
discussion.

File lists
This release of Smalltalk-80 for the Macintosh runs under the Hierarchical File
System (HFS) of the Macintosh Plus, but does not yet have an iconic interface to
represent files and folders. In place of the Macintosh Standard File dialogs, it uses an
enhanced version of the Smalltalk file-list browser to access the files in an HFS folder
hierarchy.

To open a file list on your screen, use the open file list command on the
system menu. The choose volume command in the top pane of the file-list window
displays a menu of volumes and folders currently known to the system. Names
followed by three dots (. ..) denote a volume or folder that, in turn, contains
subfolders of its own. When you choose one of these, you get a new menu showing the
subfolders it contains. Choosing the same volume or folder twice in a row gives you a
list of its files in the second pane of the file-list window. When you select any of these
files, its contents appear in the bottom pane. You can then read the file's contents or
edit them and write them back out with the put command. The get command
cancels any editing you may have done and reverts to the file's original contents as
read from the disk.

Each time you use choose volume, the system will remember all the volumes or
folders you select along the way and will display them in the top-level volume menu
the next time you use the command. This saves you the trouble of navigating back
through the hierarchy the next time you want to access the same folder. However,
such "remembered" folders are forgotten when you quit and restart the system,

16 User Interface

unless they are referred to by some existing object in your saved image (such as an
open file-list window).

In addition to remembered folders, you may see the following names on your
volume menu:

Name

Internal

External

Device3

Meaning

Internal 3.5-inch disk drive

External 3.5-inch disk drive

Hard disk

MacDefault Volume or folder from which Smalltalk was started up

The file list always comes up initially displaying the last of these (the folder from
which you originally started up Smalltalk from the Finder).

New features
Version 0.3 of Smalltalk-80 for the Macintosh includes a number of new user interface
features. These fall into the following categories:

o faster drawing and manipulation of windows on the screen

o enhancements to the browser

o new text-editing features

o improved change management

The first two categories are covered here; text editing is discussed in Chapter 3 and
change management in Chapter 4.

Fast windows
Probably the most important change in this release is that Smalltalk now preserves
the images of obscurerl. windows and can therefore refresh them much more quickly.
To change back and forth from one browser to another, which used to take about nine
seconds, now takes about three. In addition, the screen is now properly updated and
doesn't show the ugly gray "holes" characteristic of earlier releases.

There arc a couple of things to know about the new window management scheme.
One is that the extra stored images consume memory space, and it is possible to
exhaust the available space by creating too many large windows. The system will
attempt to deal with this problem as gracefully as possible. If Smalltalk runs out of
memory, it will first discard all its saved window images and revert to the old slower
method of window management. It will also put up a notification window informing

New features 17

you that it has done this. After you figure out what's wrong and make more memory
available, you can choose the fast windows command from the system menu to
re-enable fast window management

Executing (via the doit or print It command) a method that draws graphics on
top of the current windows can cause confusing effects on the frontrno'>t window. In
such cases, you can use the Shift key together with the doit or print It command;
this saves the original screen image before executing the graphics method. After

' execution is complete, the resulting graphics will remain on the screen until you click
the mouse button, at which point the entire screen will be redrawn, restoring all
windows to their proper appearance.

In connection with the new window management scheme, it is how possible to instali
graphic forms other than the default gray pattern as the screen background. For
example, executing the statements

QDPen new mandala: 30 diameter: 640.
ScheduledControllers backgroundForm:

(Form fromDisplay: Display boundingBox).

will draw a geometric pattern on the screen, copy that pattern to a form, and then
install the form as the screen background. The background form consumes a certain
space overhead, however: about 20K for the 512-by-342 Macintosh screen. To revert
to the dull but space-saving gray pattern, execute

ScheduledControllers backgroundForm: (InfiniteForm with: Forin Gray).

Browser enhancements
The new release includes the following enhancements to the system browser:

o A new versions command is available in the message selectors pane. This
command opens a new browser showing all available prior versions of a selected
method. You can revert to an earlier version of the method by selecting the
desired version and choosing the accept command. This can be especially
useful for rescinding unsuccessful changes you may have made.

o New commands in the class and message categories panes make it easier to add
and rename categories. The rename command allows you to change the name of
the currently selected category; add Item adds a new one. The new category is
inserted just before the one currently selected, if any; if no category is selected,
the new one is added at the end of the list.

o 1bc rename command in the class names pane allows you to change the name of
an existing class. A new browser is opened showing all methods that refer to the
class by name, so you can update them to the new name.

18 User Interface

o When you browse all methods that refer to some object or message (as with the
senders command in the message selectors pane), each method appears with
the first reference to the selected name automatically highlighted. This helps you
locate the reference visually, and makes it easy to replace it with a different name
or selector (as with paste or again).

o If you make changes in a browser that have not yet been accepted, and then
attempt any operation that would lose those changes, Smalltalk now highlights the
affected pane and asks you whether to accept the changes before proceeding with
the requested operation. Many operations which were awkward or confusing in the
previous release have thus become simpler or clearer.

New features 19

Chapter 3

Text . Editing

21

Smalltalk-80's text-editing facilities are based on a cut-and-paste model similar to
that used in other Macintosh applications. This implementation, Smalltalk-80 for the
Macintosh, includes a number of additional features and modifications to make it
even closer to the standard Macintosh model. These include, for example, using the
Shift key to extend a selection and the keyboard combinations Command-X,
Command-C, Command-V, and Command-Z for the standard editing operations
cut, copy, paste, and undo.

However, there are still some differences between Smalltalk's editing conventions
and those of the standard Macintosh user interface. In Smalltalk, for example, you
can type text into a window only when that window is active and contains the cursor.
When the cursor is outside the active window (or pane), anything you type on the
keyboard is saved for later insertion. As soon as you move the cursor back into the
window, the text you typed will be inserted; but if instead you activate a different
window by clicking inside it, the saved text will be inserted in that window instead.

Another difference is the interpretation of double mouse clicks. Double-dicking
within a word selects the word, just as under standard Macintosh conventions. In
Smalltalk, however, double-clicking at the beginning or end of a line of text selects
the entire line, and double-clicking just inside one of a pair of matched punctuation
marks (such as parentheses, quotation marks, or square brackets) selects everything
between the paired marks. (This feature is particularly useful in program text, for
finding balanced parentheses and brackets.) For a complete description of the
standard Smalltalk-80 editing features, see the Goldberg book, Smalltalk-SO: The
Interactive Programming Environment.

The editing menu
The .standard editing menu offered by workspace windows (and in modified form by
other types of window as well) includes the following commands:

22 Text Editing

Command

again

undo

copy

cut

paste

do It

print It

accept

cancel

Action

Repeat last editing operation

Undo last editing operation

Copy selected text to scrap

Cut selected text from window to scrap

Paste scrap over current selection or at insertion point

Execute selected text as Smalltalk code

Execute selected text as Smalltalk code and display result

Incorporate editing changes permanently

Cancel all changes since last accept

Typing from the keyboard doesn't disturb the contents of the cut-and-paste scrap
buffer, which continues to hold the last text explicitly cut or copied from any window.

Improved undo command
The undo command has been overhauled for more Macintosh-like behavior. It now
faithfully restores the text and selection to their condition before the last editing
operation. All editing operations can now be undone (or redone by undoing the
undo), even if you have since moved the selection. As a result, you can no longer use
undo as a form of repeated paste. (Exception: When you are in a paragraph other
than the one where you performed the original operation and there is no other way to
get back the contents of the undo buffer, you can still get it back with undo.) The
behavior of undo has been changed in the following ways:

o Undoing a cut or copy restores the scrap buffer to its previous contents. Thus if
you cut some text and then accidentally choose copy instead of paste, you can
undo the copy and then complete the original paste.

o Any sequence of typing and backspacing keys, however mixed, is treated as a
single operation. k1 undo will restore everything that was deleted, and another
undo will redo the original operation perfectly.

o Undoing or redoing a cancel faithfully restores the earlier state. (Please forgive
the excessive screen activity that accompanies this operation.)

The editing menu 23

o Many more operations are now transparent to undo; that is, the previous
operation can still be undone and redone. Besides scrolling, selecting, accept,
and do It, these now include

o cut or copy of an empty selection

o again when nothing was found

o leaving the window or pane and returning without doing any further editing in
other views

Extended again command
The again command has been extended in the following ways:

CJ Besides repeating the last paste or overtype at the next occurrence of the same
original text, again can now also repeat other operations that delete or replace
text-in particular, cut.

o The again command no longer has any effect on the cut-and-paste scrap buffer.
If you do some typing followed by again, and then want to paste the same text
somewhere else, use copy to get the selected text into the scrap buffer for pasting.

o Any sequence of typing and backspacing keys, however mixed, is treated ~ a
single operation and can be repeated with again. On previous versions of the
system, you couldn't use again after a type-in if you had backspaced to make a
correction.) If you backspace past the beginning of the original selection, the
characters you backspace over will all be included in the search string.

o The again command repeats the last replacement in any window or pane, not just
the one that is currently active. (This currently doesn't work right in "Senders
of ... " windows.)

o If you hold down the Shift key while choosing again, it will replace every
occurrence of the search string to the end of the text, not just the next occurrence.
Undoing a Shift-again restores the text and selection to their exact prior state
(except for font), and you can redo.

o Undoing an unshifted again just restores the text in the one place it was changed
and leaves it highlighted. Redoing the again at this point (by undoing the undo)
will repeat the replacement in that one place; explicitly choosing another again
will leave it as is and instead replace the next occurrence of the original search
text. (This is because the again command always starts its search at the end of the
current selection.)

o In previous versions, if you wanted to search for something, you had to see an
example of it, select the example, choose copy, then choose again. In this
version, if you can't see an example of the text you want to search for, you can
place the insertion caret anywhere, type the search text, and choose again. The
example you typed will automatically be deleted before beginning the search. The
typing and deletion of the search text are transparent to the cancel command;

24 Text Editing

that is, if you've made no other changes to the text, you need not cancel before
closing the window or browsing to a different method.

,_j If the last command was again (or an undo of an again), the same search and
replacement strings are used as were used the last time. In the past, if you searched
for text with again and then did some editing, you lost the ability to search for the
next occurrence of the same text. You can now use the Command-S (same)
command (see "New Keyboard Commands," below) to continue the most recent
again instead of repeating the intervening edit.

New keyboard commands
The following new editing commands are available via Command-key combinations
on the keyboard. (None of these commands except undo is available on a menu, but
exchange will work correctly if you add it to the editing menu yourself.)

Keystroke Command

Command-Z undo

Command-S same

Command-L left

Command-R right

Command-D duplicate

Command-E exchange

Command-Q query

Command-A advance

Same (Command-$)

Action

Same as menu command undo

Repeat most recent again

Shift selected lines left

Shift selected lines right

Paste current selection over previous selection

Exchange current selection with previous selection

Complete symbol preceding caret

Advance caret to next token

Command-s (same) repeats the most recent search or replacement you performed
with the menu comm;,nd again. The new search begins at the end of the current
selection. This allows you to do other editing in between again commands, then
continue to search for more occurrences of the same text. This operation is
transparent to undo and doesn't force a cancel.

New keyboard commands 25

Shift Left (Command-L) and Shift Right (Command-R)
Command-L and Command-R shift text left and right by inserting and deleting tab
characters at the beginning of each line. (A line of text is considered to be any
sequence of characters delimited by carriage returns or by the beginning or end of
the text.) These commands operate on every line that includes at least one visible
character of the current selection; lines containing only invisible formatting
characters such as spaces and tabs are not affected. If the selection is an insertion
caret, only the single line containing it is shifted.

Lines that don't begin with a tab character cannot be shifted left. If the selection
includes any such nonblank lines, Command-L will just flash the window and leave
all selected lines unchanged.

Duplicate (Command-D)
Command-D (duplicate) pastes the current selection over the previous selection, but
without affecting the scrap buffer. You can use this operation to copy existing text
from somewhere else while typing from the keyboard. It's also useful for copying
temporary variable names from the body of a method to the declaration line at the
beginning.

To be considered a separate selection for purposes of Command-D, the current
selection must not overlap the previous one (though it may touch it at either end). If
the previous selection was an insertion caret, the new one must not enclose it or
touch it at either end. Command-D leaves the caret positioned at the end of the
duplicated text (that is, in the neighborhood of the previous selection). To select the
duplicated text, use Command-- (see "Other Keyboard Conventions," below).

Exchange (Command-E)
Command-E (exchange) exchanges the current selection with the previous selection,
without affecting the scrap buffer. Again, to be considered separate, the two
selections must not overlap. Whatever text was selected before the exchange remains
selected afterward, but in its new location (where the previous selection was
originally). lf both selections were nonempty, another Command-Eis the same as
an undo unless you have changed the selection in between.

One of the many uses for this command is to exchange the true and false branches of
a conditional: double-click inside one of the brackets enclosing the first branch,
then inside one of the brackets of the second, and type Command-E. Other
common uses are to exchange two statements, two arguments of a message, or the left
and right sides of a simple assignment.

26 Text Editing

Either the current or previous selection, but not both, may be empty (just an
insertion caret). In this case, Command-E performs a move instead of an exchange:
the nonempty selection is moved to the location marked by the empty one. This
operation is useful in the same situations as Command-D (above), but when you want
to move the selected text instead of copying it. A caret is left at the end of the moved
text; if you want to select the text, use Command-- (see "Other Keyboard
Conventions," below). After a move, another Command-E is not the same as an
undo; it just flashes the window and does nothing.

Query (Command-Q)
Command-Q (query) saves typing by completing a partially typed message selector.
The current selection must be empty (an insertion caret) and must be preceded
immediately by an identifier, called the htnt. Smalltalk searches its symbol table for a
selector that completes the hint, and replaces the hint with this selector, called the
offering. Notice that the symbol table is searched, not the method dictionaries. Only
symbols that could be selectors and that begin with a lowercase letter are offered. The
case (upper or lower) of characters in the hint does not matter, but spelling does.

If the offering is a single-keyword selector, it is followed by a space and then the
caret. For example, if you type desel and then Command-Q, Smalltalk will display

deselect: A

You can then proceed to type the argument following the selector. If the offering is a
multi-keyword selector, two spaces are inserted between each pair of keywords, and
the caret is placed after the first keyword, allowing you to type in the first argument
without touching the mouse. For example, if you type detec followed by Command­
Q, Smalltalk will display

detect: ~ ifNone:

After typing the argument, you can use Command-A (see below) to advance to the
next argument.

If the offering displayed is not the one you want, type Command-Q again
immediately. (The previous offering must still be displayed, and you must not have
done any intervening editing.) Smalltalk will then search for another offering and
substitute it for the first one. For example, if you type another Command-Q in the
example above, Smalltalk-80 will display

detect: A

When no further matches can be found, Command-Q will restore the original hint
(before the first Command-Q) and flash the window.

If you choose undo when an offering is displayed and no further editing has
intervened, the original hint will be restored. Another undo (that is, a redo) will
restore the state before the first undo, and you can continue the search.

New keyboard commands 27

If you type Command-Q and then click the mouse elsewhere in the text while an
offering is displayed, another Command-Q will restore the previous selection and
continue the search with the same hint. If only the original hint is displayed, the
identifier before the new position of the caret becomes a new hint and a new search
begins.

Command-Q is useful when you can't remember the spelling or capitalization of a
long message selector, or when you can't remember all its keywords, or when you just
don't want to type a lot. It is particularly useful for long messages to the special object
Mac (see Chapter 6), especially if you have taken the trouble to get their true keywords
into the symbol table instead of a lot of with: 's. You can also use it when you're
inventing a new message name and you want to be sure it ts new, or conversely, if you
want to try to pick a name that has been used before.

Type as many characters of the name as you can remember, then type Command-Q.
Usually you'll type the first keyword, including the colon; but if you wish, you can
type fewer or more characters. All of the following will be completed to the selector
detect:ifNone:

detect:

deT

detect:ifn

The more you type, the more ambiguity you will remove and the fewer spurious
answers you'll receive. If you find yourself working through a long list of matches,
choose undo (or type Command-Z), add a few more characters to the hint, and type
Command-Q again.

Advance (Command-A)
Command-A (advance) advances the caret to follow the next occurrence of the
characters colon-space. You can use it after a Command-Q to advance to successive
argument positions within a multi-keyword selector. For example, after Command-Q
gives you the offering

detect: A ifNone:

type the first argument and then use Command-A to obtain

detect: firstArg ifNone: A

28 Text Editing

Other keyboard conventions
Here are some other useful keyboard conventions:

Keystroke Meaning

Command-' Select last text typed in, pasted, duplicated, etc. Qike Escape key in other
Smalltalk systems)

Command-- Same as Command-' above

Command- Add or remove parentheses around selection (like Command-(in other Smalltalk
systems; that combination is unavailable on the Macintosh because Command­
Shift-9 is reserved for a different purpose)

Shift-6 Up arrow (for returning method result)

Shift-minus Left arrow (for assignment)

Command-period Interrupt current operation immediately Qike Control-C in other Smalltalk systems)

Spelling correction
Spelling correction is automatic rather than voluntary in this version of Smalltalk-80
for the Macintosh, and you have the opportunity to choose among the closest
matches. When you accept a method or execute an expression with do It or
print It, Smalltalk compiles the code you've selected or accepted. When the
compiler encounters a symbol it doesn't recognize, it presents a menu of suggested
alternatives, in case you've made a typing or spelling error. If you choose one of the
alternatives, it will be substituted for the original misspelled version and compilation
will proceed.

If the misspelled symbol is a message selector, the menu includes, in addition to any
proposed alternative spellings,

o the text you originally typed (in case it is correct and you just haven't yet defined
the method in question)

o try harder (widen the search for possible alternatives; the original correction
algorithm favors symbols that begin with the same letters)

o cancel (if you see your spelling error and want to fix it yourself)

•!• Note: Many valid Toolbox calls (see Chapter 6) are unknown to the compiler,
so it may well be appropriate for you to accept the unrecognized selector as is.

Spelling correction 29

If the misspelled symbol is a variable name beginning with a lowercase letter, the try
harder command will be replaced on the menu by declare temp, to add this
name to the method's list of temporary variables and proceed with the compilation.
If the name begins with an uppercase letter, the command will be declare Class
Variable instead.

Miscellaneous
The text editor in version 0.3 of Smalltalk-80 for the Macintosh also includes the
following miscellaneous features and improvements:

o When the selection is empty (an insertion caret), the cut and copy commands
have no effect. They just flash the window, and don't change the contents of the
scrap buffer. They also don't force a cancel if you've done no other editing.

o When the selection is nonempty, the command sequences copy, copy-undo,
and copy-again change the scrap buffer but don't force a cancel.

o Command-V (paste) may be typed ahead without flushing previously typed
characters. This is useful when you want to type a few characters before pasting, or
when you want to paste the same text in several places. The paste and the typing
on either side of it are considered separate commands· for purposes of undo.

o In previous versions of the system, if you typed something and then clicked the
mouse before all the typed characters had been processed, the editor gave
priority to the mouse, made a new selection, and inserted the typeahead there.
This version gives priority to the typeahead, so it will be inserted in the right place
most of the time.

o The scroll bar marker (scroll box) no longer blinks after every edit and burst of
typing. Typing and backspacing now adjust the marker if necessary.

o If you try to invoke the format command (without the Shift key down) when you
have already made some edits to a method, the window flashes. You should
accept or cancel before trying again. (It used to format the original text, causing
your edits to vanish.)

30 Text Editing

Chapter 4

Saving Your Work

31

A<> in any computer system, it is vitally important to back up all the wo.ik you do in
Smalltalk. Keep in mind, though, that because Smalltalk (unlike other programming
environments) makes no firm distinction between system and application code, it's
possible to modify the system itself in such a way as to leave it unusable. It is thus
equally important to make sure you have a healthy, working version of the system to
fall back on in case your modifications should prove catastrophic. This chapter
discusses a variety of tools that Smalltalk offers to aid you in saving your work and
avoiding disaster.

Images and snapshots
Your image file and changes file (see Chapter 1) together define the complete state of
your Smalltalk system. The most straightforward way to back up your work is simply to
save copies of these two files on external media. (You might even want to keep a
historical archive of different versions of the files through their various
incarnations.) You can name the files anything you like, provided that the two names
end in . image and . changes and are otherwise identical: for example,
MySmalltalk-9/26. image and MySmalltalk-9/26 .changes. If the files grow
too large to keep on a single disk, you can use the DivJoin utility (see Chapter 1) to
divide them for backup.

As described in the next section, the changes file is maintained for you automatically
by the Smalltalk system. Maintaining the image file is your responsibility. TI1e
snapshot command on the system menu saves a new version of the image file,
recording the exact state of your working environment, down to the arrangement of
windows on the screen and the current selection in the active window. The new
snapshot is written out to the same image file you used when you started up Smalltalk
from the Finder.

Each time you leave Smalltalk with the quit command, you're asked whether you
want to save your changes since the last snapshot. If you answer yes, a snapshot of
your current state is saved to your image file before quitting, so that your next working
session will begin exactly where this one left off. If you answer no, your working state
at the start of the next session will revert to the previous snapshot.

32 Saving Your Work

In general, you should make a snapshot before undertaking any critical change that
might damage or compromise your system. However, don't forget that the snapshot
will replace the previous (presumably "safe") version of the image file that you
already have on your disk. If you think you'll be making a snapshot, it's a good idea to
make a backup copy of your existing image and changes files in the Finder, before
starting up Smalltalk.

If you've made some changes that you want to save in a snapshot, but you forgot to
back up your files in advance, all is not lost. First file out the changes you wish to save
(see "File-Out and File-In," below). Then quit to the Finder without saving changes,
make backup copies of your image and changes files, and restart Smalltalk. Now you
can file in your changes and safely make a snapshot.

Changes and crash recovery
As you work with Smalltalk, the changes file keeps a log of everything you do. Each
time you compile a method with the accept command or execute an expression
with do It or print It, a copy of the code is appended to the changes ftle in
Smalltalk's standard file-out format (see "File-Out and File-In," below). This
happens automatically, even if you don't explicitly save a snapshot or file out your
changes, If there is an unexpected system crash, you thus have a complete record in
the changes file that you can use to reconstruct your work and restore the state of your
system.

If you crash and lose your work, select and execute the statement

Smalltalk recover: 5000.

in your System Workspace window. This will copy the last 5000 characters of the
changes file to a temporary file named st BO. recent, and open an editing window
on that file. (You can vary the number of characters as needed; the only limitation is
that imposed by the file window, currently 16,000 characters.) You can now recreate
your lost work by selecting the relevant information in this window and filing it back
in. The file window's menu command fileitin operates only on the current
selection, not the entire file. In the case of method definitions, the selection must
include the methodsFor: line preceding the definition, as well as the exclamation
points that delimit it at the end. Another way to examine and selectively file in code
from the changes file is with a change-list browser, described below under "File-Out
and File-In."

Changes and crash recovery 33

The changes file grows every time you run Smalltalk. If you redefine a method twenty
times, there will be twenty copies of it in the changes file. This can be useful if you
want to cancel your recent changes and revert to an earlier version of the method;
the versions command in the browser's message selector pane allows you to
browse all the earlier versions of a method. Even if you don't save changes when you 1

quit Smalltalk, your changes file will have grown during the session. Eventually, you'll
find it necessary to condense the changes file: that is, to. write a new copy containing
only the code accessible from the current image. To do this, execute the statement

Smalltalk condenseChanges.

in your System Workspace window. The condensing process can take time (ten
minutes or more), depending on the size of the changes file. It's a good idea to make
backup copies of your image and changes files before condensing and take a
snapshot immediately afterward.

If you don't have a hard disk, you must pay particular attention to the amount of free
space on the disk you keep your changes on. The condensing process itself requires
additional space for the condensed copy, so you should ideally condense the
changes file before it becomes larger than the space remaining on the disk. If this
becomes too restrictive (and if you're very brave), you can use the goodie
DropChanges, described in Appendix D. This reclaims all disk space occupied by
the changes file, but at the expense of losing all the source code the file contains.
Future browsing of the affected methods will present only a decompiled version of
the code; all variable names and comments will be lost Subsequent changes will
continue to be logged in the changes file, allowing full source browsing until you drop
changes again. If you must resort to this solution, you sh.ould probably first file out
any code you care about, to retain a copy of the code with comments (see "File-Out
and File-In," below).

File-out and file-in
You can save parts of your Smalltalk system to external files in file-out format; this
provides a more compact way of saving selected changes than snapshot, which
saves your entire image and all changes it contains. The fileOut commands in the
various panes of a browser window write all the code of a selected cl~s category,
class, method category, or method to a file. This code can later be read back in from
a file-list or file window with the file In or fileitin commands. File-out and file­
in operations are also available by executing certain Smalltalk expressions; see your
System Workspace window and Appendix A for examples. A detailed description of
the file-out format is given in the article "The Smalltalk-80 Code File Format," by
Glenn Krasner, in Krasner's book Smalltalk-BO: Btts of Htstory, Word.5 of
Advtce (see Appendix E, "Bibliography of Smalltalk Literature").

34 Saving Your Work

f

Filc-oul format allows code to be moved from one Smalltalk image to another and to
be read or edited with any Macintosh text editor, such as the Macintosh
Development System (MDS) Edit program or the Macintosh Programmer's
Workshop (MPW) editor. You can also edit such files in MacWrite™ or Microsoft
Word•M, if you take care not to disturb the file-out format conventions. (However,
you must remember to save the files in text-only form so they can later be read back
into Smalltalk.)

Note that browsers do not immediately reflect changes made in other browsers or in
file-ins. It may be necessary to reselect an item in order to display the current
version. The update command in the browser's class categories pane causes it to
display new system categories created by another browser or by a file-in. This
command is the most reliable way to make sure the browser reflects the current state
of the system.

The change set and projects
In addition to the changes file, Smalltalk provides another, completely independent
mechanism for recording your changes. Whereas the changes file is a sequential log
that records the text of all methods compiled and expressions executed, the change
set is an unordered collection telling which classes and methods have been changed
(added, deleted, modified, renamed, or reorganized). A statement of the form

(FileStream newFileNamed: • MyChanges-9/2 6. st') f ileOutChanges.

will file out all classes and methods in the change set to the named file. You can then
empty the change set, to begin collecting new changes, with the statement

Smalltalk noChanges.

Change sets combine with Smalltalk's project mechanism to provide a convenient
way of organizing and modularizing your file-outs. Each project window you open
(via the open project command on the system menu) represents a separate
working environment, with its own desktop, its own set of windows, and its own
independent change set. By using a separate project window for each programming
cask, you can keep your changes separate and file each out in its own file.

Herc is a step-by-step procedure for using projects and change sets for modular
program development:

1. Start with a relatively stable version of the system and back it up on a disk before you begin.

2. Start Smalltalk.

3. Open a new project window and enter it to start a new change set.

4. Isolate exactly what makes up the programming change (new feature or bug fix) you wish to make.

5. Code the change, commenting extensively for future reference.

6. File out the change set for this project, using the Smalltalk statement shown above.

The change set and projects 35

7. Quit Smalltalk and return to the Finder.

8. If you wish, edit the file-out to add comments at the top describing its contents and purpose.

9. Restart Smalltalk to test your file-but, using the backup copy as the original image that you made in
step 1 above.

10. File in the change.

11. Test the change.

12. Fix if necessary and file out the updated change.

13. Make a snapshot to incorporate the change into your Smalltalk image.

You can now give a copy of your file-out to someone else or file it into a different
image. Use the select conflicts command in a change-list browser (see next
section) to avoid code conflicts when porting a change from one image to another.

Change-list browsers
This version of the system includes a new type of browser, called a change liSt. It
allows you to browse files in file-out format, by presenting one list item for each
object in the file. This provides a way to examine file-out files that are too long for an
ordinary file window, which is limited to 16,000 characters or less. The browser's list
pane permits multiple selections, allowing selected parts of the file to be filed in or
copied to another file.

To create a change-list browser for a file, execute a statement of the form

ChangeList browseFile: 'MyChanges-9/26.st'.

One use for a change list is to browse the system changes file itself. The statement

ChangeList browseRecentLog.

in the System Workspace window opens a change list for browsing all changes since
the last snapshot. This is useful for recovering changes after a fatal error or power
failure. After restarting Smalltalk, you can open a browser and file in all your unsaved
changes (or, if you wish, only selected ones).

It's also possible to browse farther back in the changes file than the last snapshot. To
do this, execute a statement like

ChangeLis~ browseRecent: 10000.

giving a large enough character count (say 10,000 or 20,000) to reach as far back as
you want to go. This can be useful for selecting just certain desired changes from
among others that arc not of interest. You can then file out just those changes to a
separate file and give them to someone else to use.

36 Saving Your Work

The select conflicts command in the change-list browser's list pane helps you
detect code incompatibilities when filing in changes from several different files
(perhaps developed independently by different people). After filing in each set of
changes, you can open a change list on the next and choose select conflicts.
This command selects every method definition in the given file that conflicts with
one already included in the current system change set. You can then file in all but the
conflicting methods, examine the conflicting ones, and try to resolve the conflicts in
whatever way is appropriate.

Change-list browsers 3 7

Chapter 5

The Hierarchical File System

39

This chapter describes the new features in this release of Smalltalk-80 for the
Macintosh that let it work with the Macintosh Plus Hierarchical File System (HFS).

Volumes and folders
Macintosh volumes are represented by Smalltalk objects of class HFSMacVolume, a
subclass of FileDirectory. (Throughout this chapter, the word volume is
understood to refer either to a physical volume such as a 3.5-inch or hard disk, or to
a folder within the Hierarchical File System.) Any file name may be preceded by an
optional volume prefix, separated from the file name by a colon:

volumePrefix:fileName

If the volume prefix is omitted, the file is understood to reside on the default volume.
Initially the default volume is the one containing the image file from which Smalltalk
was started up; you can change it to a different volume by sending a message to class
FileDirectory of the form

FileDirectory default: 'MyVolume •.

If you want no default volume to be defined at all, you can send the message

FileDirectory noDefault.

Notice that Smalltalk's volume prefixes are only one level deep: they may
not designate a fully-qualified pathname of arbitrary depth. To access a volume
nested several levels deep in the folder hierarchy, you can use the special prefix

?:

When Smalltalk encounters this prefix in a file name (or when the file name has no
prefix and no default volume is currently defined), it displays a menu of volume
names on the screen like that used by the choose volume command in a file-list
browser (sec Chapter 2). You can now proceed to navigate your way through the
folder hierarchy to the desired volume in the same way as with the choose volume
command. just as in choose volume, the volume you designate, as well as all
others you choose along the way, become known to the system and can thereafter be
used as simple, one-level prefixes. In addition, removable 3.5-inch disk volumes
become known to the system when they're inserted in a drive and remain known even
if later ejected.

40 The Hierarchical File System

You can define aliases for existing volume names by sending the message
alias :to: to class FileDirectory. For example, the statement

E'ileDirectory alias: 'MyDisk' to: 'Internal'.

defines MyDisk: to be a valid volume prefix referring to the same volume as
Internal. Once defined, an alias is completely equivalent to the original volume
prefix. However, aliasing is not transitive: that is, after

FileDirectory alias: 'Blood' to: •sweat•.
l''ileDi rectory alias: 'Sweat' to: •Tears'.

the prefix Blood: is not equivalent to Tears: and no longer equivalent to Sweat:.
To cancel an alias definition, send a message of the form

FileDirect.ory unalias: 'MyDisk'.

The following standard prefixes are built into the system:

Prefix Meaning

Internal Internal 3.5-inch disk drive

External External 3.5-inch disk drive

Device3 Hard disk

MacDefault Volume or folder from which Smalltalk was started up

(Notice that the name MacDefault is not the same as the default volume mentioned
earlier. MacDefault always refers to the volume containing the Smalltalk image file,
and is not affected by the FileDirectory default: message.) The volumes
these refer to are known as fixed volumes and have some special properties. You
may alias other names to these volumes or alias these names to other volumes, but
the property of being a fixed volume belongs to the volume itself, not the prefix.

Instances of class HFSMacVolume respond to most of the standard Macintosh
volume operations. In particular, the messages eject, flush, mount, and
unmount arc defined. (You can also eject a disk by choosing eject disk from the
system menu, then selecting the volume you want to eject from the pop-up menu that
appears.) Ejecting merely places the volume off-line but doesn't unmount it, so files
may still be open on an ejected disk. On shutdown, all volumes are flushed and all
open files are closed and placed in a state such that further activity on them will fail.
Files will be reopened v hen the system comes up (if still referenced), but no check
will be made to see if it is really the same volume.

For compatibility with the abstract Smalltalk model, open and close are also
defined in class HFSMacVolume, and are equivalent to the standard Macintosh
operations GetVolinfo and FlushVol, respectively. Smalltalk tries to keep you
from wreaking havoc on the Macintosh's file system, but is far from foolproof. For
instance, it's possible to unmount the Macintosh startup volume from within
Smalltalk, with predictably disastrous results.

Volumes and folders 41

Files
Macintosh files are represented by objects of class HFSMacFileStream. This is a
subclass of FileStream, the standard Smalltalk class denoting a file. Instances of
HFSMacFileStream respond to the standard Smalltalk protocol for streams and
files, as well as to other messages specific to Macintosh files, such as finderinfo,
setF ile Info:, and isVisible. For a full discussion of streams and files, see
Chapter 12 of Smalltalk-BO: The Language and Its Implementation, by Goldberg
and Robson (listed in Appendix E).

To open a file, send a message to class FileStream of the form

Fi le St ream f ileNamed: 'Hello'

This will open an existing file of the given name if there is one, otherwise create a new
one. You can include a volume prefix if you wish, or omit it to open a file on the
default volume. To limit the operation to an already existing file, use

FileStream oldFileNamed: 'Hello'

This will open a notifier if no such file exists, asking permission to create a new one.
Similarly, you can use

F ileSt ream newF ileNamed: 'Hello'

to insist on a new file. If a file already exists by this name, a notifier will be opened
asking for permission to overwrite it. Any time you do overwrite an existing file, you
must remember to send it the message shorten before closing it, otherwise part of
the old data may remain after the end of the new contents.

By default, all files created by Smalltalk have file type TEXT. This allows them to be
read by any text editor that can handle text-only files, such as MDS Edit, the MPW
editor, MacWrite, or Microsoft Word. They are automatically given MacWrite's
creator signature, so that they will run MacWrite when double-clicked in the Finder.
You can give a file a different type and creator, if you wish, by sending it the message
setType:creator:.

42 The Hierarchical File System

Chapter 6

Accessing the Macintosh
Toolbox

'

43

An important feature in this version of Smalltalk-BO for the Macintosh is its
programming interface to the Macintosh User Interface Toolbox and Operating
System. Smalltalk programs can call any routine in the Macintosh ROM: that is, any
routine that is accessed using a trap. (Routines that are not accessed through traps are
not currently supported.) To support this capability, this version of Smalltalk
includes mechanisms for calling the ROM routines themselves and for manipulating
the Pascal-style records and other data objects that these routines use. Most of the
support code for Toolbox access is contained within the Smalltalk class categories
ToolBox-Support, ToolBox-Structures,andToolBox-Heap Access.For
detailed information on the ROM routines themselves, see Apple's comprehensive
Inside Macintosh manual.

Pascal data structures
Pascal-style data objects for use with the Toolbox are allocated directly from the
Macintosh application heap, rather than from Smalltalk's own internal heap. When
Smalltalk is first started up, it expands the application heap to its maximum size,
reserves a fixed amount (normally 36K) for Toolbox obfects, and allocates the rest as
one large, nonrelocatable block for its own use. Within this private heap, Smalltalk
allocates all of its normal (Smalltalk-style) objects and does its own memory
management and garbage collection, independent of the Toolbox Memory
Manager. Pascal-style objects are allocated in the remaining portion of the
application heap and are accessed indirectly from within Smalltalk via "proxy"
objects in the Smalltalk heap itself.

44 Accessing the Macintosh Toolbox

The Smalltalk classes that support access to Pascal-style data structures are
summarized in the following subclass hierarchy:

Object ()
PascalRecord ('handle' 'pointer' 'bits')

HeapObject ()
HeapArray ('logicalSize')

Eightints ()
EightLongs ()
Pattern ()

HeapRecord ()
BitMap ()
Finfo ()
GrafPort ()

HeapRecordPointers ('pointerArray')
HParamBlockRec ()

Picture ()
Region ()
St255 ()

PascalRecord,HeapObject,HeapArray,HeapRecord,and
HeapRecordPointers are defined in category ToolBox-Heap Access. All the
rest-the classes representing actual Toolbox data structures such as Pattern,
Graf Port, and HParamBlockRec-are in ToolBox-Structures.

The root of this hierarchy of classes is PascalRecord, which has three fields named
handle, pointer, and bits. At any given time, at most one of these fields should
be non-nil, depending on the nature of the object represented:

o If handle -= nil, it holds a Smallinteger or LargePositiveinteger that
is a handle (the address of a master pointer) to a relocatable block in the
application heap.

D If pointer -= nil, it holds a Smallinteger or LargePositiveinteger
that is the address of a nonr~locatable block in the application heap.

o If bits -= nil, it holds a ByteArray that is the direct representation of the
object's value.

o If handle = pointer = bits = nil, the PascalRecord refers to no object
at all.

For objects that reside i.1 the Macintosh heap (handle -= nil or pointer -=
nil), you must explicitly send the object the message release when you're through
with it; this in turn calls the Toolbox trap DisposHandle or DisposPtr to
deallocate the object from the heap. release is not called for you during garbage
collection, so the pointer or handle in an object is lost if the object is garbage­
collected before you send release. The space the object occupies in the Macintosh
heap becomes unrecoverable for the remainder of your Smalltalk session.

Pascal data structures 45

Defining record types
Class HeapObject defines standard protocol for its subclasses HeapRecord and
HeapArray. All Smalltalk classes representing Pascal record types are subclasses of
HeapRecord. To define a new record class, send a message to class neapRecord of
the form

HeapRecord recordSubclass: #NewClassName
fields: 'fieldl field2 ... '
types: 'typel type2 ... '
category: 'ToolBox-Structures•

Where fieldl, field2, ... are the names of the record's fields and typel,
type2, ... designate the corresponding data types. Each type specification is
either a one-character code representing a primitive type or the name of another
HeapObject subclass (for an embedded record or array). The following table shows
the code characters for the primitive types; embedded subrecords are discussed in a
separate section below.

Character Pascal type Smalltalk type

I
L
B
p

R
s
0
H

INTEGER
LONG INT
BOOLEAN
Point
Re ct
Str255
Ptr
Handle

Smallinteger, LargePositiveinteger up to 16 bits
Smallinteger, LargePositiveinteger up to 32 bits
Boolean
Point
Rectangle
String
PascalRecord (D for "direct pointer")
PascalRecord

Methods will automatically be defined in the new subclass for accessing and changing
all of the fields you name in your definition message. These methods use Smalltalk's
built-in primitive 161, which takes two arguments: a byte offset within the record and
a one-character string designating the type of value to be found there. For example,
class GrafPort includes the following methods for accessing the portRect field of
the Graf Port record:

portRect
<primitive: 161 recordOffset: 16 type: 'R'>

fself primitiveFailed

portRect: rect
<primitive: 161 recordOffset: 16 type: 'R'>

f self primitiveFailed

46 Accessing the Macintosh Toolbox

The recordOffset value of 16 tells the primitive that the desired field begins at an
uffsel of 16 bytes from the start of the record; the type string 'R' tells it that the
value contained in that field is a rectangle. (The primitive can distinguish between
the two messages by the number of arguments it receives on the stack.) The
primitive : 161 part in these definitions is optional: the methods could just read

portRect
<recordOffset: 16 type: 'R'>

Tself primitiveFailed

portRect: rect
<rcco:·oOffset: 16 type: 'R'>

Tself primitiveFailed

instead.

If you select a HeapRecord subclass in the browser's class names pane and hold
down the Shift key while choosing the definition command, a template will
appear in the code pane showing the names and types of the record's Pascal-style
fields.

•:• Note: Never hold the Shift key down while filing out a class.

Subrecords

When a Pascal-style record contains embedded subrecords or other data structures
(such as the BitMap record embedded in the portBits field of a Graf Port), the
problem of accessing these fields is less straightforward than for the simple data types
listed in the table above. Ideally, when you ask for the contents of such a field, you
should get back a new object that refers to the same data as in the original record
(wherever it resides), so that garbage collection works reasonably and changes to the
subrecord are properly reflected in the parent record.

'D1at's just what happens with objects that reside in the Macintosh heap. A new
instance of class PascalRecord is created, with its pointer field set to point to the
desired subrecord at the appropriate offset within the parent record. You can then
use this object to access or change the contents of the subrecord just as if it were a
separate object.

There are risks to this approach, however. If the parent record is subsequently
deallocated or moved within the Macintosh heap, your pointer to the subrecord will
become invalid. Furthermore, you can sabotage the Toolbox Memory Manager if
you try to treat the subrecord as if it were an independently allocated object. If you
send the subrecord object the message release, for instance, the Toolbox trap
DisposPtr will be called with a value that points into the middle of a heap block
instead of the beginning, and a system error will result.

Pascal data structures 47

In general, rather than keep around a subrecord object that points into the middle of
the parent record, it's better to create a new instance of the subrecord and copy the
original data to it. In fact, for records residing in the Smalltalk heap, that's what you
get in the first place. Again, a new instance of PascalRecord is created, but with a
copy of the data instead of a pointer into the middle of the original record. In this
case, changes to the subrecord are not reflected in the parent record. if you want to
set a field of a subrecord, you have to get the subrecord with the appropriate access
method, set the field, then store the modified subrecord back into the parent record.

For example, suppose pbRec is an instance of class HParamBlockRec, representing
a parameter block for use with the Toolbox File Manager. Field ioFlFndrinfo is a
subrecord of the parameter block, of type Finfo, holding the file's Finder
information. If you want to set the fdCreator field of the Finfo record, you can't
do it with a straightforward message such as

pbRec ioFlFndrinfo fdCreator: 'MACA'.

because the object returned by pbRec ioFlFndrinfo is a copy of the Finfo
subrecord, not a reference to the embedded subrecord itself. So to set the
fdCreator field, you have to do it in a more roundabout way:

finderinfo ~ pbRec ioFlFndrinfo.

finderinfo fdCreator: 'MACA'.
pbRec ioFlFndrinfo: finderinfo.

Currently, class HParamBlockRec is the only one that allocates its data on the
Smalltalk heap. HParamBlockRec is a subclass of HeapRecordPointers, which is
used to pass the addresses of buffers and other data objects that exist in the Smalltalk
heap but are pointed to by fields of a Toolbox record structure. If Smalltalk's memory
manager moves such an object within the Smalltalk heap, the pointer in the Toolbox
structure will be left pointing to the wrong address. HeapRecordPointers avoids
this problem by substituting the correct addresses of such objects at the time of the
Toolbox call, within the low-level primitive that implements the call.

For example, suppose one of the fields of the Pascal record fooRecord is a pointer
to a Smalltalk byte array named fooBuffer. You would use an object of class
HeapRecordPointers with a pointer array whose first element is the offset of that
field within fooRecord, and whose second element refers to the object fooBuffer
itself. During the call in which fooRecord is passed to the Toolbox as a parameter,
the primitive will calculate the current address of fooBuffer in the Smalltalk heap
and store it at the specified offset in the record before passing the record to the
Toolbox. Thus the Toolbox is guaranteed to get the correct address of fooBuffer at
the time of the call.

Class HeapRecordPointers is tricky to use and skimpily documented, and you
should avoid it if at all possible. If you absolutely must use it, be sure to study it
carefully beforehand, and be forewarned.

48 Accessing the Macintosh Toolbox

Heap inspectors
A handy new feature in this release is class Heapinspector, which allows you to
open a Smalltalk-type inspector window on any object that belongs to a subclass of
HeapRecord. You can now examine and modify all the fields of a Pascal record in
the same way you can for a standard Smalltalk object. Just send the message inspect
to any object belonging to a HeapRecord subclass.

Heap inspectors use the list of field names and field types stored in each heap
object's class variables to access the individual fields of the record and display their
names. Class HeapRecord uses the same lists in its subclass definition method
(recordSubclass: fields: types: category:), to compute the offsets of all
fields and automatically generate methods for accessing and setting them.

Calling the Toolbox
In general, you issue calls to the Macintosh Toolbox by sending messages to the
Smalltalk object Mac, the only instance of class Macintosh (defined in category
ToolBox-Support). The first keyword of the message selector corresponds to the
name of the Toolbox routine as given in Inside Macintosh, but beginning with a
lowercase letter. For example, for the Toolbox routine defined in Pascal as

PROCEDURE FrameRect (r: Rect);

a Pascal call such as

FrameRect (myRect)

would correspond to the Smalltalk message

Mac frameRect: myRect.

If the Toolbox routine has more than one parameter, the second and subsequent
parameters are converted into keywords in the Smalltalk message: for the Pascal
routine

PROCEDURE FrameRoundRect (r: Rect; ovalWidth, ovalHeight: INTEGER);

the Pascal call

FrameRoundRect (myRect, w, h)

converts lo the Smalltalk message

Mac frameRoundRect: myRect ovalWidth: w ovalHeight: h.

Calling the Toolbox 49

A Toolbox routine that takes no parameters at all corresponds to a unary message in
Smalltalk: to call the Pascal routine

PROCEDURE HidePen;

you would use the Smalltalk message

Mac hidePen.

Primitive 160
Calls to the Toolbox are implemented via two interpreter primitives, numbers 160
and 162. The first, primitive 160, takes two parameters: an integer (usually expressed
in hexadecimal form) representing the last three digits of the Toolbox trap word, and
a coded string of characters describing the arguments to the Toolbox routine. For
example, the Toolbox routine FrameRect, whose Pascal declaration was given
earlier as

PROCEDURE FrameRect (r: Rect);

is defined in Smalltalk, in class Macintosh, as follows:

frameRect: r
<primitive: 160 trapA: 16rCAl type: 1 --R'>

iself primitiveFailed

Here the trapA parameter gives the last three hexadecimal digits of the trap word;
the first digit is always understood to be A, so the complete trap word, in Pascal
notation, is $ACA1. The type parameter is coded according to conventions that
we'll be discussing in a minute; in this case, it specifies that the routine has one
argument of Pascal type Rect and returns no function result. The primitive will check
the type of the argument passed on the Smalltalk stack and signal failure if it doesn't
match. Otherwise it will convert the value to Pascal format, push it onto the
Macintosh stack, and call the designated trap.

The type parameter to primitive 160 is a string containing a sequence of individual
type specifiers. Each specifier consists of one of the eight code letters representing
the primitive data types (I, L, B, P, R, s, D, or H), as shown in the table above under
"Defining Data Types." This type letter may optionally be preceded by av, denoting
a VAR parameter. For parameters passed in registers rather than on the stack, the
type letter is followed by a digit specifying the register. The Toolbox uses three
registers for parameter passing, denoted by the following code digits:

Digit Register

0 DO

1 Al

2 AO

50 Accessing the Macintosh Toolbox

Thus the type specifier VLO would represent a VAR parameter of type LONG INT,

passed in register DO. In the string passed as the type parameter to primitive 160, the
first type specifier represents the function result returned by the Toolbox routine (or
- for procedures that don't return a result); the second denotes the Smalltalk object
to which the message is sent (or - if the message receiver is not a parameter of the
Toolbox routine); and the rest of the string gives the types of the remaining
parameters. Some more examples should help make all this clear:

Pascal

PROCEDURE GetPort (VAR gp: GrafPtr);

Smalltalk

get Port: gp
<primitive: 160

trapA: 16rC74 "trap word = $AC74"

type: '--VD'> "no result, ignore receiver, VAR pointer"
iself primitiveFailed

Pascal

PROCEDURE OpenPort (gp: GrafPtr);

Smalltalk

openPort: gp
<primitive: 160

trapA: 16rC6F "trap word = $AC6F"

type: '--D'> "no result, ignore receiver, pointer"
iself primitiveFailed

Pascal

FUNCTION SectRect (srcRectA, srcRectB: Rect; VAR dstRect: Rect)

: BOOLEAN;

Smalltalk

sectRect: srcRectA srcRectB: srcRectB dstRect: dstRect
<primitive: 160

trapA: l 6rCAA

type: 'B-RRVR' >

iself primitiveFailed

"trap word = $ACAA"

"Boolean result, ignore receiver,
rectangle, rectangle, VAR rectangle"

Calling the Toolbox 51

Pascal

FUNCTION NewPtr (logicaisize: Size): Ptr;

Smalltalk

newPtr: loqicalSize
<primitive: 160
trapA: 16r01E
type: 'D2-LO '>

iself primitiveFailed

Pascal

"trap word = $A01E"
"pointer result in AO, ignore receiver,

long integer in DO"

PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER);

Smalltalk

setPt : pt h: h v: v
<primitive: 160
trapA: 16rC80
type: '--VPII '>

iself primitiveFailed

"trap word = $AC80"
"no result, ignore receiver,

VAR point, integer, integer"

Instead of defining this last method in class Macintosh, it could instead be put in
class Point. Instead of

Mac setPt: thePoint h: horiz v: vert

you would write

thePoint setH: horiz v: vert

In this case the message receiver itself is one of the arguments to be passed to the
Toolbox routine, so the method definition in class Point would be

setH: h v: v
<primitive: 160
trapA: 16rCBO
type: '-VPII'>

iself primitiveFailed

"trap word = $AC80"
"no result, receiver is VAR point,

integer, integer"

As wilh primitive 161, the primitive : 16 0 in all these definitions may be omitted.
For example, the last method could have been written as

setH: h v: v
<trapA: 16rCBO type: '-VPII'>

iself primitiveFailed

52 Accessing the Macintosh Toolbox

Primitive 162
If you browse class Macintosh, you'll find that most of the messages corresponding
to Toolbox calls are not explicitly defined there. Instead, Macintosh redefines the
message doesNotUnderstand: (which normally displays a notifier on the screen
reading Message not understood) to intercept all unrecognized messages and
pass them to another Smalltalk primitive, number 162. Instead of taking explicit
parameters for the trap word and parameter types, this primitive looks up the
undefined message selector in an internal table of Toolbox traps. (This search uses
only the first eight characters of the selector and ignores upper- and lowercase
differences.) If it finds an entry for this selector, it gets the appropriate trap number
and parameter information from the table and completes the call; if not, it posts a
notifier on the screen.

Calling a Toolbox routine with primitive 162 takes longer than with primitive 160,
because of the table lookup. However, the explicit method definitions needed to use
primitive 160 use up space within your Smalltalk image. For this reason, it's
recommended that you use primitive 162 for most Toolbox calls, and 16o only for
those that you use very frequently or for which speed is important, such as on-screen
graphics. You can also use primitive 160 to define methods for new routines recently
added to the Toolbox in the Macintosh Plus ROM. (In fact, because the Toolbox
lookup table was not updated for this release, this is how all the new HFS file system
calls were added to the system.)

Another use for primitive 16o is to fix bugs in the internal lookup table used by
primitive 162. If an attempted Toolbox call causes a primitive failure or a system
crash, there's probably something wrong with one of the parameters you passed to it.
(Remember, for instance, that VAR parameters have to be preinitialized to
something valid before being passed to the Toolbox.) However, it's also possible
that the call you're trying to use is missing or encoded wrong in the lookup table; not
all of the Toolbox calls were exhaustively tested before this release of the system was
shipped. In this case, you can correct the problem by adding an explicit method for
the trap using primitive 160.

For example, the table entry for the Toolbox routine GetNextEvent is known to be
incorrect. This routine, defined in Pascal as

FUNCTION GetNextEvent(eventMask: INTEGER;
VAR the Event: EventRecord) : BOOLEAN;

is incorrectly encoded in the lookup table as B-IVD; it should actually be B-ID,
since theEvent is declared as an event record, not a pointer to a record. (Under
Pascal conventions, a pointer to the event record is passed on the stack, but the
routine only changes the contents of the record, not the value of the pointer.) This
error could be corrected (though it isn't in the actual release) by defining the
following method in class Macintosh:

Calling the Toolbox 53

getNextEvent: eventMask theEvent: theEvent
<primitive: 160
trapA: 16rD70
type: 'B-ID'>

iself primitiveFailed

"trap word = $AD70"
"Boolean result, ignore receiver,

integer, pointer"

Things to watch out for
Here are a few potential pitfalls to keep in mind when using the Toolbox from
Smalltalk:

o You'll probably need access to various Toolbox globals and constants. Methods
for some of these are defined in class Macintosh in the message category
globals/constants: those that aren't defined there are available with the
StdPools goodie, described in Appendix B. Also look at category memory
inspect in class Macintosh to see how to access or set specific memory
locations from within Smalltalk.

o Calls to Toolbox routines that return VAR parameters can sometimes lead to subtle
problems when translated into Smalltalk. For example, the Pascal statement

GlobalToLocal (theEvent.where)

corresponds to the Smalltalk expression

Mac globalToLocal: theEvent where.

In this case, the where field of event record theEvent will never get the value
returned to it, since the message theEvent where returns a temporary object
that receives the new value returned to it. The correct way to code this is

tempPoint ~ theEvent where.

Mac globalToLocal: tempPoint.
the Event where: tempPoint.

o When using data in the Smalltalk!foolbox environment, you must not pass the
Toolbox the address (pointer or handle) of any data stored in the Smalltalk heap if
the Toolbox is going to remember the address after returning from that one call.
Although the location of a Smalltalk ByteArray object can't change during the
time a single Toolbox call is running, it is possible for it to change between calls.
So byte arrays should be used only for data whose address is passed to the Toolbox
again every time the Toolbox uses it. This ensures that the correct address will be
used each time.

o In Smalltalk you can't write new values into a procedure's parameters, as you can in
Pascal. Instead you must create a local temporary variable, along with the code to
copy the parameter's value into that temporary. Within the method, you can then
assign the new value to the temporary.

54 Accessing the Macintosh Toolbox

o Toolbox routine names that are defined in Primitive 162's lookup table may not be
known to the spelling checker. The first time you try to use such a name as a
message selector, the spelling checker will reject it and offer you a list of
alternative spellings. When this happens, just accept the spelling as is; the spelling
checker will then remember it and accept it without protest the next time you use it.

Things to watch out for 55

Appendix A

System Workspace Summary

Here is a summary of useful Smalltalk expressions that are available in the System
Workspace window:

Changes and Files
Smalltalk noChanges.

Smalltalk condenseChanges.

Resets the change set to empty.

Condenses the changes file, removing
multiple copies of method definitions,
methods no longer accessible from the
current image, and other unnecessary text.
May take a long time, and requires sufficient
disk space for two copies of the changes file.
It's advisable to make backup copies of your
image and changes before condensing and
take a snapshot immediately afterward.

Displayscreen removeFromChanges. Removes all changes in a given class from
the change set.

Smalltalk changes asSortedCollect ion

Returns a sorted list of the current contents
of the change set.

Smalltalk browseChangedMessages. Opens a message browser on all methods
in the change set.

57

(FileStream fileNamed: 'Changes.st') fileOutChange9.
Files. out all changes. in the change set to a
given file.

(F ileSt ream f ileNamed: 'PenChanges. st') f ileOutChan.gesFor: Pen.
Files out all changes in the change set for a
given class.

(FileStream. oldFileNamed: 'BrowseFeatures3.st') filein.
Files in changes from a given file.

(FileStream fileNamed: 'Hello') edit.
Opens a file editing window on a given file.

FileDirectory filesMatching: '*.st'
Returns a list of all filenames matching a
given pattern. (Actually, it's more
convenient to open a file-list window and
type the pattern into the top pane; followed
by Return.)

Change List browseFile: 'changes. st'.

Change List browseRecentLog.

Inquiry

Opens a change-list browser on a given file.

Opens a change-list browser on all changes
in the system changes file since the last
snapshot.

InputState browseAllAccessesTo: 'deltaTime'.
Opens a browser on all references in a class
to a given instance variable. (Like inst
var refs in the system browser.)

Smalltalk browseAllCallsOn: #r. Opens a browser on all calls to a given
message selector. (Like senders in the
system browser.)

Smalltalk browseAllimplementorsOf: #remove:.
Opens a browser on all method definitions
for a given message selector. (Like
implementors in the system browser.)

Small talk browseAllCallsOn: (Smalltalk associationAt: #ShutDownList).
Opens a browser on all references to a given
global variable.

58 System Workspace Summary

Smalltal% browseAllCallsOn:

(Cursor classPool associationAt: #ReadCursor).

Opens a browser on all references in a class
to a given class variable.

Smallt.alk browseAllCallsOn: (Undeclared associationAt: #Disk).

Opens a browser on all references to a given
undeclared variable.

Smalltalk browseAllMethods InCategory: #examples.

Opens a browser on all methods in a given
message category. (May cover more than
one class.)

(:;mal l.c:;ll ~ collectPointersTo: StrikeFont someinstance) inspect.

Opens an inspector on all objects that point
to an instance of a given class.

smalltalk ga:r;bageCollect. Forces a full garbage collection of the
Smalltalk heap.

F.ileStream instanceCount Returns the number of instances of a given
class currently in existence.

Fo::mVi.ew allinstances inspect. Opens an inspector on all instances of a
given class.

Housecleaning
Undeclared t- Dictionary new.

UndeclarecJ inspect.

Undeclared associationsDo:

Resets the dictionary of undeclared
variables to empty. Note that you will no
longer be able to find the methods in which
they occur.

Opens an inspector on all undeclared
variables.

(:assn I S::1alltalk browseAllCallsOn: assn] .
Browses all references to undeclared
variables.

(Object classPool at: ltDependentsFields) keys

Returns a set of all objects with dependents.

Housecleaning 59

(Object classPool at: #DependentsFields) keysDo:

[:each I (each isKindOf: DisplayText)

ifTrue: [each release] J.
Releases all objects that satisfy a given
condition.

Transcript clear. Resets the transcript window to empty.

smalltalk forgetDoits. Removes methods generated by do It and
print It.

Symbol rehash. Purges any symbols that are no longer in
use.

Smalltalk removeKey: #GlobalName.
Removes a symbol from the global
dictionary. You should check first that there
are no outstanding references to it

Small talk declare: #GlobalName from: Undeclared.

Globals

Declares a symbol as a new global variable.
If it was formerly in the Undeclared
dictionary, all references to it will now refer
to the new global variable. ('This is how
forward references are handled in file-ins.)

Names in Smalltalk other than Classes and Pools:

Display -- a DisplayScreen

Processor -- a ProcessorScheduler
ScheduledControllers -- a ControlManager

Sensor -- an InputSensor

Transcript -- a TextCollector

SourceFiles -- an Array of FileStreams

SystemOrganization -- a SystemOrganizer

StartUpList -- an OrderedCollection
ShutDownList -- an OrderedCollection

60 System Workspace Summary

Vari abJ ,, Poo.t s (Dictionaries)

:;mal ltalk

lJndeclared

f'ilePool

OSintfPool

Bi'.:MaskPoo+

TcxtConstants

System Files
SourceFiles (-- Array

with: (FileStream oldFileNamed:

Smalltalk sourcesName) readOnly

with: (FileStream oldFileNamed:

(SourceFiles at: J.l close.

(SourceF iles at: 2) close.

SourceFiles (-- Array new: 2.

Measurements

Sm~lltalk changesName) •
Establishes the sources and changes files.

Closes the sources file.

Closes the changes file.

Disables the sources and changes files.
(Sources can still be retrieved with the
goodie RetrieveSources.)

smalltalk spaceLeft Returns the amount of free heap space
currently available.

symbol instancecount Returns the number of instances of a given
class currently in existence.

Time millis€lcond$ToRun: [Smalltalk allCallsOn: #asOop]

Returns the time needed to execute a given
block.

MessageTally spyOn: [Smalltalk allCallsOn: #asOop].

Presents a time-use profile for execution of
a given block.

Crash recovery 61

Crash recovery
Smalltalk recover: 5000, Opens a window on the last 5000 characters

in the changes file.

62 System Workspace Summary

Appendix B

Smalltalk Goodies

Included as sample~ with this release are several additional source files, known as
goodies, which add interesting or useful capabilities to your Smalltalk system. The
goodies are divided into two categories, demos and utilities, and are found in the
folders Goodies-Demos, on Smalltalk Dtsk 2, and Goodies-Utilities, on
Smalltalk Disk 7.

To read a goodie named Gumdrop into your system, execute the statement

(r"ile$tream oldFi;l.eNamed: 'Gumdrop.st') filein.

or select Gumdrop. st in a file list window and choose file In from the list pane
nH;:nu. The filenames are not case-sensitive, but spaces are significant. The . st
extension is only a convention, to make it easy to browse all Smalltalk files using the
panern * . st in the top p;me of a file-list window.

Demos

The following goodies are found in the Goodies-Demos folder on Smalltalk Disk 2:

Fractal

Produces three-dimensional surfaces based on fractal geometry. For an example,
execute

Fractal example,

63

Toothpaste

Allows you Lo draw shaded worm-like curves on the screen, using a "brush" that looks
like a highlighted sphere. Execute ·

Form toothpaste: 30.

and then paint with the cursor. To stop, hold down the Option key and click the
mouse.

Web
Another drawing program, which lags behind the current mouse position and then
draws lines between the lagging cursor and the current cursor. Execute

QDPen new web.

and then draw with the mouse. Click the mouse to erase the screen, Option-click to
stop.

Music

A music synthesizer that drives the Macintosh four-tone sound generator. See the
MacWrite file Music Docs in the Goodies-Demos folder on Smalltalk Disk 2 for
more information.

Utilities
The following goodies are found in the Goodies-Utilities folder on Smalltalk
Disk 7:

Printing

Defines a new class MacPrintStream to support hard-copy printing on an Apple
Imagewriter™ printer connected to the printer port. Adds a menu command for
printing in most windows. The method examples in MaoPrintStream class
gives general instructions for use. Printing from the window menu (in a window's tille
tab) produces a bit image of the window; printing from a text pane produces text,
with an attempt to support the unusual Smalltalk characters. Also included is a
method for rotating bit images by 90 degrees, for use if you want to implement
landscape printing.

64 Smalltalk Goodies

,.,-.

FFT
Defines a new class FFT for performing a one-dimensional fast Fourier transform on
data held in Smalltalk arrays. The example method test illustrates its use. This code
computes a complex Fourier transform; a corresponding power spectrum can be
derived by summing the squares of corresponding real and imaginary components.

Macintosh-QuickDraw
A full set of QuickDraw call definitions using primitive 16o instead of 162 (see Chapter
6), 'l11is makes all the QuickDraw messages visible and easier to browse, at some cost
in memory space.

MacPaint
Defines a method xnacPaintOn: in class Form to create a graphics file readable by
MacPaint™. The comment at the end of the method gives a sample invocation. This
method is already included in the released image and source, but its example
comment is in error; this goodie corrects the comment.

RS232
Defines methods to support input and output via the two Macintosh serial ports. One
of these includes a large comment explaining how to set baud rate and so forth;
another is a sample application that downloads text (for example, from a laptop
computer) to a Macintosh file.

RetrieveSources

Allows access to the full system source code, even without a hard disk. If you have
browsed to a given method (decompiled) and wish to see the full source code (as you
would with a hard disk), choose retrieve from the code pane menu. You will be
asked to insert one of the disks containing the divided sources file, and then the full
i:;ode will appear. This technique will fail if you happen to choose one of the three
methods that straddle breaks between the file divisions.

Utilities 65

DropChanges

For the fearless programmer whose changes file has grown too large (even after
condensing), but who still wants to continue making changes. Simply deleting the
changes file would prevent. the further recording of changes. Instead, by executing
Small talk dropChanges, you can discard the c:Urrent contents of the changes file
(save them first, if you care), but the file will continue to record further development.

Std Pools

Creates pools ToolintfPool, PackintfPool, and QuickdrawPool, and adds to
the existing OSintfPool, so that all four match the latest Pascal interface files
released with the Macintosh Programmer's Workshop (version B2). These pools add
approximately lOK to the size of your Smalltalk image.

VersionllMenus

This goodie makes the menus in version 0.3 more compatible with the menus in
Xerox Smalltalk, Version II. It is especially useful if you are using any of the
introductory books.

66 Smalltalk Goodies

Appendix C

Memory Management
Techniques

The interpreter furnished with this release uses garbage collection rather than
reference counts to reclaim unused storage. For this reason, it is not necessary to
break circular structures in this implementation, though such "release" code still
exists in many parts of the system. You'll notice occasional pauses when garbage
collection takes place. Still, the system's performance is considerably better with.
garbage collection than with reference counting. A side effect of incremental garbage
collection is that al!Instances and related enumeration messages will sometimes
enl,lmerate objects that are no longer truly accessible. If you want to be sure of
accurate results, execute

Smalltalk garbageCollect.

in the System Workspace immediately before such enumeration.

Even with garbage collection, it is still possible to run out of memory. When space
starts getting low (below about 1000 objects and 8000 words of data), Smalltalk
attempts to gain some more by turning off fast window display. If there is enough
space to do so, it will open a notifier window at this point to warn you that you're
running out of space. It is generally advisable to close the notifier rather than
proceed, since soft error recovery may not be possible. Of you get more than one
such notifier, keep on closing them until you get no more.)

67

You can find out how much memory you have left with the expression

cirnal lLa l k spaceLeft

in your System Workspace window. This returns the number of free objects and the
number of free words of data. (The amount of space reported will generally be
greater than at the time Smalltalk detected it was running low, because some extra
space will have been gained by turning off fast windows.) For more specific, detailed
information, use

Smalltalk printSpaceAnalysis.

This writes out a disk file names STspace. text, listing the approximate number of
objects and words used by each class in the system.

The activation stack displayed in the low-space notifier will show whether the
problem was caused by endless recursion. If not, you should consider how else you
might have unintentionally consumed a lot of memory and what steps you can take to
free some. The problem may have been caused by having too many windows open
on the screen, or something in your code may be using a lot of space. If you really
need to make more space available in the system, here are some things you can try:

o Execute

Smalltalk deleteClasses.

which will remove some of the less important classes and other objects from the
system. (You may want to look at this method first, in class SystemDictionary,
to be sure you want to remove all these classes. Also note that the current release
doesn't include class SystemTracer, so remove the reference to this class from
the deleteClasses method before executing it.)

o Remove the debugger's step and send commands, and any other code that uses
the simulation in class ContextPart. If you can't live without step and send,
then implement breakpoints (a useful thing to do anyway) and use these to restore
the operation of step and send.

o Make MessageSet, and maybe even Debugger, a subclass of Browser so that
they can share code for printing, file-out, senders, and messages.

~J If you have a hard disk, remove class Decompiler. One minor problem is that
the decompiler is currently used for viewing the code of do It methods from the
debugger. If you can't live without this, figure out how to log the text of do It
methods in the changes file and give them a proper source-code pointer.

68 Memory Management T echnlques

o After removing significant parts of the system in this way, you can execute the
statement

Smalltalk removeUnSentMessages.

This locates and removes any messages that are implemented but never sent from
anywhere in the system. It's useful to run this method four or five times in a row,
because each method removed may render other methods inaccessible. The
method takes significant time (from 5 to 25 minutes) to run.

o Finally, you should execute

Symbol rehash.

which will reclaim all symbols that are no longer in use as a result of the removal of
methods.

Leaving more space for the Toolbox
As mentioned in Chapter 6, the Smalltalk interpreter allocates most of the
application heap as a single nonrelocatable block, which it uses for its own Smalltalk
heap. The amount of space withheld from this block for Toolbox operations is
determined by a resource of type STOP (for "Smalltalk options") in the interpreter's
resource file, and is initially set to 36K. If you need more heap space for Toolbox
objects and can spare it from your Smalltalk image, you can use the ResEdit resource
editor to change this value.

The STOP resource includes four values of 4 bytes each, only the first two of which are
relevant and alterable. The first is the amount of heap space set aside for Toolbox
operations, normally 36K; the second is the amount of stack space, normally 12K.
Note that you're taking a chance if you change these values. If your Smalltalk image is
already large and you reserve more space for the Toolbox or stack, the interpreter
may not have enought free space to run the image the next time you try to launch it.

Leaving more space for the Toolbox 69

Appendix D

Known Bugs and Limitations

The following is a list of known bugs and limitations in release 0.3 of Smalltalk-BO for
the Macintosh. Please report any other problems you may encounter, using the bug
report form at the end of this book.

o The (collapsed) system browser on the initial startup screen of this release is not
correctly updated. Selecting class PascalRecord in the class names pane will
cause an error, since this class has been moved to a different category. To correct
the problem, choose update in the browser's class categories pane.

o Method deleteClasses in class SystemDictionary still refers to class
SystemTracer, even though this class has been removed from the system. The
reference to SystemTracer should be deleted from the first statement of this
method.

o Level 0 images from older versions (release 0.2) of Smalltalk-BO for the Macintosh
won't nm with the new interpreter. Level 1 images will run, but you should keep the
0.2 interpreter around to run with level 0 images. You will also need to keep
around two versions of the Smalltalk-8 0. sources file, since the 0.3 sources
are new. To make sure both versions use the right sources, put the old sources in
the root directory of your hard disk and the new ones in a folder along with your
0.3 interpreter and image.

o Jfyou move your Srr.alltalk image to a system with a larger display, existing
windows cannot be framed larger than the old screen. If you can recreate the
window's contents easily, close and reopen it.

o For historical reasons, Smalltalk uses a few bytes of memory preceding its display
object, the screen, for private purposes. But on the Macintosh, memory just
below the screen may be used by other programs (MacsBug, the RAM cache,
sornc file servers), and some of the new large screens have no memory there at all.
To work around this problem, Smalltalk-80 for the Macintosh reserves the top scan
line of the screen for its private use, and fools QuickDraw into thinking that the

71

screen is one pixel shorter than its true height, starting at the second scan line
instead of the first. You cannot access the top line, nor can you change the few bits
of it that are left white.

o TI1e system transcript window is not always updated correctly after the message
Transcript clear. Reframing the transcript window corrects it.

o The choose volume command in a file-list window sometimes doesn't correctly
restore the area underneath the volume list.

o The find window command on the system menu has display problems if you
select a window that's entirely or almost entirely off the screen. Once you choose
the window from the find window menu and position it on the screen, you can
correct it by reframing.

o The form editor is buggy.

o Filename patterns containing an asterisk(*) should be used only in the top pane of
a file-list window. Don't use such patterns when specifying a filename from within
a method.

o The explain command in the browser's code pane sometimes displays two
statements for you to execute, but omits the period between them. Insert a period
before attempting to execute both statements with dolt.

o If Smalltalk crashes and leaves the changes file (or some other file) open, you may
get an error when you try to restart Smalltalk, since the file can't be opened a
second time for write access. This doesn't normally happen; but if it does, restart
the entire system with the Finder's Shut Down command before restarting
Smalltalk.

o Holding down the mouse button during a snapshot may cause the system to return
from the snapshot with the mouse out of sync.

o The system may occasionally hang during a large file-in. If this happens to you,
restart Smalltalk and start the file-in over again. If you're filing in many files at
once, try filing each one in separately and doing a snapshot after each.

o If you start up Smalltalk under older versions of the Finder and system file, it may
not open the sources and changes files properly. One indication of this problem
would be decompiled instead of fully commented source code in the browser. If
you encounter this problem, first make sure the file Smalltalk-SO. sources is
either in the root directory of your hard disk or in the same folder as your image
file. If it is, try starting Smalltalk and immediately quitting and saving changes. If
the problem persists, check the version numbers of the Finder and System file and
make sure you're using at least versions 5.3 and 3.2 respectively. If not, use the
Installer utility to install the newer versions from the system folder on Smalltalk
Disk 1, then try another quit-with-save, followed by a restart. If your system
sources are still inaccessible, please report the problem on the bug report form at
the back of this book.

72 Known Bugs and Limitations

rJ 'Incre are some known bugs (and there may be others not yet discovered) in the
internal table used by primitive 162 to call Macintosh Toolbox routines (see
Chapter 6).

73

Appendix E

Bibliography of Smalltalk
Literature

Following is a bibliography of available literature on Smalltalk and object-oriented
programming;

Introductory
Goldberg, Adele. Smalltalk-BO: The Interactive Programming Environment.
Reading, Mass.: Addison-Wesley, 1984. Describes the user interface of Smalltalk,
such as browsers and debugging tools. Sometimes referred to as the "orange book.•
This book and the one below by Goldberg and Robson together offer a
comprehensive description of Smalltalk-80.

Kaehler, Ted and Patterson, Dave. A Taste of Smalltalk. New York, N.Y.: W. W.
Norton & Co., 1986. A friendly introduction to the subject, including a detailed
treatment of an actual programming problem. Points out differences between
Smalltalk-80 Version I (Macintosh) and Version II (Xerox).

•:• Note: If you are using either of these introductory books, you may want to use
the goodie VersionIIMenus described in Appendix B; it makes the menus
more compatible with Xerox Version II.

75

Advanced
Goldberg, Adele and Robson, David. Smalltalk-80: The Language and Its
Implementation. Reading, Mass.: Addison-Wesley, 1983. Describes the Smalltalk
language and system classes, with many examples. Sometimes referred to as the
"blue book." A companion volume to the book by Goldberg listed above.

Krasner, Glenn, ed. Smalltalk-8.0: Btts of Htstory, Words of Advtce. Reading,
Mass.: Addison-We~ley, 198l A collection of papers describing several
implementations of Smalltalk on different computers. For implementors of Smalltalk
systems, not users. Sometimes referred to as the "green book."

Doyle, Ken; Haynes, Barry; Lentczner, Mark; Rosenstein, Larry. "An Object­
Oriented Approach to Macintosh Application Development." Paper presented at
the 3rd Working Session on Object-Oriented Languages, Paris, France, January 8-10,
1986. Describes the advantages of object-oriented programming for application
development on the Macintosh. Gives the relationship betweeen Smalltalk, Object
Pascal, and MacApp.

General interest
BY1E Magazine, August 1981. This entire issue is devoted to Smalltalk.

BY1E Magazine, August 1986. This entire issue is devoted to object-oriented
languages, and includes a condensed version of A Taste of Smalltalk, by Kaehler
and Patterson (see above).

Schmucker, Kurt]. Object-Oriented Programming for the Macintosh. Hasbrouck
Heights, N.J.: Hayden Book Company, 1986. Contains an entire chapter devoted to
Smalltalk-80 for the Macintosh.

"Smalltalk Comes to the Micro." Computer Language Magazine, August 1985.

76 Bibliography of Smalltalk Literature

Smm~~tm~lk-80™ f©IJ' tlhe Mmc~int@~lh\
Institutional License Agreement

This Agreement covers an institutional license for Smalltalk-BO. Please check what
License you are applying for, fill in the number of machines for your institution, and
sign this Agreement. This Agreement with the appropriate fee are to be returned to:

License

Apple Computer, Inc.
20525 Mariani Avenue, M/S 2BB
Cupertino, CA 95014
Attn: Software Licensing Department

Institutional license to make copies for a limited number

Check One

of machines $150.00 ___ _

Special rate for educational institutions $ 50.00

Institutional license
You have ordered an institutional license to use Smalltalk-BO for the Macintosh,
version 0.2 and/or version 0.3 (hereinafter "system") on machines within
your institution.

Apple grants to you the right to make that many copies of the system for distribution
and use within your institution. You agree that the system shall only be distributed
and used within your institution, and that the system will be used only in conjunction
with the Macintosh Smalltalk interpreter, and running on Apple computer
equipment.

You have read and agreed to the conditions stated above.

Name:
·------------------~ (please print)

Signed: ____________ Date: ____ _

Co./University: _______________ _

Address: -------------------
City/State/Zip:. ______________ _;___

Smalltalk-SO is a trademark of the Xerox Corporation.
Macintosh is a trademark of Apple Computer, Inc. 9/26/86

Smalltalk-80™ for the Macintosh
Institutional License Agreement

This Agreement covers an institutional license for Smalltalk-80. Please check which type of Liccnsl"
you arc applying for, fill in the number of machines for your institution, and sign this Agreement.
Return this Agreement with the appropriate fee to:

Apple Computer, Inc.
20525 Mariani Avenue, MIS 28B
Cupertino, CA 95014
Attn: Software Licensing Department

License
Institutional license to make copies for a limited number
of machines

Special rate for educational institutions

Institutional license

Fee

$150.00

$ 50.00

Check One

You have ordered an institutional license to use Smalltalk-80 for the Macintosh, version 0.2 and/or
version 0.3 (hereinafter "system") on machines within your institution.

Apple grants to you the right to make that many copies of the system for distribution and use within
your institution. You agree that the system shall only be distributed and used within your institution,
and that the system will be used only in conjunction with the Macintosh Smalltalk interpreter, and
running on Apple computer equipment.

You have read and agreed to the conditions stated above.

(please prinO

Signed: -----------------------~Date: _________ _

Co./University: ----------------------------------

Address=·-----------------------------------~

City/State/Zip: ______________________________ _

Smalltalk-SO is a trademark of the Xerox Corporation.
Macintosh is a trademark of Apple Computer, Inc. 10/12/86

Smolltolk-80™ for the Macintosh™
Bug Report Form

Smalltalk-80 is a trademark of Xerox Corporation. Macintosh is a trademark of Apple Computer, Inc.

Return to: The Smalltalk Group (MS 22-Y)
Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, CA 95014

AppleLink:
UNIX:

Smalltalk Group care of SARDll
... !apple!smalltalk

Reported by: Name

Address-------------------- State. __ ~Zip __

Phone----------------------------~·

Pate--------------

System: Macintosh Plus __ Macintosh XL __ Other _____ Memory ___ _

Disk Drives: Internal { 400K/800K) ____ External (400K/800K) ___ _

Apple Hard Disk 20 ___ _ Apple Hard Disk 20SC ___ _

Other (please specify) ----------------------

Other Peripherals: ______________________________ _

i
Describe any hardware
upgrades/modifications: ____________________________ _

ROM version: _____ System file Version: ------Finder Version: ---------

Smalltalk Version Number: ______ _

What other software (dP-bugger, RAM disk, etc.), if any, was running? -------------·

Describe the problem (specific steps/examples): --------------------

YOU SHOULD CAREFULLY READ THE FOUOWING
TERMS AND CONDITIONS BEFORE USING THIS
SOF1WARE. ANY DOWNLOADING, REPRODUCTION,
COPYING OR OTHER USE OF THE SOF1WARE Will
CONSTITUTE. ACCEPTANCE OF THESE TERMS.MID
CONDfl'IOf"!~:., --~·· ·~_:.'iC.:_.·~ _:· ~-~·.,·~· ·. :..::~

LICENSE
Pursuam ta-~-youri:iay:

1. Use the ~~·ml~·~Xiin a· sijiiile Apple computer; ··y~
must ··• • .·. · · 1···· ~:·~se from Ap'li 6ef0ie
using the .. ~ea~9ii"~i~ system$;~1mlll~ip.~e
central p -~OII\P~.networks.,orr«nulauw
onm' .. ·. · iefs.:: .. ··.

2. Download tfii,ia · y .on media that is~itil!le
with Ap PllU;rS·, dAi..1... .: ... ", f..,

3. Copy •·· . ~me rea .~ .. e ~~ ~or
backup ... pf,y;9ur use ofJlie:soft~if~.t?n
the single . · '"" .•.

4. Transfer, H~~J~-!!~f!ler~~Jtf;i!llda
copy of ov~~me uer. n~E,s.an
a ees to . condiil8ft$ bf tftii A~t: if you ·.· ; yati must at ilie same time
either trans(er a hether in printed or machine!
readable fonn.·to the same party or destroy any copies not
transferred. Apple grants a license to such other party under
this Agreement and r.he other party will accept such license
by its initial use of the software. If you transfer possession
of any copy of the software, in whole or in part, to another
party, your license is automatically tenninated.

This software is protected by United States copyright law.
You must reproduce the Apple copyright notice on any copy of
the software.

THIS SOFTWARE MAY BE ELECTRONICALLY DIS­
TRIBUTED ONLY BY AUTHORIZED ELECTRONIC
DISTRIBUTORS. IT MAY BE DOWNLOADED ONLY FOR
PERSONAL OR NON-COMMERCIAL USES ON APPLE
COMPUTERS AND MAY NOT BE REDISTRIBUTED OR
U ,.fOR CO C!AL PU W ·· · , *l'l°

defined in Paragraph 27.401 of the DoD Supplement to the
Federal Acquisition Regulations (the "Su ·· ·ent") or is
within the equivalent classification of any o derai agen-
cies' regulations; (b) the software was developed at private
ex cnse, and no part of it was developed wi£4 govmnent

. F,! .if:iM.government's use of the so ... er, subject to
. .. ._,·,~ghts" 'as that ten:ri is. . . med in clause
· Jo,~)(3)(ii) .. of the Suppl~m 6t iii the eq!ii~alent

rf!' aulico£·~~ .. ·9~er fediilral agencies' regitlations; ti~,· the
; '-$bf~e is ltt;i!ade seeret" of Apple f<jf til ~ of .tlil;i
;-;&=om:!O!·!'lnformatiim Act; and (e) e~n fiSJ5' of the
soft.~~~tain th~:following Restri~ Right$ LeStnd:

· ~·:.. .·· "Restnctoo Rights Legend"
.t>t:1$e, dup~bn or disclosure is subject w restriction!! as
yjjt :!otth)n .. 'su.bdivision (b)(3)(ii) of tlie Rights -in
1"' . "' .. and ~omputer Software clause at.,FAR
.. Manufa.c:turer: Apple Computer,rr;Iite.

~v~iW. Cupertino, Calfornia 95014.
Y .• ~~9r.~~jfy Apple for any liability,)o~.s, cos~

. 36~ dpe~ ~including court costs and reasonablf). il.toomeys
tAi&) :arl$ltig.,.out of any breach of the provi5ifjffis bf this
"gr~~lating to use by the government.

";~firm
}jte license is effective until terminated. You may,,~M~ it

at~ry time by destroying the software together wid'!:aU:cepies.
'\mt°o:.license will also terminate upon conditions se~~ else­' wne're in this Agreement or if you fail to comply with,any of

the terms or conditions of this Agreement. You agree upon
such tennination to destroy~all copies of the software.

Olsclclmer of Wcrrcnty
The software is provided "as is" without warranty of any

kind, either express or implied, with respect to its merchant­
ability or its fitness for any particular purpose. The entire risk
as to the quality and performance of the software is with you.
Should the software prove defective, you (and not Apple or an
Apple authorized representative) assume the entire cost of all
necessary servicing, repair or correction.

Apple does not warrant that the functio1;13t~~ed in ''the
software will meet your requirements or that i!t~ operation of
the software will be uninterrupted or error free or that defects in
the software will be corrected.

Some states do not allow the exclusion of implied warranties,
so the above exclusion may not apply to you. This warranty
gives you specific legal rights and you may also have other
rights which vary from state to state.

~~tlo"c:I' Remedies
. J1i, t will. Apple be liable to,:fo1.~Jor ti'fy 'lost profits,

lJost O'f,Other incidental, especial or consequential
' ·· g out of the use of or inability to use any soft-
·;lfll. . i;n· if Agple or an authorized Apple representative h.a.S
;·,~ .advised of the possibility of such damages; or for any

' 'tly' any Qt.Iler parry.
· " cS9,me states do not allow the limitation or exclusio'il. ~f
,Ual;;i;fi'ty for incidental or consequential damages so the aoove
:~.Won or exclllsion may not apply. to,,you.
·':A:P,ple's liability to you for actualcdamages for;any c~s:e
.. W,hitSoever, and regardless of the form of the action, witl 'be
~11;.iiited to the greater of $500 or the money paid for the s~ft­
w~e that caused the damages or that i$.·the subject matter of, or
J$'direcdy related to, the cause of actign •

.General
; ""

This Agreement, if any attempt to network, rent, lease, or
s,~blicense the software, or, except as expressly provided in

this Agreement, to transfer any of the rights, duties or obliga~
tfons under this Agreement, becomes void.

The Agreement will be construed under the laws of llfo1~te
of California, except for that body of laws dealing with coil.nict
of laws. If any provision ,of this Agreement shall Qe.?lteld by a
court of competent jurisc:!\~~ion to be contrary to l~w, that pro­
vision will be enforced :t~r,$,e maximum extenr;,p:¢txp!s~ib!e,
and the remaining provisions of this Agreement sh0aU remain in
full force and effect. ·

